1384 lines
38 KiB
C
1384 lines
38 KiB
C
/* Read and display shared object profiling data.
|
|
Copyright (C) 1997-2002, 2003, 2004 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
#include <argp.h>
|
|
#include <dlfcn.h>
|
|
#include <elf.h>
|
|
#include <error.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <libintl.h>
|
|
#include <locale.h>
|
|
#include <obstack.h>
|
|
#include <search.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <ldsodefs.h>
|
|
#include <sys/gmon.h>
|
|
#include <sys/gmon_out.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/param.h>
|
|
#include <sys/stat.h>
|
|
|
|
/* Get libc version number. */
|
|
#include "../version.h"
|
|
|
|
#define PACKAGE _libc_intl_domainname
|
|
|
|
|
|
#include <endian.h>
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
# define byteorder ELFDATA2MSB
|
|
# define byteorder_name "big-endian"
|
|
#elif BYTE_ORDER == LITTLE_ENDIAN
|
|
# define byteorder ELFDATA2LSB
|
|
# define byteorder_name "little-endian"
|
|
#else
|
|
# error "Unknown BYTE_ORDER " BYTE_ORDER
|
|
# define byteorder ELFDATANONE
|
|
#endif
|
|
|
|
#ifndef PATH_MAX
|
|
# define PATH_MAX 1024
|
|
#endif
|
|
|
|
|
|
extern int __profile_frequency (void);
|
|
|
|
/* Name and version of program. */
|
|
static void print_version (FILE *stream, struct argp_state *state);
|
|
void (*argp_program_version_hook) (FILE *, struct argp_state *) = print_version;
|
|
|
|
#define OPT_TEST 1
|
|
|
|
/* Definitions of arguments for argp functions. */
|
|
static const struct argp_option options[] =
|
|
{
|
|
{ NULL, 0, NULL, 0, N_("Output selection:") },
|
|
{ "call-pairs", 'c', NULL, 0,
|
|
N_("print list of count paths and their number of use") },
|
|
{ "flat-profile", 'p', NULL, 0,
|
|
N_("generate flat profile with counts and ticks") },
|
|
{ "graph", 'q', NULL, 0, N_("generate call graph") },
|
|
|
|
{ "test", OPT_TEST, NULL, OPTION_HIDDEN, NULL },
|
|
{ NULL, 0, NULL, 0, NULL }
|
|
};
|
|
|
|
/* Short description of program. */
|
|
static const char doc[] = N_("Read and display shared object profiling data.\v\
|
|
For bug reporting instructions, please see:\n\
|
|
<http://www.gnu.org/software/libc/bugs.html>.\n");
|
|
|
|
/* Strings for arguments in help texts. */
|
|
static const char args_doc[] = N_("SHOBJ [PROFDATA]");
|
|
|
|
/* Prototype for option handler. */
|
|
static error_t parse_opt (int key, char *arg, struct argp_state *state);
|
|
|
|
/* Data structure to communicate with argp functions. */
|
|
static struct argp argp =
|
|
{
|
|
options, parse_opt, args_doc, doc
|
|
};
|
|
|
|
|
|
/* Operation modes. */
|
|
static enum
|
|
{
|
|
NONE = 0,
|
|
FLAT_MODE = 1 << 0,
|
|
CALL_GRAPH_MODE = 1 << 1,
|
|
CALL_PAIRS = 1 << 2,
|
|
|
|
DEFAULT_MODE = FLAT_MODE | CALL_GRAPH_MODE
|
|
} mode;
|
|
|
|
/* Nozero for testing. */
|
|
static int do_test;
|
|
|
|
/* Strcuture describing calls. */
|
|
struct here_fromstruct
|
|
{
|
|
struct here_cg_arc_record volatile *here;
|
|
uint16_t link;
|
|
};
|
|
|
|
/* We define a special type to address the elements of the arc table.
|
|
This is basically the `gmon_cg_arc_record' format but it includes
|
|
the room for the tag and it uses real types. */
|
|
struct here_cg_arc_record
|
|
{
|
|
uintptr_t from_pc;
|
|
uintptr_t self_pc;
|
|
uint32_t count;
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
struct known_symbol;
|
|
struct arc_list
|
|
{
|
|
size_t idx;
|
|
uintmax_t count;
|
|
|
|
struct arc_list *next;
|
|
};
|
|
|
|
static struct obstack ob_list;
|
|
|
|
|
|
struct known_symbol
|
|
{
|
|
const char *name;
|
|
uintptr_t addr;
|
|
size_t size;
|
|
bool weak;
|
|
bool hidden;
|
|
|
|
uintmax_t ticks;
|
|
uintmax_t calls;
|
|
|
|
struct arc_list *froms;
|
|
struct arc_list *tos;
|
|
};
|
|
|
|
|
|
struct shobj
|
|
{
|
|
const char *name; /* User-provided name. */
|
|
|
|
struct link_map *map;
|
|
const char *dynstrtab; /* Dynamic string table of shared object. */
|
|
const char *soname; /* Soname of shared object. */
|
|
|
|
uintptr_t lowpc;
|
|
uintptr_t highpc;
|
|
unsigned long int kcountsize;
|
|
size_t expected_size; /* Expected size of profiling file. */
|
|
size_t tossize;
|
|
size_t fromssize;
|
|
size_t fromlimit;
|
|
unsigned int hashfraction;
|
|
int s_scale;
|
|
|
|
void *symbol_map;
|
|
size_t symbol_mapsize;
|
|
const ElfW(Sym) *symtab;
|
|
size_t symtab_size;
|
|
const char *strtab;
|
|
|
|
struct obstack ob_str;
|
|
struct obstack ob_sym;
|
|
};
|
|
|
|
|
|
struct profdata
|
|
{
|
|
void *addr;
|
|
off_t size;
|
|
|
|
char *hist;
|
|
struct gmon_hist_hdr *hist_hdr;
|
|
uint16_t *kcount;
|
|
uint32_t narcs; /* Number of arcs in toset. */
|
|
struct here_cg_arc_record *data;
|
|
uint16_t *tos;
|
|
struct here_fromstruct *froms;
|
|
};
|
|
|
|
/* Search tree for symbols. */
|
|
static void *symroot;
|
|
static struct known_symbol **sortsym;
|
|
static size_t symidx;
|
|
static uintmax_t total_ticks;
|
|
|
|
/* Prototypes for local functions. */
|
|
static struct shobj *load_shobj (const char *name);
|
|
static void unload_shobj (struct shobj *shobj);
|
|
static struct profdata *load_profdata (const char *name, struct shobj *shobj);
|
|
static void unload_profdata (struct profdata *profdata);
|
|
static void count_total_ticks (struct shobj *shobj, struct profdata *profdata);
|
|
static void count_calls (struct shobj *shobj, struct profdata *profdata);
|
|
static void read_symbols (struct shobj *shobj);
|
|
static void add_arcs (struct profdata *profdata);
|
|
static void generate_flat_profile (struct profdata *profdata);
|
|
static void generate_call_graph (struct profdata *profdata);
|
|
static void generate_call_pair_list (struct profdata *profdata);
|
|
|
|
|
|
int
|
|
main (int argc, char *argv[])
|
|
{
|
|
const char *shobj;
|
|
const char *profdata;
|
|
struct shobj *shobj_handle;
|
|
struct profdata *profdata_handle;
|
|
int remaining;
|
|
|
|
setlocale (LC_ALL, "");
|
|
|
|
/* Initialize the message catalog. */
|
|
textdomain (_libc_intl_domainname);
|
|
|
|
/* Parse and process arguments. */
|
|
argp_parse (&argp, argc, argv, 0, &remaining, NULL);
|
|
|
|
if (argc - remaining == 0 || argc - remaining > 2)
|
|
{
|
|
/* We need exactly two non-option parameter. */
|
|
argp_help (&argp, stdout, ARGP_HELP_SEE | ARGP_HELP_EXIT_ERR,
|
|
program_invocation_short_name);
|
|
exit (1);
|
|
}
|
|
|
|
/* Get parameters. */
|
|
shobj = argv[remaining];
|
|
if (argc - remaining == 2)
|
|
profdata = argv[remaining + 1];
|
|
else
|
|
/* No filename for the profiling data given. We will determine it
|
|
from the soname of the shobj, later. */
|
|
profdata = NULL;
|
|
|
|
/* First see whether we can load the shared object. */
|
|
shobj_handle = load_shobj (shobj);
|
|
if (shobj_handle == NULL)
|
|
exit (1);
|
|
|
|
/* We can now determine the filename for the profiling data, if
|
|
nececessary. */
|
|
if (profdata == NULL)
|
|
{
|
|
char *newp;
|
|
const char *soname;
|
|
size_t soname_len;
|
|
|
|
soname = shobj_handle->soname ?: basename (shobj);
|
|
soname_len = strlen (soname);
|
|
newp = (char *) alloca (soname_len + sizeof ".profile");
|
|
stpcpy (mempcpy (newp, soname, soname_len), ".profile");
|
|
profdata = newp;
|
|
}
|
|
|
|
/* Now see whether the profiling data file matches the given object. */
|
|
profdata_handle = load_profdata (profdata, shobj_handle);
|
|
if (profdata_handle == NULL)
|
|
{
|
|
unload_shobj (shobj_handle);
|
|
|
|
exit (1);
|
|
}
|
|
|
|
read_symbols (shobj_handle);
|
|
|
|
/* Count the ticks. */
|
|
count_total_ticks (shobj_handle, profdata_handle);
|
|
|
|
/* Count the calls. */
|
|
count_calls (shobj_handle, profdata_handle);
|
|
|
|
/* Add the arc information. */
|
|
add_arcs (profdata_handle);
|
|
|
|
/* If no mode is specified fall back to the default mode. */
|
|
if (mode == NONE)
|
|
mode = DEFAULT_MODE;
|
|
|
|
/* Do some work. */
|
|
if (mode & FLAT_MODE)
|
|
generate_flat_profile (profdata_handle);
|
|
|
|
if (mode & CALL_GRAPH_MODE)
|
|
generate_call_graph (profdata_handle);
|
|
|
|
if (mode & CALL_PAIRS)
|
|
generate_call_pair_list (profdata_handle);
|
|
|
|
/* Free the resources. */
|
|
unload_shobj (shobj_handle);
|
|
unload_profdata (profdata_handle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Handle program arguments. */
|
|
static error_t
|
|
parse_opt (int key, char *arg, struct argp_state *state)
|
|
{
|
|
switch (key)
|
|
{
|
|
case 'c':
|
|
mode |= CALL_PAIRS;
|
|
break;
|
|
case 'p':
|
|
mode |= FLAT_MODE;
|
|
break;
|
|
case 'q':
|
|
mode |= CALL_GRAPH_MODE;
|
|
break;
|
|
case OPT_TEST:
|
|
do_test = 1;
|
|
break;
|
|
default:
|
|
return ARGP_ERR_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Print the version information. */
|
|
static void
|
|
print_version (FILE *stream, struct argp_state *state)
|
|
{
|
|
fprintf (stream, "sprof (GNU %s) %s\n", PACKAGE, VERSION);
|
|
fprintf (stream, gettext ("\
|
|
Copyright (C) %s Free Software Foundation, Inc.\n\
|
|
This is free software; see the source for copying conditions. There is NO\n\
|
|
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n\
|
|
"),
|
|
"2004");
|
|
fprintf (stream, gettext ("Written by %s.\n"), "Ulrich Drepper");
|
|
}
|
|
|
|
|
|
/* Note that we must not use `dlopen' etc. The shobj object must not
|
|
be loaded for use. */
|
|
static struct shobj *
|
|
load_shobj (const char *name)
|
|
{
|
|
struct link_map *map = NULL;
|
|
struct shobj *result;
|
|
ElfW(Addr) mapstart = ~((ElfW(Addr)) 0);
|
|
ElfW(Addr) mapend = 0;
|
|
const ElfW(Phdr) *ph;
|
|
size_t textsize;
|
|
unsigned int log_hashfraction;
|
|
ElfW(Ehdr) *ehdr;
|
|
int fd;
|
|
ElfW(Shdr) *shdr;
|
|
size_t pagesize = getpagesize ();
|
|
|
|
/* Since we use dlopen() we must be prepared to work around the sometimes
|
|
strange lookup rules for the shared objects. If we have a file foo.so
|
|
in the current directory and the user specfies foo.so on the command
|
|
line (without specifying a directory) we should load the file in the
|
|
current directory even if a normal dlopen() call would read the other
|
|
file. We do this by adding a directory portion to the name. */
|
|
if (strchr (name, '/') == NULL)
|
|
{
|
|
char *load_name = (char *) alloca (strlen (name) + 3);
|
|
stpcpy (stpcpy (load_name, "./"), name);
|
|
|
|
map = (struct link_map *) dlopen (load_name, RTLD_LAZY | __RTLD_SPROF);
|
|
}
|
|
if (map == NULL)
|
|
{
|
|
map = (struct link_map *) dlopen (name, RTLD_LAZY | __RTLD_SPROF);
|
|
if (map == NULL)
|
|
{
|
|
error (0, errno, _("failed to load shared object `%s'"), name);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Prepare the result. */
|
|
result = (struct shobj *) calloc (1, sizeof (struct shobj));
|
|
if (result == NULL)
|
|
{
|
|
error (0, errno, _("cannot create internal descriptors"));
|
|
dlclose (map);
|
|
return NULL;
|
|
}
|
|
result->name = name;
|
|
result->map = map;
|
|
|
|
/* Compute the size of the sections which contain program code.
|
|
This must match the code in dl-profile.c (_dl_start_profile). */
|
|
for (ph = map->l_phdr; ph < &map->l_phdr[map->l_phnum]; ++ph)
|
|
if (ph->p_type == PT_LOAD && (ph->p_flags & PF_X))
|
|
{
|
|
ElfW(Addr) start = (ph->p_vaddr & ~(pagesize - 1));
|
|
ElfW(Addr) end = ((ph->p_vaddr + ph->p_memsz + pagesize - 1)
|
|
& ~(pagesize - 1));
|
|
|
|
if (start < mapstart)
|
|
mapstart = start;
|
|
if (end > mapend)
|
|
mapend = end;
|
|
}
|
|
|
|
result->lowpc = ROUNDDOWN ((uintptr_t) (mapstart + map->l_addr),
|
|
HISTFRACTION * sizeof (HISTCOUNTER));
|
|
result->highpc = ROUNDUP ((uintptr_t) (mapend + map->l_addr),
|
|
HISTFRACTION * sizeof (HISTCOUNTER));
|
|
if (do_test)
|
|
printf ("load addr: %0#*" PRIxPTR "\n"
|
|
"lower bound PC: %0#*" PRIxPTR "\n"
|
|
"upper bound PC: %0#*" PRIxPTR "\n",
|
|
__ELF_NATIVE_CLASS == 32 ? 10 : 18, map->l_addr,
|
|
__ELF_NATIVE_CLASS == 32 ? 10 : 18, result->lowpc,
|
|
__ELF_NATIVE_CLASS == 32 ? 10 : 18, result->highpc);
|
|
|
|
textsize = result->highpc - result->lowpc;
|
|
result->kcountsize = textsize / HISTFRACTION;
|
|
result->hashfraction = HASHFRACTION;
|
|
if ((HASHFRACTION & (HASHFRACTION - 1)) == 0)
|
|
/* If HASHFRACTION is a power of two, mcount can use shifting
|
|
instead of integer division. Precompute shift amount. */
|
|
log_hashfraction = __builtin_ffs (result->hashfraction
|
|
* sizeof (struct here_fromstruct)) - 1;
|
|
else
|
|
log_hashfraction = -1;
|
|
if (do_test)
|
|
printf ("hashfraction = %d\ndivider = %Zu\n",
|
|
result->hashfraction,
|
|
result->hashfraction * sizeof (struct here_fromstruct));
|
|
result->tossize = textsize / HASHFRACTION;
|
|
result->fromlimit = textsize * ARCDENSITY / 100;
|
|
if (result->fromlimit < MINARCS)
|
|
result->fromlimit = MINARCS;
|
|
if (result->fromlimit > MAXARCS)
|
|
result->fromlimit = MAXARCS;
|
|
result->fromssize = result->fromlimit * sizeof (struct here_fromstruct);
|
|
|
|
result->expected_size = (sizeof (struct gmon_hdr)
|
|
+ 4 + sizeof (struct gmon_hist_hdr)
|
|
+ result->kcountsize
|
|
+ 4 + 4
|
|
+ (result->fromssize
|
|
* sizeof (struct here_cg_arc_record)));
|
|
|
|
if (do_test)
|
|
printf ("expected size: %Zd\n", result->expected_size);
|
|
|
|
#define SCALE_1_TO_1 0x10000L
|
|
|
|
if (result->kcountsize < result->highpc - result->lowpc)
|
|
{
|
|
size_t range = result->highpc - result->lowpc;
|
|
size_t quot = range / result->kcountsize;
|
|
|
|
if (quot >= SCALE_1_TO_1)
|
|
result->s_scale = 1;
|
|
else if (quot >= SCALE_1_TO_1 / 256)
|
|
result->s_scale = SCALE_1_TO_1 / quot;
|
|
else if (range > ULONG_MAX / 256)
|
|
result->s_scale = ((SCALE_1_TO_1 * 256)
|
|
/ (range / (result->kcountsize / 256)));
|
|
else
|
|
result->s_scale = ((SCALE_1_TO_1 * 256)
|
|
/ ((range * 256) / result->kcountsize));
|
|
}
|
|
else
|
|
result->s_scale = SCALE_1_TO_1;
|
|
|
|
if (do_test)
|
|
printf ("s_scale: %d\n", result->s_scale);
|
|
|
|
/* Determine the dynamic string table. */
|
|
if (map->l_info[DT_STRTAB] == NULL)
|
|
result->dynstrtab = NULL;
|
|
else
|
|
result->dynstrtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
|
|
if (do_test)
|
|
printf ("string table: %p\n", result->dynstrtab);
|
|
|
|
/* Determine the soname. */
|
|
if (map->l_info[DT_SONAME] == NULL)
|
|
result->soname = NULL;
|
|
else
|
|
result->soname = result->dynstrtab + map->l_info[DT_SONAME]->d_un.d_val;
|
|
if (do_test && result->soname != NULL)
|
|
printf ("soname: %s\n", result->soname);
|
|
|
|
/* Now we have to load the symbol table.
|
|
|
|
First load the section header table. */
|
|
ehdr = (ElfW(Ehdr) *) map->l_map_start;
|
|
|
|
/* Make sure we are on the right party. */
|
|
if (ehdr->e_shentsize != sizeof (ElfW(Shdr)))
|
|
abort ();
|
|
|
|
/* And we need the shared object file descriptor again. */
|
|
fd = open (map->l_name, O_RDONLY);
|
|
if (fd == -1)
|
|
/* Dooh, this really shouldn't happen. We know the file is available. */
|
|
error (EXIT_FAILURE, errno, _("Reopening shared object `%s' failed"),
|
|
map->l_name);
|
|
|
|
/* Map the section header. */
|
|
size_t size = ehdr->e_shnum * sizeof (ElfW(Shdr));
|
|
shdr = (ElfW(Shdr) *) alloca (size);
|
|
if (pread (fd, shdr, size, ehdr->e_shoff) != size)
|
|
error (EXIT_FAILURE, errno, _("reading of section headers failed"));
|
|
|
|
/* Get the section header string table. */
|
|
char *shstrtab = (char *) alloca (shdr[ehdr->e_shstrndx].sh_size);
|
|
if (pread (fd, shstrtab, shdr[ehdr->e_shstrndx].sh_size,
|
|
shdr[ehdr->e_shstrndx].sh_offset)
|
|
!= shdr[ehdr->e_shstrndx].sh_size)
|
|
error (EXIT_FAILURE, errno,
|
|
_("reading of section header string table failed"));
|
|
|
|
/* Search for the ".symtab" section. */
|
|
ElfW(Shdr) *symtab_entry = NULL;
|
|
ElfW(Shdr) *debuglink_entry = NULL;
|
|
for (int idx = 0; idx < ehdr->e_shnum; ++idx)
|
|
if (shdr[idx].sh_type == SHT_SYMTAB
|
|
&& strcmp (shstrtab + shdr[idx].sh_name, ".symtab") == 0)
|
|
{
|
|
symtab_entry = &shdr[idx];
|
|
break;
|
|
}
|
|
else if (shdr[idx].sh_type == SHT_PROGBITS
|
|
&& strcmp (shstrtab + shdr[idx].sh_name, ".gnu_debuglink") == 0)
|
|
debuglink_entry = &shdr[idx];
|
|
|
|
/* Get the file name of the debuginfo file if necessary. */
|
|
int symfd = fd;
|
|
if (symtab_entry == NULL && debuglink_entry != NULL)
|
|
{
|
|
size_t size = debuglink_entry->sh_size;
|
|
char *debuginfo_fname = (char *) alloca (size + 1);
|
|
debuginfo_fname[size] = '\0';
|
|
if (pread (fd, debuginfo_fname, size, debuglink_entry->sh_offset)
|
|
!= size)
|
|
{
|
|
fprintf (stderr, _("*** Cannot read debuginfo file name: %m\n"));
|
|
goto no_debuginfo;
|
|
}
|
|
|
|
static const char procpath[] = "/proc/self/fd/%d";
|
|
char origprocname[sizeof (procpath) + sizeof (int) * 3];
|
|
snprintf (origprocname, sizeof (origprocname), procpath, fd);
|
|
char *origlink = (char *) alloca (PATH_MAX + 1);
|
|
origlink[PATH_MAX] = '\0';
|
|
if (readlink (origprocname, origlink, PATH_MAX) == -1)
|
|
goto no_debuginfo;
|
|
|
|
/* Try to find the actual file. There are three places:
|
|
1. the same directory the DSO is in
|
|
2. in a subdir named .debug of the directory the DSO is in
|
|
3. in /usr/lib/debug/PATH-OF-DSO
|
|
*/
|
|
char *realname = canonicalize_file_name (origlink);
|
|
char *cp = NULL;
|
|
if (realname == NULL || (cp = strrchr (realname, '/')) == NULL)
|
|
error (EXIT_FAILURE, errno, _("cannot determine file name"));
|
|
|
|
/* Leave the last slash in place. */
|
|
*++cp = '\0';
|
|
|
|
/* First add the debuginfo file name only. */
|
|
static const char usrlibdebug[]= "/usr/lib/debug/";
|
|
char *workbuf = (char *) alloca (sizeof (usrlibdebug)
|
|
+ (cp - realname)
|
|
+ strlen (debuginfo_fname));
|
|
strcpy (stpcpy (workbuf, realname), debuginfo_fname);
|
|
|
|
int fd2 = open (workbuf, O_RDONLY);
|
|
if (fd2 == -1)
|
|
{
|
|
strcpy (stpcpy (stpcpy (workbuf, realname), ".debug/"),
|
|
debuginfo_fname);
|
|
fd2 = open (workbuf, O_RDONLY);
|
|
if (fd2 == -1)
|
|
{
|
|
strcpy (stpcpy (stpcpy (workbuf, usrlibdebug), realname),
|
|
debuginfo_fname);
|
|
fd2 = open (workbuf, O_RDONLY);
|
|
}
|
|
}
|
|
|
|
if (fd2 != -1)
|
|
{
|
|
ElfW(Ehdr) ehdr2;
|
|
|
|
/* Read the ELF header. */
|
|
if (pread (fd2, &ehdr2, sizeof (ehdr2), 0) != sizeof (ehdr2))
|
|
error (EXIT_FAILURE, errno,
|
|
_("reading of ELF header failed"));
|
|
|
|
/* Map the section header. */
|
|
size_t size = ehdr2.e_shnum * sizeof (ElfW(Shdr));
|
|
ElfW(Shdr) *shdr2 = (ElfW(Shdr) *) alloca (size);
|
|
if (pread (fd2, shdr2, size, ehdr2.e_shoff) != size)
|
|
error (EXIT_FAILURE, errno,
|
|
_("reading of section headers failed"));
|
|
|
|
/* Get the section header string table. */
|
|
shstrtab = (char *) alloca (shdr2[ehdr2.e_shstrndx].sh_size);
|
|
if (pread (fd2, shstrtab, shdr2[ehdr2.e_shstrndx].sh_size,
|
|
shdr2[ehdr2.e_shstrndx].sh_offset)
|
|
!= shdr2[ehdr2.e_shstrndx].sh_size)
|
|
error (EXIT_FAILURE, errno,
|
|
_("reading of section header string table failed"));
|
|
|
|
/* Search for the ".symtab" section. */
|
|
for (int idx = 0; idx < ehdr2.e_shnum; ++idx)
|
|
if (shdr2[idx].sh_type == SHT_SYMTAB
|
|
&& strcmp (shstrtab + shdr2[idx].sh_name, ".symtab") == 0)
|
|
{
|
|
symtab_entry = &shdr2[idx];
|
|
shdr = shdr2;
|
|
symfd = fd2;
|
|
break;
|
|
}
|
|
|
|
if (fd2 != symfd)
|
|
close (fd2);
|
|
}
|
|
}
|
|
|
|
no_debuginfo:
|
|
if (symtab_entry == NULL)
|
|
{
|
|
fprintf (stderr, _("\
|
|
*** The file `%s' is stripped: no detailed analysis possible\n"),
|
|
name);
|
|
result->symtab = NULL;
|
|
result->strtab = NULL;
|
|
}
|
|
else
|
|
{
|
|
ElfW(Off) min_offset, max_offset;
|
|
ElfW(Shdr) *strtab_entry;
|
|
|
|
strtab_entry = &shdr[symtab_entry->sh_link];
|
|
|
|
/* Find the minimum and maximum offsets that include both the symbol
|
|
table and the string table. */
|
|
if (symtab_entry->sh_offset < strtab_entry->sh_offset)
|
|
{
|
|
min_offset = symtab_entry->sh_offset & ~(pagesize - 1);
|
|
max_offset = strtab_entry->sh_offset + strtab_entry->sh_size;
|
|
}
|
|
else
|
|
{
|
|
min_offset = strtab_entry->sh_offset & ~(pagesize - 1);
|
|
max_offset = symtab_entry->sh_offset + symtab_entry->sh_size;
|
|
}
|
|
|
|
result->symbol_map = mmap (NULL, max_offset - min_offset,
|
|
PROT_READ, MAP_SHARED|MAP_FILE, symfd,
|
|
min_offset);
|
|
if (result->symbol_map == MAP_FAILED)
|
|
error (EXIT_FAILURE, errno, _("failed to load symbol data"));
|
|
|
|
result->symtab
|
|
= (const ElfW(Sym) *) ((const char *) result->symbol_map
|
|
+ (symtab_entry->sh_offset - min_offset));
|
|
result->symtab_size = symtab_entry->sh_size;
|
|
result->strtab = ((const char *) result->symbol_map
|
|
+ (strtab_entry->sh_offset - min_offset));
|
|
result->symbol_mapsize = max_offset - min_offset;
|
|
}
|
|
|
|
/* Free the descriptor for the shared object. */
|
|
close (fd);
|
|
if (symfd != fd)
|
|
close (symfd);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static void
|
|
unload_shobj (struct shobj *shobj)
|
|
{
|
|
munmap (shobj->symbol_map, shobj->symbol_mapsize);
|
|
dlclose (shobj->map);
|
|
}
|
|
|
|
|
|
static struct profdata *
|
|
load_profdata (const char *name, struct shobj *shobj)
|
|
{
|
|
struct profdata *result;
|
|
int fd;
|
|
struct stat st;
|
|
void *addr;
|
|
struct gmon_hdr gmon_hdr;
|
|
struct gmon_hist_hdr hist_hdr;
|
|
uint32_t *narcsp;
|
|
size_t fromlimit;
|
|
struct here_cg_arc_record *data;
|
|
struct here_fromstruct *froms;
|
|
uint16_t *tos;
|
|
size_t fromidx;
|
|
size_t idx;
|
|
|
|
fd = open (name, O_RDONLY);
|
|
if (fd == -1)
|
|
{
|
|
char *ext_name;
|
|
|
|
if (errno != ENOENT || strchr (name, '/') != NULL)
|
|
/* The file exists but we are not allowed to read it or the
|
|
file does not exist and the name includes a path
|
|
specification.. */
|
|
return NULL;
|
|
|
|
/* A file with the given name does not exist in the current
|
|
directory, try it in the default location where the profiling
|
|
files are created. */
|
|
ext_name = (char *) alloca (strlen (name) + sizeof "/var/tmp/");
|
|
stpcpy (stpcpy (ext_name, "/var/tmp/"), name);
|
|
name = ext_name;
|
|
|
|
fd = open (ext_name, O_RDONLY);
|
|
if (fd == -1)
|
|
{
|
|
/* Even this file does not exist. */
|
|
error (0, errno, _("cannot load profiling data"));
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* We have found the file, now make sure it is the right one for the
|
|
data file. */
|
|
if (fstat (fd, &st) < 0)
|
|
{
|
|
error (0, errno, _("while stat'ing profiling data file"));
|
|
close (fd);
|
|
return NULL;
|
|
}
|
|
|
|
if ((size_t) st.st_size != shobj->expected_size)
|
|
{
|
|
error (0, 0,
|
|
_("profiling data file `%s' does not match shared object `%s'"),
|
|
name, shobj->name);
|
|
close (fd);
|
|
return NULL;
|
|
}
|
|
|
|
/* The data file is most probably the right one for our shared
|
|
object. Map it now. */
|
|
addr = mmap (NULL, st.st_size, PROT_READ, MAP_SHARED|MAP_FILE, fd, 0);
|
|
if (addr == MAP_FAILED)
|
|
{
|
|
error (0, errno, _("failed to mmap the profiling data file"));
|
|
close (fd);
|
|
return NULL;
|
|
}
|
|
|
|
/* We don't need the file desriptor anymore. */
|
|
if (close (fd) < 0)
|
|
{
|
|
error (0, errno, _("error while closing the profiling data file"));
|
|
munmap (addr, st.st_size);
|
|
return NULL;
|
|
}
|
|
|
|
/* Prepare the result. */
|
|
result = (struct profdata *) calloc (1, sizeof (struct profdata));
|
|
if (result == NULL)
|
|
{
|
|
error (0, errno, _("cannot create internal descriptor"));
|
|
munmap (addr, st.st_size);
|
|
return NULL;
|
|
}
|
|
|
|
/* Store the address and size so that we can later free the resources. */
|
|
result->addr = addr;
|
|
result->size = st.st_size;
|
|
|
|
/* Pointer to data after the header. */
|
|
result->hist = (char *) ((struct gmon_hdr *) addr + 1);
|
|
result->hist_hdr = (struct gmon_hist_hdr *) ((char *) result->hist
|
|
+ sizeof (uint32_t));
|
|
result->kcount = (uint16_t *) ((char *) result->hist + sizeof (uint32_t)
|
|
+ sizeof (struct gmon_hist_hdr));
|
|
|
|
/* Compute pointer to array of the arc information. */
|
|
narcsp = (uint32_t *) ((char *) result->kcount + shobj->kcountsize
|
|
+ sizeof (uint32_t));
|
|
result->narcs = *narcsp;
|
|
result->data = (struct here_cg_arc_record *) ((char *) narcsp
|
|
+ sizeof (uint32_t));
|
|
|
|
/* Create the gmon_hdr we expect or write. */
|
|
memset (&gmon_hdr, '\0', sizeof (struct gmon_hdr));
|
|
memcpy (&gmon_hdr.cookie[0], GMON_MAGIC, sizeof (gmon_hdr.cookie));
|
|
*(int32_t *) gmon_hdr.version = GMON_SHOBJ_VERSION;
|
|
|
|
/* Create the hist_hdr we expect or write. */
|
|
*(char **) hist_hdr.low_pc = (char *) shobj->lowpc - shobj->map->l_addr;
|
|
*(char **) hist_hdr.high_pc = (char *) shobj->highpc - shobj->map->l_addr;
|
|
if (do_test)
|
|
printf ("low_pc = %p\nhigh_pc = %p\n",
|
|
*(char **) hist_hdr.low_pc, *(char **) hist_hdr.high_pc);
|
|
*(int32_t *) hist_hdr.hist_size = shobj->kcountsize / sizeof (HISTCOUNTER);
|
|
*(int32_t *) hist_hdr.prof_rate = __profile_frequency ();
|
|
strncpy (hist_hdr.dimen, "seconds", sizeof (hist_hdr.dimen));
|
|
hist_hdr.dimen_abbrev = 's';
|
|
|
|
/* Test whether the header of the profiling data is ok. */
|
|
if (memcmp (addr, &gmon_hdr, sizeof (struct gmon_hdr)) != 0
|
|
|| *(uint32_t *) result->hist != GMON_TAG_TIME_HIST
|
|
|| memcmp (result->hist_hdr, &hist_hdr,
|
|
sizeof (struct gmon_hist_hdr)) != 0
|
|
|| narcsp[-1] != GMON_TAG_CG_ARC)
|
|
{
|
|
error (0, 0, _("`%s' is no correct profile data file for `%s'"),
|
|
name, shobj->name);
|
|
if (do_test)
|
|
{
|
|
if (memcmp (addr, &gmon_hdr, sizeof (struct gmon_hdr)) != 0)
|
|
puts ("gmon_hdr differs");
|
|
if (*(uint32_t *) result->hist != GMON_TAG_TIME_HIST)
|
|
puts ("result->hist differs");
|
|
if (memcmp (result->hist_hdr, &hist_hdr,
|
|
sizeof (struct gmon_hist_hdr)) != 0)
|
|
puts ("hist_hdr differs");
|
|
if (narcsp[-1] != GMON_TAG_CG_ARC)
|
|
puts ("narcsp[-1] differs");
|
|
}
|
|
free (result);
|
|
munmap (addr, st.st_size);
|
|
return NULL;
|
|
}
|
|
|
|
/* We are pretty sure now that this is a correct input file. Set up
|
|
the remaining information in the result structure and return. */
|
|
result->tos = (uint16_t *) calloc (shobj->tossize + shobj->fromssize, 1);
|
|
if (result->tos == NULL)
|
|
{
|
|
error (0, errno, _("cannot create internal descriptor"));
|
|
munmap (addr, st.st_size);
|
|
free (result);
|
|
return NULL;
|
|
}
|
|
|
|
result->froms = (struct here_fromstruct *) ((char *) result->tos
|
|
+ shobj->tossize);
|
|
fromidx = 0;
|
|
|
|
/* Now we have to process all the arc count entries. */
|
|
fromlimit = shobj->fromlimit;
|
|
data = result->data;
|
|
froms = result->froms;
|
|
tos = result->tos;
|
|
for (idx = 0; idx < MIN (*narcsp, fromlimit); ++idx)
|
|
{
|
|
size_t to_index;
|
|
size_t newfromidx;
|
|
to_index = (data[idx].self_pc / (shobj->hashfraction * sizeof (*tos)));
|
|
newfromidx = fromidx++;
|
|
froms[newfromidx].here = &data[idx];
|
|
froms[newfromidx].link = tos[to_index];
|
|
tos[to_index] = newfromidx;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static void
|
|
unload_profdata (struct profdata *profdata)
|
|
{
|
|
free (profdata->tos);
|
|
munmap (profdata->addr, profdata->size);
|
|
free (profdata);
|
|
}
|
|
|
|
|
|
static void
|
|
count_total_ticks (struct shobj *shobj, struct profdata *profdata)
|
|
{
|
|
volatile uint16_t *kcount = profdata->kcount;
|
|
size_t maxkidx = shobj->kcountsize;
|
|
size_t factor = 2 * (65536 / shobj->s_scale);
|
|
size_t kidx = 0;
|
|
size_t sidx = 0;
|
|
|
|
while (sidx < symidx)
|
|
{
|
|
uintptr_t start = sortsym[sidx]->addr;
|
|
uintptr_t end = start + sortsym[sidx]->size;
|
|
|
|
while (kidx < maxkidx && factor * kidx < start)
|
|
++kidx;
|
|
if (kidx == maxkidx)
|
|
break;
|
|
|
|
while (kidx < maxkidx && factor * kidx < end)
|
|
sortsym[sidx]->ticks += kcount[kidx++];
|
|
if (kidx == maxkidx)
|
|
break;
|
|
|
|
total_ticks += sortsym[sidx++]->ticks;
|
|
}
|
|
}
|
|
|
|
|
|
static size_t
|
|
find_symbol (uintptr_t addr)
|
|
{
|
|
size_t sidx = 0;
|
|
|
|
while (sidx < symidx)
|
|
{
|
|
uintptr_t start = sortsym[sidx]->addr;
|
|
uintptr_t end = start + sortsym[sidx]->size;
|
|
|
|
if (addr >= start && addr < end)
|
|
return sidx;
|
|
|
|
if (addr < start)
|
|
break;
|
|
|
|
++sidx;
|
|
}
|
|
|
|
return (size_t) -1l;
|
|
}
|
|
|
|
|
|
static void
|
|
count_calls (struct shobj *shobj, struct profdata *profdata)
|
|
{
|
|
struct here_cg_arc_record *data = profdata->data;
|
|
uint32_t narcs = profdata->narcs;
|
|
uint32_t cnt;
|
|
|
|
for (cnt = 0; cnt < narcs; ++cnt)
|
|
{
|
|
uintptr_t here = data[cnt].self_pc;
|
|
size_t symbol_idx;
|
|
|
|
/* Find the symbol for this address. */
|
|
symbol_idx = find_symbol (here);
|
|
if (symbol_idx != (size_t) -1l)
|
|
sortsym[symbol_idx]->calls += data[cnt].count;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
symorder (const void *o1, const void *o2)
|
|
{
|
|
const struct known_symbol *p1 = (const struct known_symbol *) o1;
|
|
const struct known_symbol *p2 = (const struct known_symbol *) o2;
|
|
|
|
return p1->addr - p2->addr;
|
|
}
|
|
|
|
|
|
static void
|
|
printsym (const void *node, VISIT value, int level)
|
|
{
|
|
if (value == leaf || value == postorder)
|
|
sortsym[symidx++] = *(struct known_symbol **) node;
|
|
}
|
|
|
|
|
|
static void
|
|
read_symbols (struct shobj *shobj)
|
|
{
|
|
int n = 0;
|
|
|
|
/* Initialize the obstacks. */
|
|
#define obstack_chunk_alloc malloc
|
|
#define obstack_chunk_free free
|
|
obstack_init (&shobj->ob_str);
|
|
obstack_init (&shobj->ob_sym);
|
|
obstack_init (&ob_list);
|
|
|
|
/* Process the symbols. */
|
|
if (shobj->symtab != NULL)
|
|
{
|
|
const ElfW(Sym) *sym = shobj->symtab;
|
|
const ElfW(Sym) *sym_end
|
|
= (const ElfW(Sym) *) ((const char *) sym + shobj->symtab_size);
|
|
for (; sym < sym_end; sym++)
|
|
if ((ELFW(ST_TYPE) (sym->st_info) == STT_FUNC
|
|
|| ELFW(ST_TYPE) (sym->st_info) == STT_NOTYPE)
|
|
&& sym->st_size != 0)
|
|
{
|
|
struct known_symbol **existp;
|
|
struct known_symbol *newsym
|
|
= (struct known_symbol *) obstack_alloc (&shobj->ob_sym,
|
|
sizeof (*newsym));
|
|
if (newsym == NULL)
|
|
error (EXIT_FAILURE, errno, _("cannot allocate symbol data"));
|
|
|
|
newsym->name = &shobj->strtab[sym->st_name];
|
|
newsym->addr = sym->st_value;
|
|
newsym->size = sym->st_size;
|
|
newsym->weak = ELFW(ST_BIND) (sym->st_info) == STB_WEAK;
|
|
newsym->hidden = (ELFW(ST_VISIBILITY) (sym->st_other)
|
|
!= STV_DEFAULT);
|
|
newsym->ticks = 0;
|
|
newsym->calls = 0;
|
|
|
|
existp = tfind (newsym, &symroot, symorder);
|
|
if (existp == NULL)
|
|
{
|
|
/* New function. */
|
|
tsearch (newsym, &symroot, symorder);
|
|
++n;
|
|
}
|
|
else
|
|
{
|
|
/* The function is already defined. See whether we have
|
|
a better name here. */
|
|
if (((*existp)->hidden && !newsym->hidden)
|
|
|| ((*existp)->name[0] == '_' && newsym->name[0] != '_')
|
|
|| ((*existp)->name[0] != '_' && newsym->name[0] != '_'
|
|
&& ((*existp)->weak && !newsym->weak)))
|
|
*existp = newsym;
|
|
else
|
|
/* We don't need the allocated memory. */
|
|
obstack_free (&shobj->ob_sym, newsym);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Blarg, the binary is stripped. We have to rely on the
|
|
information contained in the dynamic section of the object. */
|
|
const ElfW(Sym) *symtab = (ElfW(Sym) *) D_PTR (shobj->map,
|
|
l_info[DT_SYMTAB]);
|
|
const char *strtab = (const char *) D_PTR (shobj->map,
|
|
l_info[DT_STRTAB]);
|
|
|
|
/* We assume that the string table follows the symbol table,
|
|
because there is no way in ELF to know the size of the
|
|
dynamic symbol table without looking at the section headers. */
|
|
while ((void *) symtab < (void *) strtab)
|
|
{
|
|
if ((ELFW(ST_TYPE)(symtab->st_info) == STT_FUNC
|
|
|| ELFW(ST_TYPE)(symtab->st_info) == STT_NOTYPE)
|
|
&& symtab->st_size != 0)
|
|
{
|
|
struct known_symbol *newsym;
|
|
struct known_symbol **existp;
|
|
|
|
newsym =
|
|
(struct known_symbol *) obstack_alloc (&shobj->ob_sym,
|
|
sizeof (*newsym));
|
|
if (newsym == NULL)
|
|
error (EXIT_FAILURE, errno, _("cannot allocate symbol data"));
|
|
|
|
newsym->name = &strtab[symtab->st_name];
|
|
newsym->addr = symtab->st_value;
|
|
newsym->size = symtab->st_size;
|
|
newsym->weak = ELFW(ST_BIND) (symtab->st_info) == STB_WEAK;
|
|
newsym->hidden = (ELFW(ST_VISIBILITY) (symtab->st_other)
|
|
!= STV_DEFAULT);
|
|
newsym->ticks = 0;
|
|
newsym->froms = NULL;
|
|
newsym->tos = NULL;
|
|
|
|
existp = tfind (newsym, &symroot, symorder);
|
|
if (existp == NULL)
|
|
{
|
|
/* New function. */
|
|
tsearch (newsym, &symroot, symorder);
|
|
++n;
|
|
}
|
|
else
|
|
{
|
|
/* The function is already defined. See whether we have
|
|
a better name here. */
|
|
if (((*existp)->hidden && !newsym->hidden)
|
|
|| ((*existp)->name[0] == '_' && newsym->name[0] != '_')
|
|
|| ((*existp)->name[0] != '_' && newsym->name[0] != '_'
|
|
&& ((*existp)->weak && !newsym->weak)))
|
|
*existp = newsym;
|
|
else
|
|
/* We don't need the allocated memory. */
|
|
obstack_free (&shobj->ob_sym, newsym);
|
|
}
|
|
}
|
|
|
|
++symtab;
|
|
}
|
|
}
|
|
|
|
sortsym = malloc (n * sizeof (struct known_symbol *));
|
|
if (sortsym == NULL)
|
|
abort ();
|
|
|
|
twalk (symroot, printsym);
|
|
}
|
|
|
|
|
|
static void
|
|
add_arcs (struct profdata *profdata)
|
|
{
|
|
uint32_t narcs = profdata->narcs;
|
|
struct here_cg_arc_record *data = profdata->data;
|
|
uint32_t cnt;
|
|
|
|
for (cnt = 0; cnt < narcs; ++cnt)
|
|
{
|
|
/* First add the incoming arc. */
|
|
size_t sym_idx = find_symbol (data[cnt].self_pc);
|
|
|
|
if (sym_idx != (size_t) -1l)
|
|
{
|
|
struct known_symbol *sym = sortsym[sym_idx];
|
|
struct arc_list *runp = sym->froms;
|
|
|
|
while (runp != NULL
|
|
&& ((data[cnt].from_pc == 0 && runp->idx != (size_t) -1l)
|
|
|| (data[cnt].from_pc != 0
|
|
&& (runp->idx == (size_t) -1l
|
|
|| data[cnt].from_pc < sortsym[runp->idx]->addr
|
|
|| (data[cnt].from_pc
|
|
>= (sortsym[runp->idx]->addr
|
|
+ sortsym[runp->idx]->size))))))
|
|
runp = runp->next;
|
|
|
|
if (runp == NULL)
|
|
{
|
|
/* We need a new entry. */
|
|
struct arc_list *newp = (struct arc_list *)
|
|
obstack_alloc (&ob_list, sizeof (struct arc_list));
|
|
|
|
if (data[cnt].from_pc == 0)
|
|
newp->idx = (size_t) -1l;
|
|
else
|
|
newp->idx = find_symbol (data[cnt].from_pc);
|
|
newp->count = data[cnt].count;
|
|
newp->next = sym->froms;
|
|
sym->froms = newp;
|
|
}
|
|
else
|
|
/* Increment the counter for the found entry. */
|
|
runp->count += data[cnt].count;
|
|
}
|
|
|
|
/* Now add it to the appropriate outgoing list. */
|
|
sym_idx = find_symbol (data[cnt].from_pc);
|
|
if (sym_idx != (size_t) -1l)
|
|
{
|
|
struct known_symbol *sym = sortsym[sym_idx];
|
|
struct arc_list *runp = sym->tos;
|
|
|
|
while (runp != NULL
|
|
&& (runp->idx == (size_t) -1l
|
|
|| data[cnt].self_pc < sortsym[runp->idx]->addr
|
|
|| data[cnt].self_pc >= (sortsym[runp->idx]->addr
|
|
+ sortsym[runp->idx]->size)))
|
|
runp = runp->next;
|
|
|
|
if (runp == NULL)
|
|
{
|
|
/* We need a new entry. */
|
|
struct arc_list *newp = (struct arc_list *)
|
|
obstack_alloc (&ob_list, sizeof (struct arc_list));
|
|
|
|
newp->idx = find_symbol (data[cnt].self_pc);
|
|
newp->count = data[cnt].count;
|
|
newp->next = sym->tos;
|
|
sym->tos = newp;
|
|
}
|
|
else
|
|
/* Increment the counter for the found entry. */
|
|
runp->count += data[cnt].count;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
countorder (const void *p1, const void *p2)
|
|
{
|
|
struct known_symbol *s1 = (struct known_symbol *) p1;
|
|
struct known_symbol *s2 = (struct known_symbol *) p2;
|
|
|
|
if (s1->ticks != s2->ticks)
|
|
return (int) (s2->ticks - s1->ticks);
|
|
|
|
if (s1->calls != s2->calls)
|
|
return (int) (s2->calls - s1->calls);
|
|
|
|
return strcmp (s1->name, s2->name);
|
|
}
|
|
|
|
|
|
static double tick_unit;
|
|
static uintmax_t cumu_ticks;
|
|
|
|
static void
|
|
printflat (const void *node, VISIT value, int level)
|
|
{
|
|
if (value == leaf || value == postorder)
|
|
{
|
|
struct known_symbol *s = *(struct known_symbol **) node;
|
|
|
|
cumu_ticks += s->ticks;
|
|
|
|
printf ("%6.2f%10.2f%9.2f%9" PRIdMAX "%9.2f %s\n",
|
|
total_ticks ? (100.0 * s->ticks) / total_ticks : 0.0,
|
|
tick_unit * cumu_ticks,
|
|
tick_unit * s->ticks,
|
|
s->calls,
|
|
s->calls ? (s->ticks * 1000000) * tick_unit / s->calls : 0,
|
|
/* FIXME: don't know about called functions. */
|
|
s->name);
|
|
}
|
|
}
|
|
|
|
|
|
/* ARGUSED */
|
|
static void
|
|
freenoop (void *p)
|
|
{
|
|
}
|
|
|
|
|
|
static void
|
|
generate_flat_profile (struct profdata *profdata)
|
|
{
|
|
size_t n;
|
|
void *data = NULL;
|
|
|
|
tick_unit = 1.0 / *(uint32_t *) profdata->hist_hdr->prof_rate;
|
|
|
|
printf ("Flat profile:\n\n"
|
|
"Each sample counts as %g %s.\n",
|
|
tick_unit, profdata->hist_hdr->dimen);
|
|
fputs (" % cumulative self self total\n"
|
|
" time seconds seconds calls us/call us/call name\n",
|
|
stdout);
|
|
|
|
for (n = 0; n < symidx; ++n)
|
|
if (sortsym[n]->calls != 0 || sortsym[n]->ticks != 0)
|
|
tsearch (sortsym[n], &data, countorder);
|
|
|
|
twalk (data, printflat);
|
|
|
|
tdestroy (data, freenoop);
|
|
}
|
|
|
|
|
|
static void
|
|
generate_call_graph (struct profdata *profdata)
|
|
{
|
|
size_t cnt;
|
|
|
|
puts ("\nindex % time self children called name\n");
|
|
|
|
for (cnt = 0; cnt < symidx; ++cnt)
|
|
if (sortsym[cnt]->froms != NULL || sortsym[cnt]->tos != NULL)
|
|
{
|
|
struct arc_list *runp;
|
|
size_t n;
|
|
|
|
/* First print the from-information. */
|
|
runp = sortsym[cnt]->froms;
|
|
while (runp != NULL)
|
|
{
|
|
printf (" %8.2f%8.2f%9" PRIdMAX "/%-9" PRIdMAX " %s",
|
|
(runp->idx != (size_t) -1l
|
|
? sortsym[runp->idx]->ticks * tick_unit : 0.0),
|
|
0.0, /* FIXME: what's time for the children, recursive */
|
|
runp->count, sortsym[cnt]->calls,
|
|
(runp->idx != (size_t) -1l ?
|
|
sortsym[runp->idx]->name : "<UNKNOWN>"));
|
|
|
|
if (runp->idx != (size_t) -1l)
|
|
printf (" [%Zd]", runp->idx);
|
|
putchar_unlocked ('\n');
|
|
|
|
runp = runp->next;
|
|
}
|
|
|
|
/* Info abount the function itself. */
|
|
n = printf ("[%Zu]", cnt);
|
|
printf ("%*s%5.1f%8.2f%8.2f%9" PRIdMAX " %s [%Zd]\n",
|
|
(int) (7 - n), " ",
|
|
total_ticks ? (100.0 * sortsym[cnt]->ticks) / total_ticks : 0,
|
|
sortsym[cnt]->ticks * tick_unit,
|
|
0.0, /* FIXME: what's time for the children, recursive */
|
|
sortsym[cnt]->calls,
|
|
sortsym[cnt]->name, cnt);
|
|
|
|
/* Info about the functions this function calls. */
|
|
runp = sortsym[cnt]->tos;
|
|
while (runp != NULL)
|
|
{
|
|
printf (" %8.2f%8.2f%9" PRIdMAX "/",
|
|
(runp->idx != (size_t) -1l
|
|
? sortsym[runp->idx]->ticks * tick_unit : 0.0),
|
|
0.0, /* FIXME: what's time for the children, recursive */
|
|
runp->count);
|
|
|
|
if (runp->idx != (size_t) -1l)
|
|
printf ("%-9" PRIdMAX " %s [%Zd]\n",
|
|
sortsym[runp->idx]->calls,
|
|
sortsym[runp->idx]->name,
|
|
runp->idx);
|
|
else
|
|
fputs ("??? <UNKNOWN>\n\n", stdout);
|
|
|
|
runp = runp->next;
|
|
}
|
|
|
|
fputs ("-----------------------------------------------\n", stdout);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
generate_call_pair_list (struct profdata *profdata)
|
|
{
|
|
size_t cnt;
|
|
|
|
for (cnt = 0; cnt < symidx; ++cnt)
|
|
if (sortsym[cnt]->froms != NULL || sortsym[cnt]->tos != NULL)
|
|
{
|
|
struct arc_list *runp;
|
|
|
|
/* First print the incoming arcs. */
|
|
runp = sortsym[cnt]->froms;
|
|
while (runp != NULL)
|
|
{
|
|
if (runp->idx == (size_t) -1l)
|
|
printf ("\
|
|
<UNKNOWN> %-34s %9" PRIdMAX "\n",
|
|
sortsym[cnt]->name, runp->count);
|
|
runp = runp->next;
|
|
}
|
|
|
|
/* Next the outgoing arcs. */
|
|
runp = sortsym[cnt]->tos;
|
|
while (runp != NULL)
|
|
{
|
|
printf ("%-34s %-34s %9" PRIdMAX "\n",
|
|
sortsym[cnt]->name,
|
|
(runp->idx != (size_t) -1l
|
|
? sortsym[runp->idx]->name : "<UNKNOWN>"),
|
|
runp->count);
|
|
runp = runp->next;
|
|
}
|
|
}
|
|
}
|