glibc/db2/btree/bt_split.c

953 lines
27 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996, 1997
* Sleepycat Software. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995, 1996
* Keith Bostic. All rights reserved.
*/
/*
* Copyright (c) 1990, 1993, 1994, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#ifndef lint
static const char sccsid[] = "@(#)bt_split.c 10.12 (Sleepycat) 8/24/97";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif
#include "db_int.h"
#include "db_page.h"
#include "btree.h"
static int __bam_page __P((DB *, EPG *, EPG *));
static int __bam_pinsert __P((DB *, EPG *, PAGE *, PAGE *));
static int __bam_psplit __P((DB *, EPG *, PAGE *, PAGE *, int));
static int __bam_root __P((DB *, EPG *));
/*
* __bam_split --
* Split a page.
*
* PUBLIC: int __bam_split __P((DB *, void *));
*/
int
__bam_split(dbp, arg)
DB *dbp;
void *arg;
{
BTREE *t;
enum { UP, DOWN } dir;
int exact, level, ret;
t = dbp->internal;
/*
* The locking protocol we use to avoid deadlock to acquire locks by
* walking down the tree, but we do it as lazily as possible, locking
* the root only as a last resort. We expect all stack pages to have
* been discarded before we're called; we discard all short-term locks.
*
* When __bam_split is first called, we know that a leaf page was too
* full for an insert. We don't know what leaf page it was, but we
* have the key/recno that caused the problem. We call XX_search to
* reacquire the leaf page, but this time get both the leaf page and
* its parent, locked. We then split the leaf page and see if the new
* internal key will fit into the parent page. If it will, we're done.
*
* If it won't, we discard our current locks and repeat the process,
* only this time acquiring the parent page and its parent, locked.
* This process repeats until we succeed in the split, splitting the
* root page as the final resort. The entire process then repeats,
* as necessary, until we split a leaf page.
*
* XXX
* A traditional method of speeding this up is to maintain a stack of
* the pages traversed in the original search. You can detect if the
* stack is correct by storing the page's LSN when it was searched and
* comparing that LSN with the current one when it's locked during the
* split. This would be an easy change for this code, but I have no
* numbers that indicate it's worthwhile.
*/
for (dir = UP, level = LEAFLEVEL;; dir == UP ? ++level : --level) {
/*
* Acquire a page and its parent, locked.
*/
if ((ret = (dbp->type == DB_BTREE ?
__bam_search(dbp, arg, S_WRPAIR, level, NULL, &exact) :
__bam_rsearch(dbp,
(db_recno_t *)arg, S_WRPAIR, level, &exact))) != 0)
return (ret);
/* Split the page. */
ret = t->bt_csp[0].page->pgno == PGNO_ROOT ?
__bam_root(dbp, &t->bt_csp[0]) :
__bam_page(dbp, &t->bt_csp[-1], &t->bt_csp[0]);
switch (ret) {
case 0:
/* Once we've split the leaf page, we're done. */
if (level == LEAFLEVEL)
return (0);
/* Switch directions. */
if (dir == UP)
dir = DOWN;
break;
case DB_NEEDSPLIT:
/*
* It's possible to fail to split repeatedly, as other
* threads may be modifying the tree, or the page usage
* is sufficiently bad that we don't get enough space
* the first time.
*/
if (dir == DOWN)
dir = UP;
break;
default:
return (ret);
}
}
/* NOTREACHED */
}
/*
* __bam_root --
* Split the root page of a btree.
*/
static int
__bam_root(dbp, cp)
DB *dbp;
EPG *cp;
{
BTREE *t;
PAGE *lp, *rp;
int ret;
t = dbp->internal;
/* Yeah, right. */
if (cp->page->level >= MAXBTREELEVEL)
return (ENOSPC);
/* Create new left and right pages for the split. */
lp = rp = NULL;
if ((ret = __bam_new(dbp, TYPE(cp->page), &lp)) != 0 ||
(ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
goto err;
P_INIT(lp, dbp->pgsize, lp->pgno,
PGNO_INVALID, ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
cp->page->level, TYPE(cp->page));
P_INIT(rp, dbp->pgsize, rp->pgno,
ISINTERNAL(cp->page) ? PGNO_INVALID : lp->pgno, PGNO_INVALID,
cp->page->level, TYPE(cp->page));
/* Split the page. */
if ((ret = __bam_psplit(dbp, cp, lp, rp, 1)) != 0)
goto err;
/* Log the change. */
if (DB_LOGGING(dbp)) {
DBT __a;
DB_LSN __lsn;
memset(&__a, 0, sizeof(__a));
__a.data = cp->page;
__a.size = dbp->pgsize;
ZERO_LSN(__lsn);
if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
&LSN(cp->page), 0, dbp->log_fileid, PGNO(lp), &LSN(lp),
PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp), 0, &__lsn,
&__a)) != 0)
goto err;
LSN(lp) = LSN(rp) = LSN(cp->page);
}
/* Clean up the new root page. */
if ((ret = (dbp->type == DB_RECNO ?
__ram_root(dbp, cp->page, lp, rp) :
__bam_broot(dbp, cp->page, lp, rp))) != 0)
goto err;
/* Success -- write the real pages back to the store. */
(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
(void)__BT_TLPUT(dbp, cp->lock);
(void)memp_fput(dbp->mpf, lp, DB_MPOOL_DIRTY);
(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
++t->lstat.bt_split;
++t->lstat.bt_rootsplit;
return (0);
err: if (lp != NULL)
(void)__bam_free(dbp, lp);
if (rp != NULL)
(void)__bam_free(dbp, rp);
(void)memp_fput(dbp->mpf, cp->page, 0);
(void)__BT_TLPUT(dbp, cp->lock);
return (ret);
}
/*
* __bam_page --
* Split the non-root page of a btree.
*/
static int
__bam_page(dbp, pp, cp)
DB *dbp;
EPG *pp, *cp;
{
BTREE *t;
DB_LOCK tplock;
PAGE *lp, *rp, *tp;
int ret;
t = dbp->internal;
lp = rp = tp = NULL;
ret = -1;
/* Create new right page for the split. */
if ((ret = __bam_new(dbp, TYPE(cp->page), &rp)) != 0)
return (ret);
P_INIT(rp, dbp->pgsize, rp->pgno,
ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->pgno,
ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->next_pgno,
cp->page->level, TYPE(cp->page));
/* Create new left page for the split. */
if ((lp = (PAGE *)malloc(dbp->pgsize)) == NULL) {
ret = ENOMEM;
goto err;
}
#ifdef DEBUG
memset(lp, 0xff, dbp->pgsize);
#endif
P_INIT(lp, dbp->pgsize, cp->page->pgno,
ISINTERNAL(cp->page) ? PGNO_INVALID : cp->page->prev_pgno,
ISINTERNAL(cp->page) ? PGNO_INVALID : rp->pgno,
cp->page->level, TYPE(cp->page));
ZERO_LSN(lp->lsn);
/*
* Split right.
*
* Only the indices are sorted on the page, i.e., the key/data pairs
* aren't, so it's simpler to copy the data from the split page onto
* two new pages instead of copying half the data to the right page
* and compacting the left page in place. Since the left page can't
* change, we swap the original and the allocated left page after the
* split.
*/
if ((ret = __bam_psplit(dbp, cp, lp, rp, 0)) != 0)
goto err;
/*
* Fix up the previous pointer of any leaf page following the split
* page.
*
* !!!
* There are interesting deadlock situations here as we write-lock a
* page that's not in our direct ancestry. Consider a cursor walking
* through the leaf pages, that has the previous page read-locked and
* is waiting on a lock for the page we just split. It will deadlock
* here. If this is a problem, we can fail in the split; it's not a
* problem as the split will succeed after the cursor passes through
* the page we're splitting.
*/
if (TYPE(cp->page) == P_LBTREE && rp->next_pgno != PGNO_INVALID) {
if ((ret = __bam_lget(dbp,
0, rp->next_pgno, DB_LOCK_WRITE, &tplock)) != 0)
goto err;
if ((ret = __bam_pget(dbp, &tp, &rp->next_pgno, 0)) != 0)
goto err;
}
/* Insert the new pages into the parent page. */
if ((ret = __bam_pinsert(dbp, pp, lp, rp)) != 0)
goto err;
/* Log the change. */
if (DB_LOGGING(dbp)) {
DBT __a;
DB_LSN __lsn;
memset(&__a, 0, sizeof(__a));
__a.data = cp->page;
__a.size = dbp->pgsize;
if (tp == NULL)
ZERO_LSN(__lsn);
if ((ret = __bam_split_log(dbp->dbenv->lg_info, dbp->txn,
&cp->page->lsn, 0, dbp->log_fileid, PGNO(cp->page),
&LSN(cp->page), PGNO(rp), &LSN(rp), (u_int32_t)NUM_ENT(lp),
tp == NULL ? 0 : PGNO(tp),
tp == NULL ? &__lsn : &LSN(tp), &__a)) != 0)
goto err;
LSN(lp) = LSN(rp) = LSN(cp->page);
if (tp != NULL)
LSN(tp) = LSN(cp->page);
}
/* Copy the allocated page into place. */
memcpy(cp->page, lp, LOFFSET(lp));
memcpy((u_int8_t *)cp->page + HOFFSET(lp),
(u_int8_t *)lp + HOFFSET(lp), dbp->pgsize - HOFFSET(lp));
FREE(lp, dbp->pgsize);
lp = NULL;
/* Finish the next-page link. */
if (tp != NULL)
tp->prev_pgno = rp->pgno;
/* Success -- write the real pages back to the store. */
(void)memp_fput(dbp->mpf, pp->page, DB_MPOOL_DIRTY);
(void)__BT_TLPUT(dbp, pp->lock);
(void)memp_fput(dbp->mpf, cp->page, DB_MPOOL_DIRTY);
(void)__BT_TLPUT(dbp, cp->lock);
(void)memp_fput(dbp->mpf, rp, DB_MPOOL_DIRTY);
if (tp != NULL) {
(void)memp_fput(dbp->mpf, tp, DB_MPOOL_DIRTY);
(void)__BT_TLPUT(dbp, tplock);
}
return (0);
err: if (lp != NULL)
FREE(lp, dbp->pgsize);
if (rp != NULL)
(void)__bam_free(dbp, rp);
if (tp != NULL) {
(void)memp_fput(dbp->mpf, tp, 0);
(void)__BT_TLPUT(dbp, tplock);
}
(void)memp_fput(dbp->mpf, pp->page, 0);
(void)__BT_TLPUT(dbp, pp->lock);
(void)memp_fput(dbp->mpf, cp->page, 0);
(void)__BT_TLPUT(dbp, cp->lock);
return (ret);
}
/*
* __bam_broot --
* Fix up the btree root page after it has been split.
*
* PUBLIC: int __bam_broot __P((DB *, PAGE *, PAGE *, PAGE *));
*/
int
__bam_broot(dbp, rootp, lp, rp)
DB *dbp;
PAGE *rootp, *lp, *rp;
{
BINTERNAL bi, *child_bi;
BKEYDATA *child_bk;
DBT hdr, data;
int ret;
/*
* If the root page was a leaf page, change it into an internal page.
* We copy the key we split on (but not the key's data, in the case of
* a leaf page) to the new root page.
*/
P_INIT(rootp, dbp->pgsize,
PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IBTREE);
/*
* The btree comparison code guarantees that the left-most key on any
* level of the tree is never used, so it doesn't need to be filled in.
*/
bi.len = 0;
bi.deleted = 0;
bi.type = B_KEYDATA;
bi.pgno = lp->pgno;
if (F_ISSET(dbp, DB_BT_RECNUM)) {
bi.nrecs = __bam_total(lp);
RE_NREC_SET(rootp, bi.nrecs);
}
memset(&hdr, 0, sizeof(hdr));
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
memset(&data, 0, sizeof(data));
data.data = (char *) "";
data.size = 0;
if ((ret =
__db_pitem(dbp, rootp, 0, BINTERNAL_SIZE(0), &hdr, &data)) != 0)
return (ret);
switch (TYPE(rp)) {
case P_IBTREE:
/* Copy the first key of the child page onto the root page. */
child_bi = GET_BINTERNAL(rp, 0);
bi.len = child_bi->len;
bi.deleted = 0;
bi.type = child_bi->type;
bi.pgno = rp->pgno;
if (F_ISSET(dbp, DB_BT_RECNUM)) {
bi.nrecs = __bam_total(rp);
RE_NREC_ADJ(rootp, bi.nrecs);
}
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
data.data = child_bi->data;
data.size = child_bi->len;
if ((ret = __db_pitem(dbp, rootp, 1,
BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (child_bi->type == B_OVERFLOW && (ret =
__db_ioff(dbp, ((BOVERFLOW *)(child_bi->data))->pgno)) != 0)
return (ret);
break;
case P_LBTREE:
/* Copy the first key of the child page onto the root page. */
child_bk = GET_BKEYDATA(rp, 0);
switch (child_bk->type) {
case B_KEYDATA:
bi.len = child_bk->len;
bi.deleted = 0;
bi.type = child_bk->type;
bi.pgno = rp->pgno;
if (F_ISSET(dbp, DB_BT_RECNUM)) {
bi.nrecs = __bam_total(rp);
RE_NREC_ADJ(rootp, bi.nrecs);
}
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
data.data = child_bk->data;
data.size = child_bk->len;
if ((ret = __db_pitem(dbp, rootp, 1,
BINTERNAL_SIZE(child_bk->len), &hdr, &data)) != 0)
return (ret);
break;
case B_DUPLICATE:
case B_OVERFLOW:
bi.len = BOVERFLOW_SIZE;
bi.deleted = 0;
bi.type = child_bk->type;
bi.pgno = rp->pgno;
if (F_ISSET(dbp, DB_BT_RECNUM)) {
bi.nrecs = __bam_total(rp);
RE_NREC_ADJ(rootp, bi.nrecs);
}
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
data.data = child_bk;
data.size = BOVERFLOW_SIZE;
if ((ret = __db_pitem(dbp, rootp, 1,
BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (child_bk->type == B_OVERFLOW && (ret =
__db_ioff(dbp, ((BOVERFLOW *)child_bk)->pgno)) != 0)
return (ret);
break;
default:
return (__db_pgfmt(dbp, rp->pgno));
}
break;
default:
return (__db_pgfmt(dbp, rp->pgno));
}
return (0);
}
/*
* __ram_root --
* Fix up the recno root page after it has been split.
*
* PUBLIC: int __ram_root __P((DB *, PAGE *, PAGE *, PAGE *));
*/
int
__ram_root(dbp, rootp, lp, rp)
DB *dbp;
PAGE *rootp, *lp, *rp;
{
DBT hdr;
RINTERNAL ri;
int ret;
/* Initialize the page. */
P_INIT(rootp, dbp->pgsize,
PGNO_ROOT, PGNO_INVALID, PGNO_INVALID, lp->level + 1, P_IRECNO);
/* Initialize the header. */
memset(&hdr, 0, sizeof(hdr));
hdr.data = &ri;
hdr.size = RINTERNAL_SIZE;
/* Insert the left and right keys, set the header information. */
ri.pgno = lp->pgno;
ri.nrecs = __bam_total(lp);
if ((ret = __db_pitem(dbp, rootp, 0, RINTERNAL_SIZE, &hdr, NULL)) != 0)
return (ret);
RE_NREC_SET(rootp, ri.nrecs);
ri.pgno = rp->pgno;
ri.nrecs = __bam_total(rp);
if ((ret = __db_pitem(dbp, rootp, 1, RINTERNAL_SIZE, &hdr, NULL)) != 0)
return (ret);
RE_NREC_ADJ(rootp, ri.nrecs);
return (0);
}
/*
* __bam_pinsert --
* Insert a new key into a parent page, completing the split.
*/
static int
__bam_pinsert(dbp, parent, lchild, rchild)
DB *dbp;
EPG *parent;
PAGE *lchild, *rchild;
{
BINTERNAL bi, *child_bi;
BKEYDATA *child_bk, *tmp_bk;
BTREE *t;
DBT a, b, hdr, data;
PAGE *ppage;
RINTERNAL ri;
db_indx_t off;
db_recno_t nrecs;
u_int32_t n, nbytes, nksize;
int ret;
t = dbp->internal;
ppage = parent->page;
/* If handling record numbers, count records split to the right page. */
nrecs = dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM) ?
__bam_total(rchild) : 0;
/*
* Now we insert the new page's first key into the parent page, which
* completes the split. The parent points to a PAGE and a page index
* offset, where the new key goes ONE AFTER the index, because we split
* to the right.
*
* XXX
* Some btree algorithms replace the key for the old page as well as
* the new page. We don't, as there's no reason to believe that the
* first key on the old page is any better than the key we have, and,
* in the case of a key being placed at index 0 causing the split, the
* key is unavailable.
*/
off = parent->indx + O_INDX;
/*
* Calculate the space needed on the parent page.
*
* Prefix trees: space hack used when inserting into BINTERNAL pages.
* Retain only what's needed to distinguish between the new entry and
* the LAST entry on the page to its left. If the keys compare equal,
* retain the entire key. We ignore overflow keys, and the entire key
* must be retained for the next-to-leftmost key on the leftmost page
* of each level, or the search will fail. Applicable ONLY to internal
* pages that have leaf pages as children. Further reduction of the
* key between pairs of internal pages loses too much information.
*/
switch (TYPE(rchild)) {
case P_IBTREE:
child_bi = GET_BINTERNAL(rchild, 0);
nbytes = BINTERNAL_PSIZE(child_bi->len);
if (P_FREESPACE(ppage) < nbytes)
return (DB_NEEDSPLIT);
/* Add a new record for the right page. */
bi.len = child_bi->len;
bi.deleted = 0;
bi.type = child_bi->type;
bi.pgno = rchild->pgno;
bi.nrecs = nrecs;
memset(&hdr, 0, sizeof(hdr));
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
memset(&data, 0, sizeof(data));
data.data = child_bi->data;
data.size = child_bi->len;
if ((ret = __db_pitem(dbp, ppage, off,
BINTERNAL_SIZE(child_bi->len), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (child_bi->type == B_OVERFLOW && (ret =
__db_ioff(dbp, ((BOVERFLOW *)(child_bi->data))->pgno)) != 0)
return (ret);
break;
case P_LBTREE:
child_bk = GET_BKEYDATA(rchild, 0);
switch (child_bk->type) {
case B_KEYDATA:
nbytes = BINTERNAL_PSIZE(child_bk->len);
nksize = child_bk->len;
if (t->bt_prefix == NULL)
goto noprefix;
if (ppage->prev_pgno == PGNO_INVALID && off <= 1)
goto noprefix;
tmp_bk = GET_BKEYDATA(lchild, NUM_ENT(lchild) - P_INDX);
if (tmp_bk->type != B_KEYDATA)
goto noprefix;
memset(&a, 0, sizeof(a));
a.size = tmp_bk->len;
a.data = tmp_bk->data;
memset(&b, 0, sizeof(b));
b.size = child_bk->len;
b.data = child_bk->data;
nksize = t->bt_prefix(&a, &b);
if ((n = BINTERNAL_PSIZE(nksize)) < nbytes) {
t->lstat.bt_pfxsaved += nbytes - n;
nbytes = n;
} else
noprefix: nksize = child_bk->len;
if (P_FREESPACE(ppage) < nbytes)
return (DB_NEEDSPLIT);
bi.len = nksize;
bi.deleted = 0;
bi.type = child_bk->type;
bi.pgno = rchild->pgno;
bi.nrecs = nrecs;
memset(&hdr, 0, sizeof(hdr));
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
memset(&data, 0, sizeof(data));
data.data = child_bk->data;
data.size = nksize;
if ((ret = __db_pitem(dbp, ppage, off,
BINTERNAL_SIZE(nksize), &hdr, &data)) != 0)
return (ret);
break;
case B_DUPLICATE:
case B_OVERFLOW:
nbytes = BINTERNAL_PSIZE(BOVERFLOW_SIZE);
if (P_FREESPACE(ppage) < nbytes)
return (DB_NEEDSPLIT);
bi.len = BOVERFLOW_SIZE;
bi.deleted = 0;
bi.type = child_bk->type;
bi.pgno = rchild->pgno;
bi.nrecs = nrecs;
memset(&hdr, 0, sizeof(hdr));
hdr.data = &bi;
hdr.size = SSZA(BINTERNAL, data);
memset(&data, 0, sizeof(data));
data.data = child_bk;
data.size = BOVERFLOW_SIZE;
if ((ret = __db_pitem(dbp, ppage, off,
BINTERNAL_SIZE(BOVERFLOW_SIZE), &hdr, &data)) != 0)
return (ret);
/* Increment the overflow ref count. */
if (child_bk->type == B_OVERFLOW && (ret =
__db_ioff(dbp, ((BOVERFLOW *)child_bk)->pgno)) != 0)
return (ret);
break;
default:
return (__db_pgfmt(dbp, rchild->pgno));
}
break;
case P_IRECNO:
case P_LRECNO:
nbytes = RINTERNAL_PSIZE;
if (P_FREESPACE(ppage) < nbytes)
return (DB_NEEDSPLIT);
/* Add a new record for the right page. */
memset(&hdr, 0, sizeof(hdr));
hdr.data = &ri;
hdr.size = RINTERNAL_SIZE;
ri.pgno = rchild->pgno;
ri.nrecs = nrecs;
if ((ret = __db_pitem(dbp,
ppage, off, RINTERNAL_SIZE, &hdr, NULL)) != 0)
return (ret);
break;
default:
return (__db_pgfmt(dbp, rchild->pgno));
}
/* Adjust the parent page's left page record count. */
if (dbp->type == DB_RECNO || F_ISSET(dbp, DB_BT_RECNUM)) {
/* Log the change. */
if (DB_LOGGING(dbp) &&
(ret = __bam_cadjust_log(dbp->dbenv->lg_info,
dbp->txn, &LSN(ppage), 0, dbp->log_fileid,
PGNO(ppage), &LSN(ppage), (u_int32_t)parent->indx,
-(int32_t)nrecs, (int32_t)0)) != 0)
return (ret);
/* Update the left page count. */
if (dbp->type == DB_RECNO)
GET_RINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
else
GET_BINTERNAL(ppage, parent->indx)->nrecs -= nrecs;
}
return (0);
}
/*
* __bam_psplit --
* Do the real work of splitting the page.
*/
static int
__bam_psplit(dbp, cp, lp, rp, cleft)
DB *dbp;
EPG *cp;
PAGE *lp, *rp;
int cleft;
{
BTREE *t;
PAGE *pp;
db_indx_t half, nbytes, off, splitp, top;
int adjust, cnt, isbigkey, ret;
t = dbp->internal;
pp = cp->page;
adjust = TYPE(pp) == P_LBTREE ? P_INDX : O_INDX;
/*
* If we're splitting the first (last) page on a level because we're
* inserting (appending) a key to it, it's likely that the data is
* sorted. Moving a single item to the new page is less work and can
* push the fill factor higher than normal. If we're wrong it's not
* a big deal, we'll just do the split the right way next time.
*/
off = 0;
if (NEXT_PGNO(pp) == PGNO_INVALID &&
((ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page) - 1) ||
(!ISINTERNAL(pp) && cp->indx == NUM_ENT(cp->page))))
off = NUM_ENT(cp->page) - adjust;
else if (PREV_PGNO(pp) == PGNO_INVALID && cp->indx == 0)
off = adjust;
++t->lstat.bt_split;
if (off != 0) {
++t->lstat.bt_fastsplit;
goto sort;
}
/*
* Split the data to the left and right pages. Try not to split on
* an overflow key. (Overflow keys on internal pages will slow down
* searches.) Refuse to split in the middle of a set of duplicates.
*
* First, find the optimum place to split.
*
* It's possible to try and split past the last record on the page if
* there's a very large record at the end of the page. Make sure this
* doesn't happen by bounding the check at the next-to-last entry on
* the page.
*
* Note, we try and split half the data present on the page. This is
* because another process may have already split the page and left
* it half empty. We don't try and skip the split -- we don't know
* how much space we're going to need on the page, and we may need up
* to half the page for a big item, so there's no easy test to decide
* if we need to split or not. Besides, if two threads are inserting
* data into the same place in the database, we're probably going to
* need more space soon anyway.
*/
top = NUM_ENT(pp) - adjust;
half = (dbp->pgsize - HOFFSET(pp)) / 2;
for (nbytes = 0, off = 0; off < top && nbytes < half; ++off)
switch (TYPE(pp)) {
case P_IBTREE:
if (GET_BINTERNAL(pp, off)->type == B_KEYDATA)
nbytes +=
BINTERNAL_SIZE(GET_BINTERNAL(pp, off)->len);
else
nbytes += BINTERNAL_SIZE(BOVERFLOW_SIZE);
break;
case P_LBTREE:
if (GET_BKEYDATA(pp, off)->type == B_KEYDATA)
nbytes +=
BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
else
nbytes += BOVERFLOW_SIZE;
++off;
if (GET_BKEYDATA(pp, off)->type == B_KEYDATA)
nbytes +=
BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
else
nbytes += BOVERFLOW_SIZE;
break;
case P_IRECNO:
nbytes += RINTERNAL_SIZE;
break;
case P_LRECNO:
nbytes += BKEYDATA_SIZE(GET_BKEYDATA(pp, off)->len);
break;
default:
return (__db_pgfmt(dbp, pp->pgno));
}
sort: splitp = off;
/*
* Splitp is either at or just past the optimum split point. If
* it's a big key, try and find something close by that's not.
*/
if (TYPE(pp) == P_IBTREE)
isbigkey = GET_BINTERNAL(pp, off)->type != B_KEYDATA;
else if (TYPE(pp) == P_LBTREE)
isbigkey = GET_BKEYDATA(pp, off)->type != B_KEYDATA;
else
isbigkey = 0;
if (isbigkey)
for (cnt = 1; cnt <= 3; ++cnt) {
off = splitp + cnt * adjust;
if (off < (db_indx_t)NUM_ENT(pp) &&
((TYPE(pp) == P_IBTREE &&
GET_BINTERNAL(pp, off)->type == B_KEYDATA) ||
GET_BKEYDATA(pp, off)->type == B_KEYDATA)) {
splitp = off;
break;
}
if (splitp <= (db_indx_t)(cnt * adjust))
continue;
off = splitp - cnt * adjust;
if (TYPE(pp) == P_IBTREE ?
GET_BINTERNAL(pp, off)->type == B_KEYDATA :
GET_BKEYDATA(pp, off)->type == B_KEYDATA) {
splitp = off;
break;
}
}
/*
* We can't split in the middle a set of duplicates. We know that
* no duplicate set can take up more than about 25% of the page,
* because that's the point where we push it off onto a duplicate
* page set. So, this loop can't be unbounded.
*/
if (F_ISSET(dbp, DB_AM_DUP) && TYPE(pp) == P_LBTREE &&
pp->inp[splitp] == pp->inp[splitp - adjust])
for (cnt = 1;; ++cnt) {
off = splitp + cnt * adjust;
if (off < NUM_ENT(pp) &&
pp->inp[splitp] != pp->inp[off]) {
splitp = off;
break;
}
if (splitp <= (db_indx_t)(cnt * adjust))
continue;
off = splitp - cnt * adjust;
if (pp->inp[splitp] != pp->inp[off]) {
splitp = off + adjust;
break;
}
}
/* We're going to split at splitp. */
if ((ret = __bam_copy(dbp, pp, lp, 0, splitp)) != 0)
return (ret);
if ((ret = __bam_copy(dbp, pp, rp, splitp, NUM_ENT(pp))) != 0)
return (ret);
/* Adjust the cursors. */
__bam_ca_split(dbp, pp->pgno, lp->pgno, rp->pgno, splitp, cleft);
return (0);
}
/*
* __bam_copy --
* Copy a set of records from one page to another.
*
* PUBLIC: int __bam_copy __P((DB *, PAGE *, PAGE *, u_int32_t, u_int32_t));
*/
int
__bam_copy(dbp, pp, cp, nxt, stop)
DB *dbp;
PAGE *pp, *cp;
u_int32_t nxt, stop;
{
db_indx_t dup, nbytes, off;
/*
* Copy the rest of the data to the right page. Nxt is the next
* offset placed on the target page.
*/
for (dup = off = 0; nxt < stop; ++nxt, ++NUM_ENT(cp), ++off) {
switch (TYPE(pp)) {
case P_IBTREE:
if (GET_BINTERNAL(pp, nxt)->type == B_KEYDATA)
nbytes =
BINTERNAL_SIZE(GET_BINTERNAL(pp, nxt)->len);
else
nbytes = BINTERNAL_SIZE(BOVERFLOW_SIZE);
break;
case P_LBTREE:
/*
* If we're on a key and it's a duplicate, just copy
* the offset.
*/
if (off != 0 && (nxt % P_INDX) == 0 &&
pp->inp[nxt] == pp->inp[nxt - P_INDX]) {
cp->inp[off] = cp->inp[off - P_INDX];
continue;
}
/* FALLTHROUGH */
case P_LRECNO:
if (GET_BKEYDATA(pp, nxt)->type == B_KEYDATA)
nbytes =
BKEYDATA_SIZE(GET_BKEYDATA(pp, nxt)->len);
else
nbytes = BOVERFLOW_SIZE;
break;
case P_IRECNO:
nbytes = RINTERNAL_SIZE;
break;
default:
return (__db_pgfmt(dbp, pp->pgno));
}
cp->inp[off] = HOFFSET(cp) -= nbytes;
memcpy(P_ENTRY(cp, off), P_ENTRY(pp, nxt), nbytes);
}
return (0);
}