glibc/sysdeps/ia64/fpu/s_expm1f.S

1756 lines
37 KiB
ArmAsm

.file "exp_m1f.s"
// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://developer.intel.com/opensource.
//
// HISTORY
// 2/02/00 Initial Version
// 4/04/00 Unwind support added
// 8/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
//
// *********************************************************************
//
// Function: Combined expf(x) and expm1f(x), where
// x
// expf(x) = e , for single precision x values
// x
// expm1f(x) = e - 1 for single precision x values
//
// *********************************************************************
//
// Accuracy: Within .7 ulps for 80-bit floating point values
// Very accurate for single precision values
//
// *********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
// f9,f32-f61, f99-f102
//
// General Purpose Registers:
// r32-r61
// r62-r65 (Used to pass arguments to error handling routine)
//
// Predicate Registers: p6-p15
//
// *********************************************************************
//
// IEEE Special Conditions:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions raised when appropriate for exp and expm1
// Underflow exceptions raised when appropriate for exp and expm1
// (Error Handling Routine called for overflow and Underflow)
// Inexact raised when appropriate by algorithm
//
// expf(inf) = inf
// expf(-inf) = +0
// expf(SNaN) = QNaN
// expf(QNaN) = QNaN
// expf(0) = 1
// expf(EM_special Values) = QNaN
// expf(inf) = inf
// expm1f(-inf) = -1
// expm1f(SNaN) = QNaN
// expm1f(QNaN) = QNaN
// expm1f(0) = 0
// expm1f(EM_special Values) = QNaN
//
// *********************************************************************
//
// Implementation and Algorithm Notes:
//
// ker_exp_64( in_FR : X,
// in_GR : Flag,
// in_GR : Expo_Range
// out_FR : Y_hi,
// out_FR : Y_lo,
// out_FR : scale,
// out_PR : Safe )
//
// On input, X is in register format and
// Flag = 0 for exp,
// Flag = 1 for expm1,
//
// On output, provided X and X_cor are real numbers, then
//
// scale*(Y_hi + Y_lo) approximates expf(X) if Flag is 0
// scale*(Y_hi + Y_lo) approximates expf(X)-1 if Flag is 1
//
// The accuracy is sufficient for a highly accurate 64 sig.
// bit implementation. Safe is set if there is no danger of
// overflow/underflow when the result is composed from scale,
// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set.
// Otherwise, one must prepare to handle the possible exception
// appropriately. Note that SAFE not set (false) does not mean
// that overflow/underflow will occur; only the setting of SAFE
// guarantees the opposite.
//
// **** High Level Overview ****
//
// The method consists of three cases.
//
// If |X| < Tiny use case exp_tiny;
// else if |X| < 2^(-6) use case exp_small;
// else use case exp_regular;
//
// Case exp_tiny:
//
// 1 + X can be used to approximate expf(X) or expf(X+X_cor);
// X + X^2/2 can be used to approximate expf(X) - 1
//
// Case exp_small:
//
// Here, expf(X), expf(X+X_cor), and expf(X) - 1 can all be
// appproximated by a relatively simple polynomial.
//
// This polynomial resembles the truncated Taylor series
//
// expf(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
//
// Case exp_regular:
//
// Here we use a table lookup method. The basic idea is that in
// order to compute expf(X), we accurately decompose X into
//
// X = N * log(2)/(2^12) + r, |r| <= log(2)/2^13.
//
// Hence
//
// expf(X) = 2^( N / 2^12 ) * expf(r).
//
// The value 2^( N / 2^12 ) is obtained by simple combinations
// of values calculated beforehand and stored in table; expf(r)
// is approximated by a short polynomial because |r| is small.
//
// We elaborate this method in 4 steps.
//
// Step 1: Reduction
//
// The value 2^12/log(2) is stored as a double-extended number
// L_Inv.
//
// N := round_to_nearest_integer( X * L_Inv )
//
// The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
// that r can be computed accurately via
//
// r := (X - N*L_hi) - N*L_lo
//
// We pick L_hi such that N*L_hi is representable in 64 sig. bits
// and thus the FMA X - N*L_hi is error free. So r is the
// 1 rounding error from an exact reduction with respect to
//
// L_hi + L_lo.
//
// In particular, L_hi has 30 significant bit and can be stored
// as a double-precision number; L_lo has 64 significant bits and
// stored as a double-extended number.
//
// In the case Flag = 2, we further modify r by
//
// r := r + X_cor.
//
// Step 2: Approximation
//
// expf(r) - 1 is approximated by a short polynomial of the form
//
// r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
//
// Step 3: Composition from Table Values
//
// The value 2^( N / 2^12 ) can be composed from a couple of tables
// of precalculated values. First, express N as three integers
// K, M_1, and M_2 as
//
// N = K * 2^12 + M_1 * 2^6 + M_2
//
// Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
// When N is represented in 2's complement, M_2 is simply the 6
// lsb's, M_1 is the next 6, and K is simply N shifted right
// arithmetically (sign extended) by 12 bits.
//
// Now, 2^( N / 2^12 ) is simply
//
// 2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
//
// Clearly, 2^K needs no tabulation. The other two values are less
// trivial because if we store each accurately to more than working
// precision, than its product is too expensive to calculate. We
// use the following method.
//
// Define two mathematical values, delta_1 and delta_2, implicitly
// such that
//
// T_1 = expf( [M_1 log(2)/2^6] - delta_1 )
// T_2 = expf( [M_2 log(2)/2^12] - delta_2 )
//
// are representable as 24 significant bits. To illustrate the idea,
// we show how we define delta_1:
//
// T_1 := round_to_24_bits( expf( M_1 log(2)/2^6 ) )
// delta_1 = (M_1 log(2)/2^6) - log( T_1 )
//
// The last equality means mathematical equality. We then tabulate
//
// W_1 := expf(delta_1) - 1
// W_2 := expf(delta_2) - 1
//
// Both in double precision.
//
// From the tabulated values T_1, T_2, W_1, W_2, we compose the values
// T and W via
//
// T := T_1 * T_2 ...exactly
// W := W_1 + (1 + W_1)*W_2
//
// W approximates expf( delta ) - 1 where delta = delta_1 + delta_2.
// The mathematical product of T and (W+1) is an accurate representation
// of 2^(M_1/2^6) * 2^(M_2/2^12).
//
// Step 4. Reconstruction
//
// Finally, we can reconstruct expf(X), expf(X) - 1.
// Because
//
// X = K * log(2) + (M_1*log(2)/2^6 - delta_1)
// + (M_2*log(2)/2^12 - delta_2)
// + delta_1 + delta_2 + r ...accurately
// We have
//
// expf(X) ~=~ 2^K * ( T + T*[expf(delta_1+delta_2+r) - 1] )
// ~=~ 2^K * ( T + T*[expf(delta + r) - 1] )
// ~=~ 2^K * ( T + T*[(expf(delta)-1)
// + expf(delta)*(expf(r)-1)] )
// ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
// ~=~ 2^K * ( Y_hi + Y_lo )
//
// where Y_hi = T and Y_lo = T*(W + (1+W)*poly(r))
//
// For expf(X)-1, we have
//
// expf(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
// ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
//
// and we combine Y_hi + Y_lo - 2^(-N) into the form of two
// numbers Y_hi + Y_lo carefully.
//
// **** Algorithm Details ****
//
// A careful algorithm must be used to realize the mathematical ideas
// accurately. We describe each of the three cases. We assume SAFE
// is preset to be TRUE.
//
// Case exp_tiny:
//
// The important points are to ensure an accurate result under
// different rounding directions and a correct setting of the SAFE
// flag.
//
// If Flag is 1, then
// SAFE := False ...possibility of underflow
// Scale := 1.0
// Y_hi := X
// Y_lo := 2^(-17000)
// Else
// Scale := 1.0
// Y_hi := 1.0
// Y_lo := X ...for different rounding modes
// Endif
//
// Case exp_small:
//
// Here we compute a simple polynomial. To exploit parallelism, we split
// the polynomial into several portions.
//
// Let r = X
//
// If Flag is not 1 ...i.e. expf( argument )
//
// rsq := r * r;
// r4 := rsq*rsq
// poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
// poly_hi := r + rsq*(P_1 + r*P_2)
// Y_lo := poly_hi + r4 * poly_lo
// set lsb(Y_lo) to 1
// Y_hi := 1.0
// Scale := 1.0
//
// Else ...i.e. expf( argument ) - 1
//
// rsq := r * r
// r4 := rsq * rsq
// r6 := rsq * r4
// poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))
// poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))
// Y_lo := rsq*poly_hi + poly_lo
// set lsb(Y_lo) to 1
// Y_hi := X
// Scale := 1.0
//
// Endif
//
// Case exp_regular:
//
// The previous description contain enough information except the
// computation of poly and the final Y_hi and Y_lo in the case for
// expf(X)-1.
//
// The computation of poly for Step 2:
//
// rsq := r*r
// poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
//
// For the case expf(X) - 1, we need to incorporate 2^(-K) into
// Y_hi and Y_lo at the end of Step 4.
//
// If K > 10 then
// Y_lo := Y_lo - 2^(-K)
// Else
// If K < -10 then
// Y_lo := Y_hi + Y_lo
// Y_hi := -2^(-K)
// Else
// Y_hi := Y_hi - 2^(-K)
// End If
// End If
//
#include "libm_support.h"
GR_SAVE_B0 = r60
GR_SAVE_PFS = r59
GR_SAVE_GP = r61
GR_Parameter_X = r62
GR_Parameter_Y = r63
GR_Parameter_RESULT = r64
GR_Parameter_TAG = r65
FR_X = f9
FR_Y = f1
FR_RESULT = f99
#ifdef _LIBC
.rodata
#else
.data
#endif
.align 64
Constants_exp_64_Arg:
ASM_TYPE_DIRECTIVE(Constants_exp_64_Arg,@object)
data4 0x5C17F0BC,0xB8AA3B29,0x0000400B,0x00000000
data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000
data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000
// /* Inv_L, L_hi, L_lo */
ASM_SIZE_DIRECTIVE(Constants_exp_64_Arg)
.align 64
Constants_exp_64_Exponents:
ASM_TYPE_DIRECTIVE(Constants_exp_64_Exponents,@object)
data4 0x0000007E,0x00000000,0xFFFFFF83,0xFFFFFFFF
data4 0x000003FE,0x00000000,0xFFFFFC03,0xFFFFFFFF
data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
data4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFF
data4 0xFFFFFFE2,0xFFFFFFFF,0xFFFFFFC4,0xFFFFFFFF
data4 0xFFFFFFBA,0xFFFFFFFF,0xFFFFFFBA,0xFFFFFFFF
ASM_SIZE_DIRECTIVE(Constants_exp_64_Exponents)
.align 64
Constants_exp_64_A:
ASM_TYPE_DIRECTIVE(Constants_exp_64_A,@object)
data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000
data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000
data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000
// /* Reversed */
ASM_SIZE_DIRECTIVE(Constants_exp_64_A)
.align 64
Constants_exp_64_P:
ASM_TYPE_DIRECTIVE(Constants_exp_64_P,@object)
data4 0x43914A8A,0xD00D6C81,0x00003FF2,0x00000000
data4 0x30304B30,0xB60BC4AC,0x00003FF5,0x00000000
data4 0x7474C518,0x88888888,0x00003FF8,0x00000000
data4 0x8DAE729D,0xAAAAAAAA,0x00003FFA,0x00000000
data4 0xAAAAAF61,0xAAAAAAAA,0x00003FFC,0x00000000
data4 0x000004C7,0x80000000,0x00003FFE,0x00000000
// /* Reversed */
ASM_SIZE_DIRECTIVE(Constants_exp_64_P)
.align 64
Constants_exp_64_Q:
ASM_TYPE_DIRECTIVE(Constants_exp_64_Q,@object)
data4 0xA49EF6CA,0xD00D56F7,0x00003FEF,0x00000000
data4 0x1C63493D,0xD00D59AB,0x00003FF2,0x00000000
data4 0xFB50CDD2,0xB60B60B5,0x00003FF5,0x00000000
data4 0x7BA68DC8,0x88888888,0x00003FF8,0x00000000
data4 0xAAAAAC8D,0xAAAAAAAA,0x00003FFA,0x00000000
data4 0xAAAAACCA,0xAAAAAAAA,0x00003FFC,0x00000000
data4 0x00000000,0x80000000,0x00003FFE,0x00000000
// /* Reversed */
ASM_SIZE_DIRECTIVE(Constants_exp_64_Q)
.align 64
Constants_exp_64_T1:
ASM_TYPE_DIRECTIVE(Constants_exp_64_T1,@object)
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
ASM_SIZE_DIRECTIVE(Constants_exp_64_T1)
.align 64
Constants_exp_64_T2:
ASM_TYPE_DIRECTIVE(Constants_exp_64_T2,@object)
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
ASM_SIZE_DIRECTIVE(Constants_exp_64_T2)
.align 64
Constants_exp_64_W1:
ASM_TYPE_DIRECTIVE(Constants_exp_64_W1,@object)
data4 0x00000000,0x00000000,0x171EC4B4,0xBE384454
data4 0x4AA72766,0xBE694741,0xD42518F8,0xBE5D32B6
data4 0x3A319149,0x3E68D96D,0x62415F36,0xBE68F4DA
data4 0xC9C86A3B,0xBE6DDA2F,0xF49228FE,0x3E6B2E50
data4 0x1188B886,0xBE49C0C2,0x1A4C2F1F,0x3E64BFC2
data4 0x2CB98B54,0xBE6A2FBB,0x9A55D329,0x3E5DC5DE
data4 0x39A7AACE,0x3E696490,0x5C66DBA5,0x3E54728B
data4 0xBA1C7D7D,0xBE62B0DB,0x09F1AF5F,0x3E576E04
data4 0x1A0DD6A1,0x3E612500,0x795FBDEF,0xBE66A419
data4 0xE1BD41FC,0xBE5CDE8C,0xEA54964F,0xBE621376
data4 0x476E76EE,0x3E6370BE,0x3427EB92,0x3E390D1A
data4 0x2BF82BF8,0x3E1336DE,0xD0F7BD9E,0xBE5FF1CB
data4 0x0CEB09DD,0xBE60A355,0x0980F30D,0xBE5CA37E
data4 0x4C082D25,0xBE5C541B,0x3B467D29,0xBE5BBECA
data4 0xB9D946C5,0xBE400D8A,0x07ED374A,0xBE5E2A08
data4 0x365C8B0A,0xBE66CB28,0xD3403BCA,0x3E3AAD5B
data4 0xC7EA21E0,0x3E526055,0xE72880D6,0xBE442C75
data4 0x85222A43,0x3E58B2BB,0x522C42BF,0xBE5AAB79
data4 0x469DC2BC,0xBE605CB4,0xA48C40DC,0xBE589FA7
data4 0x1AA42614,0xBE51C214,0xC37293F4,0xBE48D087
data4 0xA2D673E0,0x3E367A1C,0x114F7A38,0xBE51BEBB
data4 0x661A4B48,0xBE6348E5,0x1D3B9962,0xBDF52643
data4 0x35A78A53,0x3E3A3B5E,0x1CECD788,0xBE46C46C
data4 0x7857D689,0xBE60B7EC,0xD14F1AD7,0xBE594D3D
data4 0x4C9A8F60,0xBE4F9C30,0x02DFF9D2,0xBE521873
data4 0x55E6D68F,0xBE5E4C88,0x667F3DC4,0xBE62140F
data4 0x3BF88747,0xBE36961B,0xC96EC6AA,0x3E602861
data4 0xD57FD718,0xBE3B5151,0xFC4A627B,0x3E561CD0
data4 0xCA913FEA,0xBE3A5217,0x9A5D193A,0x3E40A3CC
data4 0x10A9C312,0xBE5AB713,0xC5F57719,0x3E4FDADB
data4 0xDBDF59D5,0x3E361428,0x61B4180D,0x3E5DB5DB
data4 0x7408D856,0xBE42AD5F,0x31B2B707,0x3E2A3148
ASM_SIZE_DIRECTIVE(Constants_exp_64_W1)
.align 64
Constants_exp_64_W2:
ASM_TYPE_DIRECTIVE(Constants_exp_64_W2,@object)
data4 0x00000000,0x00000000,0x37A3D7A2,0xBE641F25
data4 0xAD028C40,0xBE68DD57,0xF212B1B6,0xBE5C77D8
data4 0x1BA5B070,0x3E57878F,0x2ECAE6FE,0xBE55A36A
data4 0x569DFA3B,0xBE620608,0xA6D300A3,0xBE53B50E
data4 0x223F8F2C,0x3E5B5EF2,0xD6DE0DF4,0xBE56A0D9
data4 0xEAE28F51,0xBE64EEF3,0x367EA80B,0xBE5E5AE2
data4 0x5FCBC02D,0x3E47CB1A,0x9BDAFEB7,0xBE656BA0
data4 0x805AFEE7,0x3E6E70C6,0xA3415EBA,0xBE6E0509
data4 0x49BFF529,0xBE56856B,0x00508651,0x3E66DD33
data4 0xC114BC13,0x3E51165F,0xC453290F,0x3E53333D
data4 0x05539FDA,0x3E6A072B,0x7C0A7696,0xBE47CD87
data4 0xEB05C6D9,0xBE668BF4,0x6AE86C93,0xBE67C3E3
data4 0xD0B3E84B,0xBE533904,0x556B53CE,0x3E63E8D9
data4 0x63A98DC8,0x3E212C89,0x032A7A22,0xBE33138F
data4 0xBC584008,0x3E530FA9,0xCCB93C97,0xBE6ADF82
data4 0x8370EA39,0x3E5F9113,0xFB6A05D8,0x3E5443A4
data4 0x181FEE7A,0x3E63DACD,0xF0F67DEC,0xBE62B29D
data4 0x3DDE6307,0x3E65C483,0xD40A24C1,0x3E5BF030
data4 0x14E437BE,0x3E658B8F,0xED98B6C7,0xBE631C29
data4 0x04CF7C71,0x3E6335D2,0xE954A79D,0x3E529EED
data4 0xF64A2FB8,0x3E5D9257,0x854ED06C,0xBE6BED1B
data4 0xD71405CB,0x3E5096F6,0xACB9FDF5,0xBE3D4893
data4 0x01B68349,0xBDFEB158,0xC6A463B9,0x3E628D35
data4 0xADE45917,0xBE559725,0x042FC476,0xBE68C29C
data4 0x01E511FA,0xBE67593B,0x398801ED,0xBE4A4313
data4 0xDA7C3300,0x3E699571,0x08062A9E,0x3E5349BE
data4 0x755BB28E,0x3E5229C4,0x77A1F80D,0x3E67E426
data4 0x6B69C352,0xBE52B33F,0x084DA57F,0xBE6B3550
data4 0xD1D09A20,0xBE6DB03F,0x2161B2C1,0xBE60CBC4
data4 0x78A2B771,0x3E56ED9C,0x9D0FA795,0xBE508E31
data4 0xFD1A54E9,0xBE59482A,0xB07FD23E,0xBE2A17CE
data4 0x17365712,0x3E68BF5C,0xB3785569,0x3E3956F9
ASM_SIZE_DIRECTIVE(Constants_exp_64_W2)
.section .text
.proc expm1f#
.global expm1f#
.align 64
expm1f:
#ifdef _LIBC
.global __expm1f#
__expm1f:
#endif
{ .mii
alloc r32 = ar.pfs,0,30,4,0
(p0) add r33 = 1, r0
(p0) cmp.eq.unc p7, p0 = r0, r0
}
;;
//
// Set p7 true for expm1
// Set Flag = r33 = 1 for expm1
// These are really no longer necesary, but are a remnant
// when this file had multiple entry points.
// They should be carefully removed
{ .mfi
(p0) add r32 = 0,r0
(p0) fnorm.s1 f9 = f8
nop.i 0
}
{ .mfi
nop.m 0
//
// Set p7 false for exp
// Set Flag = r33 = 0 for exp
//
(p0) fclass.m.unc p6, p8 = f8, 0x1E7
nop.i 0 ;;
}
{ .mfi
nop.m 999
(p0) fclass.nm.unc p9, p0 = f8, 0x1FF
nop.i 0
}
{ .mfi
nop.m 999
(p0) mov f36 = f1
nop.i 999 ;;
}
//
// Identify NatVals, NaNs, Infs, and Zeros.
// Identify EM unsupporteds.
// Save special input registers
//
// Create FR_X_cor = 0.0
// GR_Flag = 0
// GR_Expo_Range = 0 (r32) for single precision
// FR_Scale = 1.0
//
{ .mfb
nop.m 999
(p0) mov f32 = f0
(p6) br.cond.spnt EXPF_64_SPECIAL ;;
}
{ .mib
nop.m 999
nop.i 999
(p9) br.cond.spnt EXPF_64_UNSUPPORTED ;;
}
//
// Branch out for special input values
//
{ .mfi
(p0) cmp.ne.unc p12, p13 = 0x01, r33
(p0) fcmp.lt.unc.s0 p9,p0 = f8, f0
(p0) cmp.eq.unc p15, p0 = r0, r0
}
//
// Raise possible denormal operand exception
// Normalize x
//
// This function computes expf( x + x_cor)
// Input FR 1: FR_X
// Input FR 2: FR_X_cor
// Input GR 1: GR_Flag
// Input GR 2: GR_Expo_Range
// Output FR 3: FR_Y_hi
// Output FR 4: FR_Y_lo
// Output FR 5: FR_Scale
// Output PR 1: PR_Safe
//
// Prepare to load constants
// Set Safe = True
//
{ .mmi
(p0) addl r34 = @ltoff(Constants_exp_64_Arg#),gp
(p0) addl r40 = @ltoff(Constants_exp_64_W1#),gp
(p0) addl r41 = @ltoff(Constants_exp_64_W2#),gp
};;
{ .mmi
ld8 r34 = [r34]
ld8 r40 = [r40]
(p0) addl r50 = @ltoff(Constants_exp_64_T1#), gp
}
;;
{ .mmi
ld8 r41 = [r41]
(p0) ldfe f37 = [r34],16
(p0) addl r51 = @ltoff(Constants_exp_64_T2#), gp
}
;;
//
// N = fcvt.fx(float_N)
// Set p14 if -6 > expo_X
//
//
// Bias = 0x0FFFF
// expo_X = expo_X and Mask
//
{ .mmi
ld8 r50 = [r50]
(p0) ldfe f40 = [r34],16
nop.i 999
}
;;
{ .mlx
nop.m 999
(p0) movl r58 = 0x0FFFF
};;
//
// Load W2_ptr
// Branch to SMALL is expo_X < -6
//
//
// float_N = X * L_Inv
// expo_X = exponent of X
// Mask = 0x1FFFF
//
{ .mmi
ld8 r51 = [r51]
(p0) ldfe f41 = [r34],16
//
// float_N = X * L_Inv
// expo_X = exponent of X
// Mask = 0x1FFFF
//
nop.i 0
};;
{ .mlx
(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#), gp
(p0) movl r39 = 0x1FFFF
}
;;
{ .mmi
ld8 r34 = [r34]
(p0) getf.exp r37 = f9
nop.i 999
}
;;
{ .mii
nop.m 999
nop.i 999
(p0) and r37 = r37, r39 ;;
}
{ .mmi
(p0) sub r37 = r37, r58 ;;
(p0) cmp.gt.unc p14, p0 = -6, r37
(p0) cmp.lt.unc p10, p0 = 14, r37 ;;
}
{ .mfi
nop.m 999
//
// Load L_inv
// Set p12 true for Flag = 0 (exp)
// Set p13 true for Flag = 1 (expm1)
//
(p0) fmpy.s1 f38 = f9, f37
nop.i 999 ;;
}
{ .mfb
nop.m 999
//
// Load L_hi
// expo_X = expo_X - Bias
// get W1_ptr
//
(p0) fcvt.fx.s1 f39 = f38
(p14) br.cond.spnt EXPF_SMALL ;;
}
{ .mib
nop.m 999
nop.i 999
(p10) br.cond.spnt EXPF_HUGE ;;
}
{ .mmi
(p0) shladd r34 = r32,4,r34
(p0) addl r35 = @ltoff(Constants_exp_64_A#),gp
nop.i 999
}
;;
{ .mmi
ld8 r35 = [r35]
nop.m 999
nop.i 999
}
;;
//
// Load T_1,T_2
//
{ .mmb
(p0) ldfe f51 = [r35],16
(p0) ld8 r45 = [r34],8
nop.b 999 ;;
}
//
// Set Safe = True if k >= big_expo_neg
// Set Safe = False if k < big_expo_neg
//
{ .mmb
(p0) ldfe f49 = [r35],16
(p0) ld8 r48 = [r34],0
nop.b 999 ;;
}
{ .mfi
nop.m 999
//
// Branch to HUGE is expo_X > 14
//
(p0) fcvt.xf f38 = f39
nop.i 999 ;;
}
{ .mfi
(p0) getf.sig r52 = f39
nop.f 999
nop.i 999 ;;
}
{ .mii
nop.m 999
(p0) extr.u r43 = r52, 6, 6 ;;
//
// r = r - float_N * L_lo
// K = extr(N_fix,12,52)
//
(p0) shladd r40 = r43,3,r40 ;;
}
{ .mfi
(p0) shladd r50 = r43,2,r50
(p0) fnma.s1 f42 = f40, f38, f9
//
// float_N = float(N)
// N_fix = signficand N
//
(p0) extr.u r42 = r52, 0, 6
}
{ .mmi
(p0) ldfd f43 = [r40],0 ;;
(p0) shladd r41 = r42,3,r41
(p0) shladd r51 = r42,2,r51
}
//
// W_1_p1 = 1 + W_1
//
{ .mmi
(p0) ldfs f44 = [r50],0 ;;
(p0) ldfd f45 = [r41],0
//
// M_2 = extr(N_fix,0,6)
// M_1 = extr(N_fix,6,6)
// r = X - float_N * L_hi
//
(p0) extr r44 = r52, 12, 52
}
{ .mmi
(p0) ldfs f46 = [r51],0 ;;
(p0) sub r46 = r58, r44
(p0) cmp.gt.unc p8, p15 = r44, r45
}
//
// W = W_1 + W_1_p1*W_2
// Load A_2
// Bias_m_K = Bias - K
//
{ .mii
(p0) ldfe f40 = [r35],16
//
// load A_1
// poly = A_2 + r*A_3
// rsq = r * r
// neg_2_mK = exponent of Bias_m_k
//
(p0) add r47 = r58, r44 ;;
//
// Set Safe = True if k <= big_expo_pos
// Set Safe = False if k > big_expo_pos
// Load A_3
//
(p15) cmp.lt p8,p15 = r44,r48 ;;
}
{ .mmf
(p0) setf.exp f61 = r46
//
// Bias_p + K = Bias + K
// T = T_1 * T_2
//
(p0) setf.exp f36 = r47
(p0) fnma.s1 f42 = f41, f38, f42 ;;
}
{ .mfi
nop.m 999
//
// Load W_1,W_2
// Load big_exp_pos, load big_exp_neg
//
(p0) fadd.s1 f47 = f43, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 f52 = f42, f51, f49
nop.i 999
}
{ .mfi
nop.m 999
(p0) fmpy.s1 f48 = f42, f42
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fmpy.s1 f53 = f44, f46
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 f54 = f45, f47, f43
nop.i 999
}
{ .mfi
nop.m 999
(p0) fneg f61 = f61
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fma.s1 f52 = f42, f52, f40
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fadd.s1 f55 = f54, f1
nop.i 999
}
{ .mfi
nop.m 999
//
// W + Wp1 * poly
//
(p0) mov f34 = f53
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// A_1 + r * poly
// Scale = setf_expf(Bias_p_k)
//
(p0) fma.s1 f52 = f48, f52, f42
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// poly = r + rsq(A_1 + r*poly)
// Wp1 = 1 + W
// neg_2_mK = -neg_2_mK
//
(p0) fma.s1 f35 = f55, f52, f54
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p0) fmpy.s1 f35 = f35, f53
//
// Y_hi = T
// Y_lo = T * (W + Wp1*poly)
//
(p12) br.cond.sptk EXPF_MAIN ;;
}
//
// Branch if expf(x)
// Continue for expf(x-1)
//
{ .mii
(p0) cmp.lt.unc p12, p13 = 10, r44
nop.i 999 ;;
//
// Set p12 if 10 < K, Else p13
//
(p13) cmp.gt.unc p13, p14 = -10, r44 ;;
}
//
// K > 10: Y_lo = Y_lo + neg_2_mK
// K <=10: Set p13 if -10 > K, Else set p14
//
{ .mfi
(p13) cmp.eq p15, p0 = r0, r0
(p14) fadd.s1 f34 = f61, f34
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fadd.s1 f35 = f35, f61
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p13) fadd.s1 f35 = f35, f34
nop.i 999
}
{ .mfb
nop.m 999
//
// K <= 10 and K < -10, Set Safe = True
// K <= 10 and K < 10, Y_lo = Y_hi + Y_lo
// K <= 10 and K > =-10, Y_hi = Y_hi + neg_2_mk
//
(p13) mov f34 = f61
(p0) br.cond.sptk EXPF_MAIN ;;
}
EXPF_SMALL:
{ .mmi
(p12) addl r35 = @ltoff(Constants_exp_64_P#), gp
(p0) addl r34 = @ltoff(Constants_exp_64_Exponents#), gp
nop.i 999
}
;;
{ .mmi
(p12) ld8 r35 = [r35]
ld8 r34 = [r34]
nop.i 999
}
;;
{ .mmi
(p13) addl r35 = @ltoff(Constants_exp_64_Q#), gp
nop.m 999
nop.i 999
}
;;
//
// Return
// K <= 10 and K < 10, Y_hi = neg_2_mk
//
// /*******************************************************/
// /*********** Branch EXP_SMALL *************************/
// /*******************************************************/
{ .mfi
(p13) ld8 r35 = [r35]
(p0) mov f42 = f9
(p0) add r34 = 0x48,r34
}
;;
//
// Flag = 0
// r4 = rsq * rsq
//
{ .mfi
(p0) ld8 r49 =[r34],0
nop.f 999
nop.i 999 ;;
}
{ .mii
nop.m 999
nop.i 999 ;;
//
// Flag = 1
//
(p0) cmp.lt.unc p14, p0 = r37, r49 ;;
}
{ .mfi
nop.m 999
//
// r = X
//
(p0) fmpy.s1 f48 = f42, f42
nop.i 999 ;;
}
{ .mfb
nop.m 999
//
// rsq = r * r
//
(p0) fmpy.s1 f50 = f48, f48
//
// Is input very small?
//
(p14) br.cond.spnt EXPF_VERY_SMALL ;;
}
//
// Flag_not1: Y_hi = 1.0
// Flag is 1: r6 = rsq * r4
//
{ .mfi
(p12) ldfe f52 = [r35],16
(p12) mov f34 = f1
(p0) add r53 = 0x1,r0 ;;
}
{ .mfi
(p13) ldfe f51 = [r35],16
//
// Flag_not_1: Y_lo = poly_hi + r4 * poly_lo
//
(p13) mov f34 = f9
nop.i 999 ;;
}
{ .mmf
(p12) ldfe f53 = [r35],16
//
// For Flag_not_1, Y_hi = X
// Scale = 1
// Create 0x000...01
//
(p0) setf.sig f37 = r53
(p0) mov f36 = f1 ;;
}
{ .mmi
(p13) ldfe f52 = [r35],16 ;;
(p12) ldfe f54 = [r35],16
nop.i 999 ;;
}
{ .mfi
(p13) ldfe f53 = [r35],16
(p13) fmpy.s1 f58 = f48, f50
nop.i 999 ;;
}
//
// Flag_not1: poly_lo = P_5 + r*P_6
// Flag_1: poly_lo = Q_6 + r*Q_7
//
{ .mmi
(p13) ldfe f54 = [r35],16 ;;
(p12) ldfe f55 = [r35],16
nop.i 999 ;;
}
{ .mmi
(p12) ldfe f56 = [r35],16 ;;
(p13) ldfe f55 = [r35],16
nop.i 999 ;;
}
{ .mmi
(p12) ldfe f57 = [r35],0 ;;
(p13) ldfe f56 = [r35],16
nop.i 999 ;;
}
{ .mfi
(p13) ldfe f57 = [r35],0
nop.f 999
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// For Flag_not_1, load p5,p6,p1,p2
// Else load p5,p6,p1,p2
//
(p12) fma.s1 f60 = f52, f42, f53
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p13) fma.s1 f60 = f51, f42, f52
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 f60 = f60, f42, f54
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 f59 = f56, f42, f57
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p13) fma.s1 f60 = f42, f60, f53
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 f59 = f59, f48, f42
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Flag_1: poly_lo = Q_5 + r*(Q_6 + r*Q_7)
// Flag_not1: poly_lo = P_4 + r*(P_5 + r*P_6)
// Flag_not1: poly_hi = (P_1 + r*P_2)
//
(p13) fmpy.s1 f60 = f60, f58
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) fma.s1 f60 = f60, f42, f55
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Flag_1: poly_lo = r6 *(Q_5 + ....)
// Flag_not1: poly_hi = r + rsq *(P_1 + r*P_2)
//
(p12) fma.s1 f35 = f60, f50, f59
nop.i 999
}
{ .mfi
nop.m 999
(p13) fma.s1 f59 = f54, f42, f55
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Flag_not1: Y_lo = rsq* poly_hi + poly_lo
// Flag_1: poly_lo = rsq* poly_hi + poly_lo
//
(p13) fma.s1 f59 = f59, f42, f56
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Flag_not_1: (P_1 + r*P_2)
//
(p13) fma.s1 f59 = f59, f42, f57
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Flag_not_1: poly_hi = r + rsq * (P_1 + r*P_2)
//
(p13) fma.s1 f35 = f59, f48, f60
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Create 0.000...01
//
(p0) for f37 = f35, f37
nop.i 999 ;;
}
{ .mfb
nop.m 999
//
// Set lsb of Y_lo to 1
//
(p0) fmerge.se f35 = f35,f37
(p0) br.cond.sptk EXPF_MAIN ;;
}
EXPF_VERY_SMALL:
{ .mmi
nop.m 999
(p13) addl r34 = @ltoff(Constants_exp_64_Exponents#),gp
nop.i 999;;
}
{ .mfi
(p13) ld8 r34 = [r34];
(p12) mov f35 = f9
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p12) mov f34 = f1
(p12) br.cond.sptk EXPF_MAIN ;;
}
{ .mlx
(p13) add r34 = 8,r34
(p13) movl r39 = 0x0FFFE ;;
}
//
// Load big_exp_neg
// Create 1/2's exponent
//
{ .mii
(p13) setf.exp f56 = r39
(p13) shladd r34 = r32,4,r34 ;;
nop.i 999
}
//
// Negative exponents are stored after positive
//
{ .mfi
(p13) ld8 r45 = [r34],0
//
// Y_hi = x
// Scale = 1
//
(p13) fmpy.s1 f35 = f9, f9
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Reset Safe if necessary
// Create 1/2
//
(p13) mov f34 = f9
nop.i 999 ;;
}
{ .mfi
(p13) cmp.lt.unc p0, p15 = r37, r45
(p13) mov f36 = f1
nop.i 999 ;;
}
{ .mfb
nop.m 999
//
// Y_lo = x * x
//
(p13) fmpy.s1 f35 = f35, f56
//
// Y_lo = x*x/2
//
(p13) br.cond.sptk EXPF_MAIN ;;
}
EXPF_HUGE:
{ .mfi
nop.m 999
(p0) fcmp.gt.unc.s1 p14, p0 = f9, f0
nop.i 999
}
{ .mlx
nop.m 999
(p0) movl r39 = 0x15DC0 ;;
}
{ .mfi
(p14) setf.exp f34 = r39
(p14) mov f35 = f1
(p14) cmp.eq p0, p15 = r0, r0 ;;
}
{ .mfb
nop.m 999
(p14) mov f36 = f34
//
// If x > 0, Set Safe = False
// If x > 0, Y_hi = 2**(24,000)
// If x > 0, Y_lo = 1.0
// If x > 0, Scale = 2**(24,000)
//
(p14) br.cond.sptk EXPF_MAIN ;;
}
{ .mlx
nop.m 999
(p12) movl r39 = 0xA240
}
{ .mlx
nop.m 999
(p12) movl r38 = 0xA1DC ;;
}
{ .mmb
(p13) cmp.eq p15, p14 = r0, r0
(p12) setf.exp f34 = r39
nop.b 999 ;;
}
{ .mlx
(p12) setf.exp f35 = r38
(p13) movl r39 = 0xFF9C
}
{ .mfi
nop.m 999
(p13) fsub.s1 f34 = f0, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p12) mov f36 = f34
(p12) cmp.eq p0, p15 = r0, r0 ;;
}
{ .mfi
(p13) setf.exp f35 = r39
(p13) mov f36 = f1
nop.i 999 ;;
}
EXPF_MAIN:
{ .mfi
(p0) cmp.ne.unc p12, p0 = 0x01, r33
(p0) fmpy.s1 f101 = f36, f35
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p0) fma.s.s0 f99 = f34, f36, f101
(p15) br.cond.sptk EXPF_64_RETURN ;;
}
{ .mfi
nop.m 999
(p0) fsetc.s3 0x7F,0x01
nop.i 999
}
{ .mlx
nop.m 999
(p0) movl r50 = 0x0000000001007F ;;
}
//
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// S3 user supplied status + RZ + TD (Underflows)
//
//
// If (Safe) is true, then
// Compute result using user supplied status field.
// No overflow or underflow here, but perhaps inexact.
// Return
// Else
// Determine if overflow or underflow was raised.
// Fetch +/- overflow threshold for IEEE single, double,
// double extended
//
{ .mfi
(p0) setf.exp f60 = r50
(p0) fma.s.s3 f102 = f34, f36, f101
nop.i 999
}
{ .mfi
nop.m 999
(p0) fsetc.s3 0x7F,0x40
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// For Safe, no need to check for over/under.
// For expm1, handle errors like exp.
//
(p0) fsetc.s2 0x7F,0x42
nop.i 999;;
}
{ .mfi
nop.m 999
(p0) fma.s.s2 f100 = f34, f36, f101
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fsetc.s2 0x7F,0x40
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p7) fclass.m.unc p12, p0 = f102, 0x00F
nop.i 999
}
{ .mfi
nop.m 999
(p0) fclass.m.unc p11, p0 = f102, 0x00F
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p7) fcmp.ge.unc.s1 p10, p0 = f100, f60
nop.i 999
}
{ .mfi
nop.m 999
//
// Create largest double exponent + 1.
// Create smallest double exponent - 1.
//
(p0) fcmp.ge.unc.s1 p8, p0 = f100, f60
nop.i 999 ;;
}
//
// fcmp: resultS2 >= + overflow threshold -> set (a) if true
// fcmp: resultS2 <= - overflow threshold -> set (b) if true
// fclass: resultS3 is denorm/unorm/0 -> set (d) if true
//
{ .mib
(p10) mov GR_Parameter_TAG = 43
nop.i 999
(p10) br.cond.sptk __libm_error_region ;;
}
{ .mib
(p8) mov GR_Parameter_TAG = 16
nop.i 999
(p8) br.cond.sptk __libm_error_region ;;
}
//
// Report that exp overflowed
//
{ .mib
(p12) mov GR_Parameter_TAG = 44
nop.i 999
(p12) br.cond.sptk __libm_error_region ;;
}
{ .mib
(p11) mov GR_Parameter_TAG = 17
nop.i 999
(p11) br.cond.sptk __libm_error_region ;;
}
{ .mib
nop.m 999
nop.i 999
//
// Report that exp underflowed
//
(p0) br.cond.sptk EXPF_64_RETURN ;;
}
EXPF_64_SPECIAL:
{ .mfi
nop.m 999
(p0) fclass.m.unc p6, p0 = f8, 0x0c3
nop.i 999
}
{ .mfi
nop.m 999
(p0) fclass.m.unc p13, p8 = f8, 0x007
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p7) fclass.m.unc p14, p0 = f8, 0x007
nop.i 999
}
{ .mfi
nop.m 999
(p0) fclass.m.unc p12, p9 = f8, 0x021
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p0) fclass.m.unc p11, p0 = f8, 0x022
nop.i 999
}
{ .mfi
nop.m 999
(p7) fclass.m.unc p10, p0 = f8, 0x022
nop.i 999 ;;
}
{ .mfi
nop.m 999
//
// Identify +/- 0, Inf, or -Inf
// Generate the right kind of NaN.
//
(p13) fadd.s.s0 f99 = f0, f1
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p14) mov f99 = f8
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p6) fadd.s.s0 f99 = f8, f1
//
// expf(+/-0) = 1
// expm1f(+/-0) = +/-0
// No exceptions raised
//
(p6) br.cond.sptk EXPF_64_RETURN ;;
}
{ .mib
nop.m 999
nop.i 999
(p14) br.cond.sptk EXPF_64_RETURN ;;
}
{ .mfi
nop.m 999
(p11) mov f99 = f0
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p10) fsub.s.s1 f99 = f0, f1
//
// expf(-Inf) = 0
// expm1f(-Inf) = -1
// No exceptions raised.
//
(p10) br.cond.sptk EXPF_64_RETURN ;;
}
{ .mfb
nop.m 999
(p12) fmpy.s.s1 f99 = f8, f1
//
// expf(+Inf) = Inf
// No exceptions raised.
//
(p0) br.cond.sptk EXPF_64_RETURN ;;
}
EXPF_64_UNSUPPORTED:
{ .mfb
nop.m 999
(p0) fmpy.s.s0 f99 = f8, f0
nop.b 0;;
}
EXPF_64_RETURN:
{ .mfb
nop.m 999
(p0) mov f8 = f99
(p0) br.ret.sptk b0
}
.endp expm1f
ASM_SIZE_DIRECTIVE(expm1f)
.proc __libm_error_region
__libm_error_region:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
.endp __libm_error_region
ASM_SIZE_DIRECTIVE(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#