glibc/elf/dl-load.c

1155 lines
33 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Map in a shared object's segments from the file.
Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <elf/ldsodefs.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "dynamic-link.h"
#include <stdio-common/_itoa.h>
/* On some systems, no flag bits are given to specify file mapping. */
#ifndef MAP_FILE
#define MAP_FILE 0
#endif
/* The right way to map in the shared library files is MAP_COPY, which
makes a virtual copy of the data at the time of the mmap call; this
guarantees the mapped pages will be consistent even if the file is
overwritten. Some losing VM systems like Linux's lack MAP_COPY. All we
get is MAP_PRIVATE, which copies each page when it is modified; this
means if the file is overwritten, we may at some point get some pages
from the new version after starting with pages from the old version. */
#ifndef MAP_COPY
#define MAP_COPY MAP_PRIVATE
#endif
/* Some systems link their relocatable objects for another base address
than 0. We want to know the base address for these such that we can
subtract this address from the segment addresses during mapping.
This results in a more efficient address space usage. Defaults to
zero for almost all systems. */
#ifndef MAP_BASE_ADDR
#define MAP_BASE_ADDR(l) 0
#endif
#include <endian.h>
#if BYTE_ORDER == BIG_ENDIAN
#define byteorder ELFDATA2MSB
#define byteorder_name "big-endian"
#elif BYTE_ORDER == LITTLE_ENDIAN
#define byteorder ELFDATA2LSB
#define byteorder_name "little-endian"
#else
#error "Unknown BYTE_ORDER " BYTE_ORDER
#define byteorder ELFDATANONE
#endif
#define STRING(x) __STRING (x)
#ifdef MAP_ANON
/* The fd is not examined when using MAP_ANON. */
#define ANONFD -1
#else
int _dl_zerofd = -1;
#define ANONFD _dl_zerofd
#endif
/* Handle situations where we have a preferred location in memory for
the shared objects. */
#ifdef ELF_PREFERRED_ADDRESS_DATA
ELF_PREFERRED_ADDRESS_DATA;
#endif
#ifndef ELF_PREFERRED_ADDRESS
#define ELF_PREFERRED_ADDRESS(loader, maplength, mapstartpref) (mapstartpref)
#endif
#ifndef ELF_FIXED_ADDRESS
#define ELF_FIXED_ADDRESS(loader, mapstart) ((void) 0)
#endif
size_t _dl_pagesize;
extern const char *_dl_platform;
extern size_t _dl_platformlen;
/* This is a fake list to store the RPATH information for static
binaries. */
static struct r_search_path_elem **fake_path_list;
/* List of the hardware capabilities we might end up using. */
static const struct r_strlenpair *capstr;
static size_t ncapstr;
static size_t max_capstrlen;
/* Local version of `strdup' function. */
static inline char *
local_strdup (const char *s)
{
size_t len = strlen (s) + 1;
void *new = malloc (len);
if (new == NULL)
return NULL;
return (char *) memcpy (new, s, len);
}
/* Add `name' to the list of names for a particular shared object.
`name' is expected to have been allocated with malloc and will
be freed if the shared object already has this name.
Returns false if the object already had this name. */
static int
internal_function
add_name_to_object (struct link_map *l, char *name)
{
struct libname_list *lnp, *lastp;
struct libname_list *newname;
if (name == NULL)
{
/* No more memory. */
_dl_signal_error (ENOMEM, NULL, "could not allocate name string");
return 0;
}
lastp = NULL;
for (lnp = l->l_libname; lnp != NULL; lastp = lnp, lnp = lnp->next)
if (strcmp (name, lnp->name) == 0)
{
free (name);
return 0;
}
newname = malloc (sizeof *newname);
if (newname == NULL)
{
/* No more memory. */
_dl_signal_error (ENOMEM, name, "cannot allocate name record");
free (name);
return 0;
}
/* The object should have a libname set from _dl_new_object. */
assert (lastp != NULL);
newname->name = name;
newname->next = NULL;
lastp->next = newname;
return 1;
}
/* All known directories in sorted order. */
static struct r_search_path_elem *all_dirs;
/* Standard search directories. */
static struct r_search_path_elem **rtld_search_dirs;
static size_t max_dirnamelen;
static inline struct r_search_path_elem **
fillin_rpath (char *rpath, struct r_search_path_elem **result, const char *sep,
const char **trusted, const char *what, const char *where)
{
char *cp;
size_t nelems = 0;
while ((cp = __strsep (&rpath, sep)) != NULL)
{
struct r_search_path_elem *dirp;
size_t len = strlen (cp);
/* `strsep' can pass an empty string. */
if (len == 0)
continue;
/* Remove trailing slashes. */
while (len > 1 && cp[len - 1] == '/')
--len;
/* Make sure we don't use untrusted directories if we run SUID. */
if (trusted != NULL)
{
const char **trun = trusted;
/* All trusted directory must be complete name. */
if (cp[0] != '/')
continue;
while (*trun != NULL
&& (memcmp (*trun, cp, len) != 0
|| ((*trun)[len] != '/' && (*trun)[len + 1] != '\0')))
++trun;
if (*trun == NULL)
/* It's no trusted directory, skip it. */
continue;
}
/* Now add one. */
if (len > 0)
cp[len++] = '/';
/* See if this directory is already known. */
for (dirp = all_dirs; dirp != NULL; dirp = dirp->next)
if (dirp->dirnamelen == len && memcmp (cp, dirp->dirname, len) == 0)
break;
if (dirp != NULL)
{
/* It is available, see whether it's on our own list. */
size_t cnt;
for (cnt = 0; cnt < nelems; ++cnt)
if (result[cnt] == dirp)
break;
if (cnt == nelems)
result[nelems++] = dirp;
}
else
{
size_t cnt;
/* It's a new directory. Create an entry and add it. */
dirp = (struct r_search_path_elem *)
malloc (sizeof (*dirp) + ncapstr * sizeof (enum r_dir_status));
if (dirp == NULL)
_dl_signal_error (ENOMEM, NULL,
"cannot create cache for search path");
dirp->dirname = cp;
dirp->dirnamelen = len;
if (len > max_dirnamelen)
max_dirnamelen = len;
/* We have to make sure all the relative directories are never
ignored. The current directory might change and all our
saved information would be void. */
if (cp[0] != '/')
for (cnt = 0; cnt < ncapstr; ++cnt)
dirp->status[cnt] = existing;
else
for (cnt = 0; cnt < ncapstr; ++cnt)
dirp->status[cnt] = unknown;
dirp->what = what;
dirp->where = where;
dirp->next = all_dirs;
all_dirs = dirp;
/* Put it in the result array. */
result[nelems++] = dirp;
}
}
/* Terminate the array. */
result[nelems] = NULL;
return result;
}
static struct r_search_path_elem **
internal_function
decompose_rpath (const char *rpath, size_t additional_room,
const char *what, const char *where)
{
/* Make a copy we can work with. */
char *copy = local_strdup (rpath);
char *cp;
struct r_search_path_elem **result;
/* First count the number of necessary elements in the result array. */
size_t nelems = 0;
for (cp = copy; *cp != '\0'; ++cp)
if (*cp == ':')
++nelems;
/* Allocate room for the result. NELEMS + 1 + ADDITIONAL_ROOM is an upper
limit for the number of necessary entries. */
result = (struct r_search_path_elem **) malloc ((nelems + 1
+ additional_room + 1)
* sizeof (*result));
if (result == NULL)
_dl_signal_error (ENOMEM, NULL, "cannot create cache for search path");
return fillin_rpath (copy, result, ":", NULL, what, where);
}
void
internal_function
_dl_init_paths (const char *llp)
{
static const char *system_dirs[] =
{
#include "trusted-dirs.h"
NULL
};
const char **strp;
struct r_search_path_elem *pelem, **aelem;
size_t round_size;
/* We have in `search_path' the information about the RPATH of the
dynamic loader. Now fill in the information about the applications
RPATH and the directories addressed by the LD_LIBRARY_PATH environment
variable. */
struct link_map *l;
/* Number of elements in the library path. */
size_t nllp;
/* First determine how many elements the LD_LIBRARY_PATH contents has. */
if (llp != NULL && *llp != '\0')
{
/* Simply count the number of colons. */
const char *cp = llp;
nllp = 1;
while (*cp)
if (*cp++ == ':')
++nllp;
}
else
nllp = 0;
/* Get the capabilities. */
capstr = _dl_important_hwcaps (_dl_platform, _dl_platformlen,
&ncapstr, &max_capstrlen);
/* First set up the rest of the default search directory entries. */
aelem = rtld_search_dirs = (struct r_search_path_elem **)
malloc ((ncapstr + 1) * sizeof (struct r_search_path_elem *));
round_size = ((2 * sizeof (struct r_search_path_elem) - 1
+ ncapstr * sizeof (enum r_dir_status))
/ sizeof (struct r_search_path_elem));
rtld_search_dirs[0] = (struct r_search_path_elem *)
malloc ((sizeof (system_dirs) / sizeof (system_dirs[0]) - 1)
* round_size * sizeof (struct r_search_path_elem));
if (rtld_search_dirs[0] == NULL)
_dl_signal_error (ENOMEM, NULL, "cannot create cache for search path");
pelem = all_dirs= rtld_search_dirs[0];
for (strp = system_dirs; *strp != NULL; ++strp, pelem += round_size)
{
size_t cnt;
*aelem++ = pelem;
pelem->next = *(strp + 1) == NULL ? NULL : (pelem + round_size);
pelem->what = "system search path";
pelem->where = NULL;
pelem->dirnamelen = strlen (pelem->dirname = *strp);
if (pelem->dirnamelen > max_dirnamelen)
max_dirnamelen = pelem->dirnamelen;
if (pelem->dirname[0] != '/')
for (cnt = 0; cnt < ncapstr; ++cnt)
pelem->status[cnt] = existing;
else
for (cnt = 0; cnt < ncapstr; ++cnt)
pelem->status[cnt] = unknown;
}
*aelem = NULL;
l = _dl_loaded;
if (l != NULL)
{
if (l->l_type != lt_loaded && l->l_info[DT_RPATH])
{
/* Allocate room for the search path and fill in information
from RPATH. */
l->l_rpath_dirs =
decompose_rpath ((const char *)
(l->l_addr + l->l_info[DT_STRTAB]->d_un.d_ptr
+ l->l_info[DT_RPATH]->d_un.d_val),
nllp, "RPATH", l->l_name);
}
else
{
/* If we have no LD_LIBRARY_PATH and no RPATH we must tell
this somehow to prevent we look this up again and again. */
if (nllp == 0)
l->l_rpath_dirs = (struct r_search_path_elem **) -1l;
else
{
l->l_rpath_dirs = (struct r_search_path_elem **)
malloc ((nllp + 1) * sizeof (*l->l_rpath_dirs));
if (l->l_rpath_dirs == NULL)
_dl_signal_error (ENOMEM, NULL,
"cannot create cache for search path");
l->l_rpath_dirs[0] = NULL;
}
}
/* We don't need to search the list of fake entries which is searched
when no dynamic objects were loaded at this time. */
fake_path_list = NULL;
if (nllp > 0)
{
char *copy = local_strdup (llp);
/* Decompose the LD_LIBRARY_PATH and fill in the result.
First search for the next place to enter elements. */
struct r_search_path_elem **result = l->l_rpath_dirs;
while (*result != NULL)
++result;
/* We need to take care that the LD_LIBRARY_PATH environment
variable can contain a semicolon. */
(void) fillin_rpath (copy, result, ":;",
__libc_enable_secure ? system_dirs : NULL,
"LD_LIBRARY_PATH", NULL);
}
}
else
{
/* This is a statically linked program but we still have to
take care for the LD_LIBRARY_PATH environment variable. We
use a fake link_map entry. This will only contain the
l_rpath_dirs information. */
if (nllp == 0)
fake_path_list = NULL;
else
{
fake_path_list = (struct r_search_path_elem **)
malloc ((nllp + 1) * sizeof (struct r_search_path_elem *));
if (fake_path_list == NULL)
_dl_signal_error (ENOMEM, NULL,
"cannot create cache for search path");
(void) fillin_rpath (local_strdup (llp), fake_path_list, ":;",
__libc_enable_secure ? system_dirs : NULL,
"LD_LIBRARY_PATH", NULL);
}
}
}
/* Map in the shared object NAME, actually located in REALNAME, and already
opened on FD. */
struct link_map *
_dl_map_object_from_fd (char *name, int fd, char *realname,
struct link_map *loader, int l_type)
{
struct link_map *l = NULL;
void *file_mapping = NULL;
size_t mapping_size = 0;
#define LOSE(s) lose (0, (s))
void lose (int code, const char *msg)
{
(void) __close (fd);
if (file_mapping)
__munmap (file_mapping, mapping_size);
if (l)
{
/* Remove the stillborn object from the list and free it. */
if (l->l_prev)
l->l_prev->l_next = l->l_next;
if (l->l_next)
l->l_next->l_prev = l->l_prev;
free (l);
}
free (realname);
_dl_signal_error (code, name, msg);
free (name); /* Hmmm. Can this leak memory? Better
than a segfault, anyway. */
}
inline caddr_t map_segment (ElfW(Addr) mapstart, size_t len,
int prot, int fixed, off_t offset)
{
caddr_t mapat = __mmap ((caddr_t) mapstart, len, prot,
fixed|MAP_COPY|MAP_FILE,
fd, offset);
if (mapat == MAP_FAILED)
lose (errno, "failed to map segment from shared object");
return mapat;
}
/* Make sure LOCATION is mapped in. */
void *map (off_t location, size_t size)
{
if ((off_t) mapping_size <= location + (off_t) size)
{
void *result;
if (file_mapping)
__munmap (file_mapping, mapping_size);
mapping_size = (location + size + 1 + _dl_pagesize - 1);
mapping_size &= ~(_dl_pagesize - 1);
result = __mmap (file_mapping, mapping_size, PROT_READ,
MAP_COPY|MAP_FILE, fd, 0);
if (result == MAP_FAILED)
lose (errno, "cannot map file data");
file_mapping = result;
}
return file_mapping + location;
}
const ElfW(Ehdr) *header;
const ElfW(Phdr) *phdr;
const ElfW(Phdr) *ph;
size_t maplength;
int type;
/* Look again to see if the real name matched another already loaded. */
for (l = _dl_loaded; l; l = l->l_next)
if (! strcmp (realname, l->l_name))
{
/* The object is already loaded.
Just bump its reference count and return it. */
__close (fd);
/* If the name is not in the list of names for this object add
it. */
free (realname);
add_name_to_object (l, name);
++l->l_opencount;
return l;
}
/* Print debugging message. */
if (_dl_debug_files)
_dl_debug_message (1, "file=", name, "; generating link map\n", NULL);
/* Map in the first page to read the header. */
header = map (0, sizeof *header);
/* Check the header for basic validity. */
if (*(Elf32_Word *) &header->e_ident !=
#if BYTE_ORDER == LITTLE_ENDIAN
((ELFMAG0 << (EI_MAG0 * 8)) |
(ELFMAG1 << (EI_MAG1 * 8)) |
(ELFMAG2 << (EI_MAG2 * 8)) |
(ELFMAG3 << (EI_MAG3 * 8)))
#else
((ELFMAG0 << (EI_MAG3 * 8)) |
(ELFMAG1 << (EI_MAG2 * 8)) |
(ELFMAG2 << (EI_MAG1 * 8)) |
(ELFMAG3 << (EI_MAG0 * 8)))
#endif
)
LOSE ("invalid ELF header");
#define ELF32_CLASS ELFCLASS32
#define ELF64_CLASS ELFCLASS64
if (header->e_ident[EI_CLASS] != ELFW(CLASS))
LOSE ("ELF file class not " STRING(__ELF_NATIVE_CLASS) "-bit");
if (header->e_ident[EI_DATA] != byteorder)
LOSE ("ELF file data encoding not " byteorder_name);
if (header->e_ident[EI_VERSION] != EV_CURRENT)
LOSE ("ELF file version ident not " STRING(EV_CURRENT));
if (header->e_version != EV_CURRENT)
LOSE ("ELF file version not " STRING(EV_CURRENT));
if (! elf_machine_matches_host (header->e_machine))
LOSE ("ELF file machine architecture not " ELF_MACHINE_NAME);
if (header->e_phentsize != sizeof (ElfW(Phdr)))
LOSE ("ELF file's phentsize not the expected size");
#ifndef MAP_ANON
#define MAP_ANON 0
if (_dl_zerofd == -1)
{
_dl_zerofd = _dl_sysdep_open_zero_fill ();
if (_dl_zerofd == -1)
{
__close (fd);
_dl_signal_error (errno, NULL, "cannot open zero fill device");
}
}
#endif
/* Enter the new object in the list of loaded objects. */
l = _dl_new_object (realname, name, l_type);
if (! l)
lose (ENOMEM, "cannot create shared object descriptor");
l->l_opencount = 1;
l->l_loader = loader;
/* Extract the remaining details we need from the ELF header
and then map in the program header table. */
l->l_entry = header->e_entry;
type = header->e_type;
l->l_phnum = header->e_phnum;
phdr = map (header->e_phoff, l->l_phnum * sizeof (ElfW(Phdr)));
{
/* Scan the program header table, collecting its load commands. */
struct loadcmd
{
ElfW(Addr) mapstart, mapend, dataend, allocend;
off_t mapoff;
int prot;
} loadcmds[l->l_phnum], *c;
size_t nloadcmds = 0;
l->l_ld = 0;
l->l_phdr = 0;
l->l_addr = 0;
for (ph = phdr; ph < &phdr[l->l_phnum]; ++ph)
switch (ph->p_type)
{
/* These entries tell us where to find things once the file's
segments are mapped in. We record the addresses it says
verbatim, and later correct for the run-time load address. */
case PT_DYNAMIC:
l->l_ld = (void *) ph->p_vaddr;
break;
case PT_PHDR:
l->l_phdr = (void *) ph->p_vaddr;
break;
case PT_LOAD:
/* A load command tells us to map in part of the file.
We record the load commands and process them all later. */
if (ph->p_align % _dl_pagesize != 0)
LOSE ("ELF load command alignment not page-aligned");
if ((ph->p_vaddr - ph->p_offset) % ph->p_align)
LOSE ("ELF load command address/offset not properly aligned");
{
struct loadcmd *c = &loadcmds[nloadcmds++];
c->mapstart = ph->p_vaddr & ~(ph->p_align - 1);
c->mapend = ((ph->p_vaddr + ph->p_filesz + _dl_pagesize - 1)
& ~(_dl_pagesize - 1));
c->dataend = ph->p_vaddr + ph->p_filesz;
c->allocend = ph->p_vaddr + ph->p_memsz;
c->mapoff = ph->p_offset & ~(ph->p_align - 1);
c->prot = 0;
if (ph->p_flags & PF_R)
c->prot |= PROT_READ;
if (ph->p_flags & PF_W)
c->prot |= PROT_WRITE;
if (ph->p_flags & PF_X)
c->prot |= PROT_EXEC;
break;
}
}
/* We are done reading the file's headers now. Unmap them. */
__munmap (file_mapping, mapping_size);
/* Now process the load commands and map segments into memory. */
c = loadcmds;
/* Length of the sections to be loaded. */
maplength = loadcmds[nloadcmds - 1].allocend - c->mapstart;
if (type == ET_DYN || type == ET_REL)
{
/* This is a position-independent shared object. We can let the
kernel map it anywhere it likes, but we must have space for all
the segments in their specified positions relative to the first.
So we map the first segment without MAP_FIXED, but with its
extent increased to cover all the segments. Then we remove
access from excess portion, and there is known sufficient space
there to remap from the later segments.
As a refinement, sometimes we have an address that we would
prefer to map such objects at; but this is only a preference,
the OS can do whatever it likes. */
caddr_t mapat;
ElfW(Addr) mappref;
mappref = (ELF_PREFERRED_ADDRESS (loader, maplength, c->mapstart)
- MAP_BASE_ADDR (l));
mapat = map_segment (mappref, maplength, c->prot, 0, c->mapoff);
l->l_addr = (ElfW(Addr)) mapat - c->mapstart;
/* Change protection on the excess portion to disallow all access;
the portions we do not remap later will be inaccessible as if
unallocated. Then jump into the normal segment-mapping loop to
handle the portion of the segment past the end of the file
mapping. */
__mprotect ((caddr_t) (l->l_addr + c->mapend),
loadcmds[nloadcmds - 1].allocend - c->mapend,
0);
goto postmap;
}
else
{
/* Notify ELF_PREFERRED_ADDRESS that we have to load this one
fixed. */
ELF_FIXED_ADDRESS (loader, c->mapstart);
}
while (c < &loadcmds[nloadcmds])
{
if (c->mapend > c->mapstart)
/* Map the segment contents from the file. */
map_segment (l->l_addr + c->mapstart, c->mapend - c->mapstart,
c->prot, MAP_FIXED, c->mapoff);
postmap:
if (c->allocend > c->dataend)
{
/* Extra zero pages should appear at the end of this segment,
after the data mapped from the file. */
ElfW(Addr) zero, zeroend, zeropage;
zero = l->l_addr + c->dataend;
zeroend = l->l_addr + c->allocend;
zeropage = (zero + _dl_pagesize - 1) & ~(_dl_pagesize - 1);
if (zeroend < zeropage)
/* All the extra data is in the last page of the segment.
We can just zero it. */
zeropage = zeroend;
if (zeropage > zero)
{
/* Zero the final part of the last page of the segment. */
if ((c->prot & PROT_WRITE) == 0)
{
/* Dag nab it. */
if (__mprotect ((caddr_t) (zero & ~(_dl_pagesize - 1)),
_dl_pagesize, c->prot|PROT_WRITE) < 0)
lose (errno, "cannot change memory protections");
}
memset ((void *) zero, 0, zeropage - zero);
if ((c->prot & PROT_WRITE) == 0)
__mprotect ((caddr_t) (zero & ~(_dl_pagesize - 1)),
_dl_pagesize, c->prot);
}
if (zeroend > zeropage)
{
/* Map the remaining zero pages in from the zero fill FD. */
caddr_t mapat;
mapat = __mmap ((caddr_t) zeropage, zeroend - zeropage,
c->prot, MAP_ANON|MAP_PRIVATE|MAP_FIXED,
ANONFD, 0);
if (mapat == MAP_FAILED)
lose (errno, "cannot map zero-fill pages");
}
}
++c;
}
if (l->l_phdr == 0)
{
/* There was no PT_PHDR specified. We need to find the phdr in the
load image ourselves. We assume it is in fact in the load image
somewhere, and that the first load command starts at the
beginning of the file and thus contains the ELF file header. */
ElfW(Addr) bof = l->l_addr + loadcmds[0].mapstart;
assert (loadcmds[0].mapoff == 0);
l->l_phdr = (void *) (bof + ((const ElfW(Ehdr) *) bof)->e_phoff);
}
else
/* Adjust the PT_PHDR value by the runtime load address. */
(ElfW(Addr)) l->l_phdr += l->l_addr;
}
/* We are done mapping in the file. We no longer need the descriptor. */
__close (fd);
if (l->l_type == lt_library && type == ET_EXEC)
l->l_type = lt_executable;
if (l->l_ld == 0)
{
if (type == ET_DYN)
LOSE ("object file has no dynamic section");
}
else
(ElfW(Addr)) l->l_ld += l->l_addr;
l->l_entry += l->l_addr;
if (_dl_debug_files)
{
const size_t nibbles = sizeof (void *) * 2;
char buf1[nibbles + 1];
char buf2[nibbles + 1];
char buf3[nibbles + 1];
buf1[nibbles] = '\0';
buf2[nibbles] = '\0';
buf3[nibbles] = '\0';
memset (buf1, '0', nibbles);
memset (buf2, '0', nibbles);
memset (buf3, '0', nibbles);
_itoa_word ((unsigned long int) l->l_ld, &buf1[nibbles], 16, 0);
_itoa_word ((unsigned long int) l->l_addr, &buf2[nibbles], 16, 0);
_itoa_word (maplength, &buf3[nibbles], 16, 0);
_dl_debug_message (1, " dynamic: 0x", buf1, " base: 0x", buf2,
" size: 0x", buf3, "\n", NULL);
memset (buf1, '0', nibbles);
memset (buf2, '0', nibbles);
memset (buf3, ' ', nibbles);
_itoa_word ((unsigned long int) l->l_entry, &buf1[nibbles], 16, 0);
_itoa_word ((unsigned long int) l->l_phdr, &buf2[nibbles], 16, 0);
_itoa_word (l->l_phnum, &buf3[nibbles], 10, 0);
_dl_debug_message (1, " entry: 0x", buf1, " phdr: 0x", buf2,
" phnum: ", buf3, "\n\n", NULL);
}
elf_get_dynamic_info (l->l_ld, l->l_info);
if (l->l_info[DT_HASH])
_dl_setup_hash (l);
return l;
}
/* Print search path. */
static void
print_search_path (struct r_search_path_elem **list,
const char *what, const char *name)
{
char buf[max_dirnamelen + max_capstrlen];
int first = 1;
_dl_debug_message (1, " search path=", NULL);
while (*list != NULL && (*list)->what == what) /* Yes, ==. */
{
char *endp = __mempcpy (buf, (*list)->dirname, (*list)->dirnamelen);
size_t cnt;
for (cnt = 0; cnt < ncapstr; ++cnt)
if ((*list)->status[cnt] != nonexisting)
{
char *cp = __mempcpy (endp, capstr[cnt].str, capstr[cnt].len);
cp[-1] = '\0';
_dl_debug_message (0, first ? "" : ":", buf, NULL);
first = 0;
}
++list;
}
if (name != NULL)
_dl_debug_message (0, "\t\t(", what, " from file ",
name[0] ? name : _dl_argv[0], ")\n", NULL);
else
_dl_debug_message (0, "\t\t(", what, ")\n", NULL);
}
/* Try to open NAME in one of the directories in DIRS.
Return the fd, or -1. If successful, fill in *REALNAME
with the malloc'd full directory name. */
static int
open_path (const char *name, size_t namelen, int preloaded,
struct r_search_path_elem **dirs,
char **realname)
{
char *buf;
int fd = -1;
const char *current_what = NULL;
if (dirs == NULL || *dirs == NULL)
{
__set_errno (ENOENT);
return -1;
}
buf = __alloca (max_dirnamelen + max_capstrlen + namelen + 1);
do
{
struct r_search_path_elem *this_dir = *dirs;
size_t buflen = 0;
size_t cnt;
/* If we are debugging the search for libraries print the path
now if it hasn't happened now. */
if (_dl_debug_libs && current_what != this_dir->what)
{
current_what = this_dir->what;
print_search_path (dirs, current_what, this_dir->where);
}
for (cnt = 0; fd == -1 && cnt < ncapstr; ++cnt)
{
/* Skip this directory if we know it does not exist. */
if (this_dir->status[cnt] == nonexisting)
continue;
buflen =
((char *) __mempcpy (__mempcpy (__mempcpy (buf, this_dir->dirname,
this_dir->dirnamelen),
capstr[cnt].str, capstr[cnt].len),
name, namelen)
- buf);
/* Print name we try if this is wanted. */
if (_dl_debug_libs)
_dl_debug_message (1, " trying file=", buf, "\n", NULL);
fd = __open (buf, O_RDONLY);
if (this_dir->status[cnt] == unknown)
if (fd != -1)
this_dir->status[cnt] = existing;
else
{
/* We failed to open machine dependent library. Let's
test whether there is any directory at all. */
struct stat st;
buf[this_dir->dirnamelen
+ MAX (capstr[cnt].len - 1, 0)] = '\0';
if (__xstat (_STAT_VER, buf, &st) != 0
|| ! S_ISDIR (st.st_mode))
/* The directory does not exist ot it is no directory. */
this_dir->status[cnt] = nonexisting;
else
this_dir->status[cnt] = existing;
}
if (fd != -1 && preloaded && __libc_enable_secure)
{
/* This is an extra security effort to make sure nobody can
preload broken shared objects which are in the trusted
directories and so exploit the bugs. */
struct stat st;
if (__fxstat (_STAT_VER, fd, &st) != 0
|| (st.st_mode & S_ISUID) == 0)
{
/* The shared object cannot be tested for being SUID
or this bit is not set. In this case we must not
use this object. */
__close (fd);
fd = -1;
/* We simply ignore the file, signal this by setting
the error value which would have been set by `open'. */
errno = ENOENT;
}
}
}
if (fd != -1)
{
*realname = malloc (buflen);
if (*realname != NULL)
{
memcpy (*realname, buf, buflen);
return fd;
}
else
{
/* No memory for the name, we certainly won't be able
to load and link it. */
__close (fd);
return -1;
}
}
if (errno != ENOENT && errno != EACCES)
/* The file exists and is readable, but something went wrong. */
return -1;
}
while (*++dirs != NULL);
return -1;
}
/* Map in the shared object file NAME. */
struct link_map *
internal_function
_dl_map_object (struct link_map *loader, const char *name, int preloaded,
int type, int trace_mode)
{
int fd;
char *realname;
char *name_copy;
struct link_map *l;
/* Look for this name among those already loaded. */
for (l = _dl_loaded; l; l = l->l_next)
{
/* If the requested name matches the soname of a loaded object,
use that object. Elide this check for names that have not
yet been opened. */
if (l->l_opencount <= 0)
continue;
if (!_dl_name_match_p (name, l))
{
const char *soname;
if (l->l_info[DT_SONAME] == NULL)
continue;
soname = (const char *) (l->l_addr
+ l->l_info[DT_STRTAB]->d_un.d_ptr
+ l->l_info[DT_SONAME]->d_un.d_val);
if (strcmp (name, soname) != 0)
continue;
/* We have a match on a new name -- cache it. */
add_name_to_object (l, local_strdup (soname));
}
/* We have a match -- bump the reference count and return it. */
++l->l_opencount;
return l;
}
/* Display information if we are debugging. */
if (_dl_debug_files && loader != NULL)
_dl_debug_message (1, "\nfile=", name, "; needed by ",
loader->l_name[0] ? loader->l_name : _dl_argv[0],
"\n", NULL);
if (strchr (name, '/') == NULL)
{
/* Search for NAME in several places. */
size_t namelen = strlen (name) + 1;
if (_dl_debug_libs)
_dl_debug_message (1, "find library=", name, "; searching\n", NULL);
fd = -1;
/* First try the DT_RPATH of the dependent object that caused NAME
to be loaded. Then that object's dependent, and on up. */
for (l = loader; fd == -1 && l; l = l->l_loader)
if (l && l->l_info[DT_RPATH])
{
/* Make sure the cache information is available. */
if (l->l_rpath_dirs == NULL)
{
size_t ptrval = (l->l_addr
+ l->l_info[DT_STRTAB]->d_un.d_ptr
+ l->l_info[DT_RPATH]->d_un.d_val);
l->l_rpath_dirs =
decompose_rpath ((const char *) ptrval, 0,
"RPATH", l->l_name);
}
if (l->l_rpath_dirs != (struct r_search_path_elem **) -1l)
fd = open_path (name, namelen, preloaded, l->l_rpath_dirs,
&realname);
}
/* If dynamically linked, try the DT_RPATH of the executable itself
and the LD_LIBRARY_PATH environment variable. */
l = _dl_loaded;
if (fd == -1 && l && l->l_type != lt_loaded
&& l->l_rpath_dirs != (struct r_search_path_elem **) -1l)
fd = open_path (name, namelen, preloaded, l->l_rpath_dirs, &realname);
/* This is used if a static binary uses dynamic loading and there
is a LD_LIBRARY_PATH given. */
if (fd == -1 && fake_path_list != NULL)
fd = open_path (name, namelen, preloaded, fake_path_list, &realname);
if (fd == -1)
{
/* Check the list of libraries in the file /etc/ld.so.cache,
for compatibility with Linux's ldconfig program. */
extern const char *_dl_load_cache_lookup (const char *name);
const char *cached = _dl_load_cache_lookup (name);
if (cached)
{
fd = __open (cached, O_RDONLY);
if (fd != -1)
{
realname = local_strdup (cached);
if (realname == NULL)
{
__close (fd);
fd = -1;
}
}
}
}
/* Finally, try the default path. */
if (fd == -1)
fd = open_path (name, namelen, preloaded, rtld_search_dirs, &realname);
/* Add another newline when we a tracing the library loading. */
if (_dl_debug_libs)
_dl_debug_message (1, "\n", NULL);
}
else
{
fd = __open (name, O_RDONLY);
if (fd != -1)
{
realname = local_strdup (name);
if (realname == NULL)
{
__close (fd);
fd = -1;
}
}
}
if (fd != -1)
{
name_copy = local_strdup (name);
if (name_copy == NULL)
{
__close (fd);
fd = -1;
}
}
if (fd == -1)
{
if (trace_mode)
{
/* We haven't found an appropriate library. But since we
are only interested in the list of libraries this isn't
so severe. Fake an entry with all the information we
have. */
static const ElfW(Symndx) dummy_bucket = STN_UNDEF;
/* Enter the new object in the list of loaded objects. */
if ((name_copy = local_strdup (name)) == NULL
|| (l = _dl_new_object (name_copy, name, type)) == NULL)
_dl_signal_error (ENOMEM, name,
"cannot create shared object descriptor");
/* We use an opencount of 0 as a sign for the faked entry. */
l->l_opencount = 0;
l->l_reserved = 0;
l->l_buckets = &dummy_bucket;
l->l_nbuckets = 1;
l->l_relocated = 1;
return l;
}
else
_dl_signal_error (errno, name, "cannot open shared object file");
}
return _dl_map_object_from_fd (name_copy, fd, realname, loader, type);
}