196 lines
6.5 KiB
C
196 lines
6.5 KiB
C
/* Initial program startup for running under the GNU Hurd.
|
|
Copyright (C) 1991,92,93,94,95,96,97,98 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <hurd.h>
|
|
#include <hurd/exec_startup.h>
|
|
#include <sysdep.h>
|
|
#include <hurd/threadvar.h>
|
|
#include <unistd.h>
|
|
#include <elf.h>
|
|
#include <set-hooks.h>
|
|
#include "hurdstartup.h"
|
|
#include <argz.h>
|
|
|
|
mach_port_t *_hurd_init_dtable;
|
|
mach_msg_type_number_t _hurd_init_dtablesize;
|
|
|
|
extern void __mach_init (void);
|
|
|
|
/* Entry point. This is the first thing in the text segment.
|
|
|
|
The exec server started the initial thread in our task with this spot the
|
|
PC, and a stack that is presumably big enough. We do basic Mach
|
|
initialization so mig-generated stubs work, and then do an exec_startup
|
|
RPC on our bootstrap port, to which the exec server responds with the
|
|
information passed in the exec call, as well as our original bootstrap
|
|
port, and the base address and size of the preallocated stack.
|
|
|
|
If using cthreads, we are given a new stack by cthreads initialization and
|
|
deallocate the stack set up by the exec server. On the new stack we call
|
|
`start1' (above) to do the rest of the startup work. Since the stack may
|
|
disappear out from under us in a machine-dependent way, we use a pile of
|
|
static variables to communicate the information from exec_startup to start1.
|
|
This is unfortunate but preferable to machine-dependent frobnication to copy
|
|
the state from the old stack to the new one. */
|
|
|
|
|
|
void
|
|
_hurd_startup (void **argptr, void (*main) (int *data))
|
|
{
|
|
error_t err;
|
|
mach_port_t in_bootstrap;
|
|
char *args, *env;
|
|
mach_msg_type_number_t argslen, envlen;
|
|
struct hurd_startup_data data;
|
|
char **argv, **envp;
|
|
int argc, envc;
|
|
int *argcptr;
|
|
vm_address_t addr;
|
|
|
|
/* Attempt to map page zero redzoned before we receive any RPC
|
|
data that might get allocated there. We can ignore errors. */
|
|
addr = 0;
|
|
__vm_map (__mach_task_self (),
|
|
&addr, __vm_page_size, 0, 0, MACH_PORT_NULL, 0, 1,
|
|
VM_PROT_NONE, VM_PROT_NONE, VM_INHERIT_COPY);
|
|
|
|
if (err = __task_get_special_port (__mach_task_self (), TASK_BOOTSTRAP_PORT,
|
|
&in_bootstrap))
|
|
LOSE;
|
|
|
|
if (in_bootstrap != MACH_PORT_NULL)
|
|
{
|
|
/* Call the exec server on our bootstrap port and
|
|
get all our standard information from it. */
|
|
|
|
argslen = envlen = 0;
|
|
data.dtablesize = data.portarraysize = data.intarraysize = 0;
|
|
|
|
err = __exec_startup_get_info (in_bootstrap,
|
|
&data.user_entry,
|
|
&data.phdr, &data.phdrsz,
|
|
&data.stack_base, &data.stack_size,
|
|
&data.flags,
|
|
&args, &argslen,
|
|
&env, &envlen,
|
|
&data.dtable, &data.dtablesize,
|
|
&data.portarray, &data.portarraysize,
|
|
&data.intarray, &data.intarraysize);
|
|
__mach_port_deallocate (__mach_task_self (), in_bootstrap);
|
|
}
|
|
|
|
if (err || in_bootstrap == MACH_PORT_NULL || (data.flags & EXEC_STACK_ARGS))
|
|
{
|
|
/* Either we have no bootstrap port, or the RPC to the exec server
|
|
failed, or whoever started us up passed the flag saying args are
|
|
on the stack. Try to snarf the args in the canonical Mach way.
|
|
Hopefully either they will be on the stack as expected, or the
|
|
stack will be zeros so we don't crash. */
|
|
|
|
argcptr = (int *) argptr;
|
|
argc = argcptr[0];
|
|
argv = (char **) &argcptr[1];
|
|
envp = &argv[argc + 1];
|
|
envc = 0;
|
|
while (envp[envc])
|
|
++envc;
|
|
}
|
|
else
|
|
{
|
|
/* Turn the block of null-separated strings we were passed for the
|
|
arguments and environment into vectors of pointers to strings. */
|
|
|
|
/* Count up the arguments so we can allocate ARGV. */
|
|
argc = __argz_count (args, argslen);
|
|
/* Count up the environment variables so we can allocate ENVP. */
|
|
envc = __argz_count (env, envlen);
|
|
|
|
/* There were some arguments. Allocate space for the vectors of
|
|
pointers and fill them in. We allocate the space for the
|
|
environment pointers immediately after the argv pointers because
|
|
the ELF ABI will expect it. */
|
|
argcptr = __alloca (sizeof (int) +
|
|
(argc + 1 + envc + 1) * sizeof (char *) +
|
|
sizeof (struct hurd_startup_data));
|
|
*argcptr = argc;
|
|
argv = (void *) (argcptr + 1);
|
|
__argz_extract (args, argslen, argv);
|
|
|
|
/* There was some environment. */
|
|
envp = &argv[argc + 1];
|
|
__argz_extract (env, envlen, envp);
|
|
}
|
|
|
|
if (err || in_bootstrap == MACH_PORT_NULL)
|
|
{
|
|
/* Either we have no bootstrap port, or the RPC to the exec server
|
|
failed. Set all our other variables to have empty information. */
|
|
|
|
data.flags = 0;
|
|
args = env = NULL;
|
|
argslen = envlen = 0;
|
|
data.dtable = NULL;
|
|
data.dtablesize = 0;
|
|
data.portarray = NULL;
|
|
data.portarraysize = 0;
|
|
data.intarray = NULL;
|
|
data.intarraysize = 0;
|
|
}
|
|
else if ((void *) &envp[envc + 1] == argv[0])
|
|
{
|
|
/* The arguments arrived on the stack from the kernel, but our
|
|
protocol requires some space after them for a `struct
|
|
hurd_startup_data'. Move them. */
|
|
struct
|
|
{
|
|
int count;
|
|
char *argv[argc + 1];
|
|
char *envp[envc + 1];
|
|
struct hurd_startup_data data;
|
|
} *args = alloca (sizeof *args);
|
|
if ((void *) &args[1] == (void *) argcptr)
|
|
args = alloca (-((char *) &args->data - (char *) args));
|
|
memmove (args, argcptr, (char *) &args->data - (char *) args);
|
|
argcptr = (void *) args;
|
|
argv = args->argv;
|
|
envp = args->envp;
|
|
}
|
|
|
|
{
|
|
struct hurd_startup_data *d = (void *) &envp[envc + 1];
|
|
|
|
if ((void *) d != argv[0])
|
|
{
|
|
*d = data;
|
|
_hurd_init_dtable = d->dtable;
|
|
_hurd_init_dtablesize = d->dtablesize;
|
|
}
|
|
|
|
(*main) (argcptr);
|
|
}
|
|
|
|
/* Should never get here. */
|
|
LOSE;
|
|
abort ();
|
|
}
|