glibc/sunrpc/xdr.c

745 lines
14 KiB
C

/*
* xdr.c, Generic XDR routines implementation.
*
* Copyright (c) 2010, Oracle America, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the "Oracle America, Inc." nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* These are the "generic" xdr routines used to serialize and de-serialize
* most common data items. See xdr.h for more info on the interface to
* xdr.
*/
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <libintl.h>
#include <rpc/types.h>
#include <rpc/xdr.h>
#ifdef USE_IN_LIBIO
# include <wchar.h>
#endif
/*
* constants specific to the xdr "protocol"
*/
#define XDR_FALSE ((long) 0)
#define XDR_TRUE ((long) 1)
#define LASTUNSIGNED ((u_int) 0-1)
/*
* for unit alignment
*/
static const char xdr_zero[BYTES_PER_XDR_UNIT] = {0, 0, 0, 0};
/*
* Free a data structure using XDR
* Not a filter, but a convenient utility nonetheless
*/
void
xdr_free (xdrproc_t proc, char *objp)
{
XDR x;
x.x_op = XDR_FREE;
(*proc) (&x, objp);
}
/*
* XDR nothing
*/
bool_t
xdr_void (void)
{
return TRUE;
}
INTDEF(xdr_void)
/*
* XDR integers
*/
bool_t
xdr_int (XDR *xdrs, int *ip)
{
#if INT_MAX < LONG_MAX
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (long) *ip;
return XDR_PUTLONG (xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
{
return FALSE;
}
*ip = (int) l;
case XDR_FREE:
return TRUE;
}
return FALSE;
#elif INT_MAX == LONG_MAX
return INTUSE(xdr_long) (xdrs, (long *) ip);
#elif INT_MAX == SHRT_MAX
return INTUSE(xdr_short) (xdrs, (short *) ip);
#else
#error unexpected integer sizes in_xdr_int()
#endif
}
INTDEF(xdr_int)
/*
* XDR unsigned integers
*/
bool_t
xdr_u_int (XDR *xdrs, u_int *up)
{
#if UINT_MAX < ULONG_MAX
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (u_long) * up;
return XDR_PUTLONG (xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
{
return FALSE;
}
*up = (u_int) (u_long) l;
case XDR_FREE:
return TRUE;
}
return FALSE;
#elif UINT_MAX == ULONG_MAX
return INTUSE(xdr_u_long) (xdrs, (u_long *) up);
#elif UINT_MAX == USHRT_MAX
return INTUSE(xdr_short) (xdrs, (short *) up);
#else
#error unexpected integer sizes in_xdr_u_int()
#endif
}
INTDEF(xdr_u_int)
/*
* XDR long integers
* The definition of xdr_long() is kept for backward
* compatibility. Instead xdr_int() should be used.
*/
bool_t
xdr_long (XDR *xdrs, long *lp)
{
if (xdrs->x_op == XDR_ENCODE
&& (sizeof (int32_t) == sizeof (long)
|| (int32_t) *lp == *lp))
return XDR_PUTLONG (xdrs, lp);
if (xdrs->x_op == XDR_DECODE)
return XDR_GETLONG (xdrs, lp);
if (xdrs->x_op == XDR_FREE)
return TRUE;
return FALSE;
}
INTDEF(xdr_long)
/*
* XDR unsigned long integers
* The definition of xdr_u_long() is kept for backward
* compatibility. Instead xdr_u_int() should be used.
*/
bool_t
xdr_u_long (XDR *xdrs, u_long *ulp)
{
switch (xdrs->x_op)
{
case XDR_DECODE:
{
long int tmp;
if (XDR_GETLONG (xdrs, &tmp) == FALSE)
return FALSE;
*ulp = (uint32_t) tmp;
return TRUE;
}
case XDR_ENCODE:
if (sizeof (uint32_t) != sizeof (u_long)
&& (uint32_t) *ulp != *ulp)
return FALSE;
return XDR_PUTLONG (xdrs, (long *) ulp);
case XDR_FREE:
return TRUE;
}
return FALSE;
}
INTDEF(xdr_u_long)
/*
* XDR hyper integers
* same as xdr_u_hyper - open coded to save a proc call!
*/
bool_t
xdr_hyper (XDR *xdrs, quad_t *llp)
{
long int t1, t2;
if (xdrs->x_op == XDR_ENCODE)
{
t1 = (long) ((*llp) >> 32);
t2 = (long) (*llp);
return (XDR_PUTLONG(xdrs, &t1) && XDR_PUTLONG(xdrs, &t2));
}
if (xdrs->x_op == XDR_DECODE)
{
if (!XDR_GETLONG(xdrs, &t1) || !XDR_GETLONG(xdrs, &t2))
return FALSE;
*llp = ((quad_t) t1) << 32;
*llp |= (uint32_t) t2;
return TRUE;
}
if (xdrs->x_op == XDR_FREE)
return TRUE;
return FALSE;
}
INTDEF(xdr_hyper)
/*
* XDR hyper integers
* same as xdr_hyper - open coded to save a proc call!
*/
bool_t
xdr_u_hyper (XDR *xdrs, u_quad_t *ullp)
{
long int t1, t2;
if (xdrs->x_op == XDR_ENCODE)
{
t1 = (unsigned long) ((*ullp) >> 32);
t2 = (unsigned long) (*ullp);
return (XDR_PUTLONG(xdrs, &t1) && XDR_PUTLONG(xdrs, &t2));
}
if (xdrs->x_op == XDR_DECODE)
{
if (!XDR_GETLONG(xdrs, &t1) || !XDR_GETLONG(xdrs, &t2))
return FALSE;
*ullp = ((u_quad_t) t1) << 32;
*ullp |= (uint32_t) t2;
return TRUE;
}
if (xdrs->x_op == XDR_FREE)
return TRUE;
return FALSE;
}
INTDEF(xdr_u_hyper)
bool_t
xdr_longlong_t (XDR *xdrs, quad_t *llp)
{
return INTUSE(xdr_hyper) (xdrs, llp);
}
bool_t
xdr_u_longlong_t (XDR *xdrs, u_quad_t *ullp)
{
return INTUSE(xdr_u_hyper) (xdrs, ullp);
}
/*
* XDR short integers
*/
bool_t
xdr_short (XDR *xdrs, short *sp)
{
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (long) *sp;
return XDR_PUTLONG (xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
{
return FALSE;
}
*sp = (short) l;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
INTDEF(xdr_short)
/*
* XDR unsigned short integers
*/
bool_t
xdr_u_short (XDR *xdrs, u_short *usp)
{
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = (u_long) * usp;
return XDR_PUTLONG (xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
{
return FALSE;
}
*usp = (u_short) (u_long) l;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
INTDEF(xdr_u_short)
/*
* XDR a char
*/
bool_t
xdr_char (XDR *xdrs, char *cp)
{
int i;
i = (*cp);
if (!INTUSE(xdr_int) (xdrs, &i))
{
return FALSE;
}
*cp = i;
return TRUE;
}
/*
* XDR an unsigned char
*/
bool_t
xdr_u_char (XDR *xdrs, u_char *cp)
{
u_int u;
u = (*cp);
if (!INTUSE(xdr_u_int) (xdrs, &u))
{
return FALSE;
}
*cp = u;
return TRUE;
}
/*
* XDR booleans
*/
bool_t
xdr_bool (XDR *xdrs, bool_t *bp)
{
long lb;
switch (xdrs->x_op)
{
case XDR_ENCODE:
lb = *bp ? XDR_TRUE : XDR_FALSE;
return XDR_PUTLONG (xdrs, &lb);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &lb))
{
return FALSE;
}
*bp = (lb == XDR_FALSE) ? FALSE : TRUE;
return TRUE;
case XDR_FREE:
return TRUE;
}
return FALSE;
}
INTDEF(xdr_bool)
/*
* XDR enumerations
*/
bool_t
xdr_enum (XDR *xdrs, enum_t *ep)
{
enum sizecheck
{
SIZEVAL
}; /* used to find the size of an enum */
/*
* enums are treated as ints
*/
if (sizeof (enum sizecheck) == 4)
{
#if INT_MAX < LONG_MAX
long l;
switch (xdrs->x_op)
{
case XDR_ENCODE:
l = *ep;
return XDR_PUTLONG (xdrs, &l);
case XDR_DECODE:
if (!XDR_GETLONG (xdrs, &l))
{
return FALSE;
}
*ep = l;
case XDR_FREE:
return TRUE;
}
return FALSE;
#else
return INTUSE(xdr_long) (xdrs, (long *) ep);
#endif
}
else if (sizeof (enum sizecheck) == sizeof (short))
{
return INTUSE(xdr_short) (xdrs, (short *) ep);
}
else
{
return FALSE;
}
}
INTDEF(xdr_enum)
/*
* XDR opaque data
* Allows the specification of a fixed size sequence of opaque bytes.
* cp points to the opaque object and cnt gives the byte length.
*/
bool_t
xdr_opaque (XDR *xdrs, caddr_t cp, u_int cnt)
{
u_int rndup;
static char crud[BYTES_PER_XDR_UNIT];
/*
* if no data we are done
*/
if (cnt == 0)
return TRUE;
/*
* round byte count to full xdr units
*/
rndup = cnt % BYTES_PER_XDR_UNIT;
if (rndup > 0)
rndup = BYTES_PER_XDR_UNIT - rndup;
switch (xdrs->x_op)
{
case XDR_DECODE:
if (!XDR_GETBYTES (xdrs, cp, cnt))
{
return FALSE;
}
if (rndup == 0)
return TRUE;
return XDR_GETBYTES (xdrs, (caddr_t)crud, rndup);
case XDR_ENCODE:
if (!XDR_PUTBYTES (xdrs, cp, cnt))
{
return FALSE;
}
if (rndup == 0)
return TRUE;
return XDR_PUTBYTES (xdrs, xdr_zero, rndup);
case XDR_FREE:
return TRUE;
}
return FALSE;
}
INTDEF(xdr_opaque)
/*
* XDR counted bytes
* *cpp is a pointer to the bytes, *sizep is the count.
* If *cpp is NULL maxsize bytes are allocated
*/
bool_t
xdr_bytes (xdrs, cpp, sizep, maxsize)
XDR *xdrs;
char **cpp;
u_int *sizep;
u_int maxsize;
{
char *sp = *cpp; /* sp is the actual string pointer */
u_int nodesize;
/*
* first deal with the length since xdr bytes are counted
*/
if (!INTUSE(xdr_u_int) (xdrs, sizep))
{
return FALSE;
}
nodesize = *sizep;
if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE))
{
return FALSE;
}
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op)
{
case XDR_DECODE:
if (nodesize == 0)
{
return TRUE;
}
if (sp == NULL)
{
*cpp = sp = (char *) mem_alloc (nodesize);
}
if (sp == NULL)
{
(void) __fxprintf (NULL, "%s: %s", __func__, _("out of memory\n"));
return FALSE;
}
/* fall into ... */
case XDR_ENCODE:
return INTUSE(xdr_opaque) (xdrs, sp, nodesize);
case XDR_FREE:
if (sp != NULL)
{
mem_free (sp, nodesize);
*cpp = NULL;
}
return TRUE;
}
return FALSE;
}
INTDEF(xdr_bytes)
/*
* Implemented here due to commonality of the object.
*/
bool_t
xdr_netobj (xdrs, np)
XDR *xdrs;
struct netobj *np;
{
return INTUSE(xdr_bytes) (xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ);
}
INTDEF(xdr_netobj)
/*
* XDR a discriminated union
* Support routine for discriminated unions.
* You create an array of xdrdiscrim structures, terminated with
* an entry with a null procedure pointer. The routine gets
* the discriminant value and then searches the array of xdrdiscrims
* looking for that value. It calls the procedure given in the xdrdiscrim
* to handle the discriminant. If there is no specific routine a default
* routine may be called.
* If there is no specific or default routine an error is returned.
*/
bool_t
xdr_union (xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
enum_t *dscmp; /* enum to decide which arm to work on */
char *unp; /* the union itself */
const struct xdr_discrim *choices; /* [value, xdr proc] for each arm */
xdrproc_t dfault; /* default xdr routine */
{
enum_t dscm;
/*
* we deal with the discriminator; it's an enum
*/
if (!INTUSE(xdr_enum) (xdrs, dscmp))
{
return FALSE;
}
dscm = *dscmp;
/*
* search choices for a value that matches the discriminator.
* if we find one, execute the xdr routine for that value.
*/
for (; choices->proc != NULL_xdrproc_t; choices++)
{
if (choices->value == dscm)
return (*(choices->proc)) (xdrs, unp, LASTUNSIGNED);
}
/*
* no match - execute the default xdr routine if there is one
*/
return ((dfault == NULL_xdrproc_t) ? FALSE :
(*dfault) (xdrs, unp, LASTUNSIGNED));
}
INTDEF(xdr_union)
/*
* Non-portable xdr primitives.
* Care should be taken when moving these routines to new architectures.
*/
/*
* XDR null terminated ASCII strings
* xdr_string deals with "C strings" - arrays of bytes that are
* terminated by a NULL character. The parameter cpp references a
* pointer to storage; If the pointer is null, then the necessary
* storage is allocated. The last parameter is the max allowed length
* of the string as specified by a protocol.
*/
bool_t
xdr_string (xdrs, cpp, maxsize)
XDR *xdrs;
char **cpp;
u_int maxsize;
{
char *sp = *cpp; /* sp is the actual string pointer */
u_int size;
u_int nodesize;
/*
* first deal with the length since xdr strings are counted-strings
*/
switch (xdrs->x_op)
{
case XDR_FREE:
if (sp == NULL)
{
return TRUE; /* already free */
}
/* fall through... */
case XDR_ENCODE:
if (sp == NULL)
return FALSE;
size = strlen (sp);
break;
case XDR_DECODE:
break;
}
if (!INTUSE(xdr_u_int) (xdrs, &size))
{
return FALSE;
}
if (size > maxsize)
{
return FALSE;
}
nodesize = size + 1;
if (nodesize == 0)
{
/* This means an overflow. It a bug in the caller which
provided a too large maxsize but nevertheless catch it
here. */
return FALSE;
}
/*
* now deal with the actual bytes
*/
switch (xdrs->x_op)
{
case XDR_DECODE:
if (sp == NULL)
*cpp = sp = (char *) mem_alloc (nodesize);
if (sp == NULL)
{
(void) __fxprintf (NULL, "%s: %s", __func__, _("out of memory\n"));
return FALSE;
}
sp[size] = 0;
/* fall into ... */
case XDR_ENCODE:
return INTUSE(xdr_opaque) (xdrs, sp, size);
case XDR_FREE:
mem_free (sp, nodesize);
*cpp = NULL;
return TRUE;
}
return FALSE;
}
INTDEF(xdr_string)
/*
* Wrapper for xdr_string that can be called directly from
* routines like clnt_call
*/
bool_t
xdr_wrapstring (xdrs, cpp)
XDR *xdrs;
char **cpp;
{
if (INTUSE(xdr_string) (xdrs, cpp, LASTUNSIGNED))
{
return TRUE;
}
return FALSE;
}