glibc/elf/dl-addr.c

136 lines
4.3 KiB
C

/* Locate the shared object symbol nearest a given address.
Copyright (C) 1996-2003, 2004 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <dlfcn.h>
#include <stddef.h>
#include <ldsodefs.h>
int
internal_function
_dl_addr (const void *address, Dl_info *info,
struct link_map **mapp, const ElfW(Sym) **symbolp)
{
const ElfW(Addr) addr = DL_LOOKUP_ADDRESS (address);
struct link_map *match;
const ElfW(Sym) *symtab, *matchsym, *symtabend;
const char *strtab;
ElfW(Word) strtabsize;
/* Protect against concurrent loads and unloads. */
__rtld_lock_lock_recursive (GL(dl_load_lock));
/* Find the highest-addressed object that ADDRESS is not below. */
match = NULL;
for (Lmid_t ns = 0; ns < DL_NNS; ++ns)
for (struct link_map *l = GL(dl_ns)[ns]._ns_loaded; l; l = l->l_next)
if (addr >= l->l_map_start && addr < l->l_map_end)
{
/* We know ADDRESS lies within L if in any shared object.
Make sure it isn't past the end of L's segments. */
size_t n = l->l_phnum;
if (n > 0)
{
do
--n;
while (l->l_phdr[n].p_type != PT_LOAD);
if (addr >= (l->l_addr +
l->l_phdr[n].p_vaddr + l->l_phdr[n].p_memsz))
/* Off the end of the highest-addressed shared object. */
continue;
}
match = l;
break;
}
int result = 0;
if (match != NULL)
{
/* Now we know what object the address lies in. */
info->dli_fname = match->l_name;
info->dli_fbase = (void *) match->l_map_start;
/* If this is the main program the information is incomplete. */
if (__builtin_expect (match->l_name[0], 'a') == '\0'
&& match->l_type == lt_executable)
info->dli_fname = _dl_argv[0];
symtab = (const void *) D_PTR (match, l_info[DT_SYMTAB]);
strtab = (const void *) D_PTR (match, l_info[DT_STRTAB]);
strtabsize = match->l_info[DT_STRSZ]->d_un.d_val;
if (match->l_info[DT_HASH] != NULL)
symtabend = (symtab
+ ((Elf_Symndx *) D_PTR (match, l_info[DT_HASH]))[1]);
else
/* There is no direct way to determine the number of symbols in the
dynamic symbol table and no hash table is present. The ELF
binary is ill-formed but what shall we do? Use the beginning of
the string table which generally follows the symbol table. */
symtabend = (const ElfW(Sym) *) strtab;
/* We assume that the string table follows the symbol table,
because there is no way in ELF to know the size of the
dynamic symbol table!! */
for (matchsym = NULL; (void *) symtab < (void *) symtabend; ++symtab)
if (addr >= match->l_addr + symtab->st_value
#if defined USE_TLS
&& ELFW(ST_TYPE) (symtab->st_info) != STT_TLS
#endif
&& ((symtab->st_size == 0
&& addr == match->l_addr + symtab->st_value)
|| addr < match->l_addr + symtab->st_value + symtab->st_size)
&& symtab->st_name < strtabsize
&& (matchsym == NULL || matchsym->st_value < symtab->st_value)
&& (ELFW(ST_BIND) (symtab->st_info) == STB_GLOBAL
|| ELFW(ST_BIND) (symtab->st_info) == STB_WEAK))
matchsym = (ElfW(Sym) *) symtab;
if (mapp)
*mapp = match;
if (symbolp)
*symbolp = matchsym;
if (matchsym)
{
/* We found a symbol close by. Fill in its name and exact
address. */
lookup_t matchl = LOOKUP_VALUE (match);
info->dli_sname = strtab + matchsym->st_name;
info->dli_saddr = DL_SYMBOL_ADDRESS (matchl, matchsym);
}
else
{
/* No symbol matches. We return only the containing object. */
info->dli_sname = NULL;
info->dli_saddr = NULL;
}
result = 1;
}
__rtld_lock_unlock_recursive (GL(dl_load_lock));
return result;
}
libc_hidden_def (_dl_addr)