glibc/sysdeps/ia64/fpu/s_ceill.S

263 lines
6.9 KiB
ArmAsm

.file "ceill.s"
// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://developer.intel.com/opensource.
//
#include "libm_support.h"
.align 32
.global ceill#
.section .text
.proc ceill#
.align 32
// History
//==============================================================
// 2/02/00: Initial version
// 6/13/00: Improved speed
// 6/27/00: Eliminated incorrect invalid flag setting
// API
//==============================================================
// double ceill(double x)
// general input registers:
ceil_GR_FFFF = r14
ceil_GR_signexp = r15
ceil_GR_exponent = r16
ceil_GR_expmask = r17
ceil_GR_bigexp = r18
// predicate registers used:
// p6 ==> Input is NaN, infinity, zero
// p7 ==> Input is denormal
// p8 ==> Input is <0
// p9 ==> Input is >=0
// p10 ==> Input is already an integer (bigger than largest integer)
// p11 ==> Input is not a large integer
// p12 ==> Input is a smaller integer
// p13 ==> Input is not an even integer, so inexact must be set
// p14 ==> Input is between -1 and 0, so result will be -0 and inexact
// floating-point registers used:
CEIL_SIGNED_ZERO = f7
CEIL_NORM_f8 = f9
CEIL_FFFF = f10
CEIL_INEXACT = f11
CEIL_FLOAT_INT_f8 = f12
CEIL_INT_f8 = f13
CEIL_adj = f14
CEIL_MINUS_ONE = f15
// Overview of operation
//==============================================================
// long double ceill(long double x)
// Return an integer value (represented as a long double) that is the smallest
// value not less than x
// This is x rounded toward +infinity to an integral value.
// Inexact is set if x != ceill(x)
// **************************************************************************
// Set denormal flag for denormal input and
// and take denormal fault if necessary.
// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
// double
// if the exponent is >= 10033 => 34(true) = 52(decimal)
// 34 + 3ff = 433
// we have a significand of 53 bits 1.52-bits. (implicit 1)
// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
// single
// if the exponent is > 10016 => 17(true) = 23(decimal)
// we have a significand of 24 bits 1.23-bits. (implicit 1)
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
// If x is NAN, ZERO, or INFINITY, then return
// qnan snan inf norm unorm 0 -+
// 1 1 1 0 0 1 11 0xe7
ceill:
{ .mfi
getf.exp ceil_GR_signexp = f8
fcvt.fx.trunc.s1 CEIL_INT_f8 = f8
addl ceil_GR_bigexp = 0x1003e, r0
}
{ .mfi
addl ceil_GR_FFFF = -1,r0
fcmp.lt.s1 p8,p9 = f8,f0
mov ceil_GR_expmask = 0x1FFFF ;;
}
// p7 ==> denorm
{ .mfi
setf.sig CEIL_FFFF = ceil_GR_FFFF
fclass.m p7,p0 = f8, 0x0b
nop.i 999
}
{ .mfi
nop.m 999
fnorm CEIL_NORM_f8 = f8
nop.i 999 ;;
}
// Form 0 with sign of input in case negative zero is needed
{ .mfi
nop.m 999
fmerge.s CEIL_SIGNED_ZERO = f8, f0
nop.i 999
}
{ .mfi
nop.m 999
fsub.s1 CEIL_MINUS_ONE = f0, f1
nop.i 999 ;;
}
// p6 ==> NAN, INF, ZERO
{ .mfb
nop.m 999
fclass.m p6,p10 = f8, 0xe7
(p7) br.cond.spnt L(CEIL_DENORM) ;;
}
L(CEIL_COMMON):
.pred.rel "mutex",p8,p9
// Set adjustment to add to trunc(x) for result
// If x>0, adjustment is 1.0
// If x<=0, adjustment is 0.0
{ .mfi
and ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask
(p9) fadd.s1 CEIL_adj = f1,f0
nop.i 999
}
{ .mfi
nop.m 999
(p8) fadd.s1 CEIL_adj = f0,f0
nop.i 999 ;;
}
{ .mfi
(p10) cmp.ge.unc p10,p11 = ceil_GR_exponent, ceil_GR_bigexp
(p6) fnorm f8 = f8
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fcvt.xf CEIL_FLOAT_INT_f8 = CEIL_INT_f8
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnorm f8 = CEIL_NORM_f8
nop.i 999 ;;
}
// Is -1 < x < 0? If so, result will be -0. Special case it with p14 set.
{ .mfi
nop.m 999
(p8) fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE
nop.i 999 ;;
}
{ .mfi
(p14) cmp.ne p11,p0 = r0,r0
(p14) fnorm f8 = CEIL_SIGNED_ZERO
nop.i 999
}
{ .mfi
nop.m 999
(p14) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fadd f8 = CEIL_FLOAT_INT_f8,CEIL_adj
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fcmp.eq.unc.s1 p12,p13 = CEIL_FLOAT_INT_f8, CEIL_NORM_f8
nop.i 999 ;;
}
// Set inexact if result not equal to input
{ .mfi
nop.m 999
(p13) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
nop.i 999
}
// Set result to input if integer
{ .mfb
nop.m 999
(p12) fnorm f8 = CEIL_NORM_f8
br.ret.sptk b0 ;;
}
// Here if input denorm
L(CEIL_DENORM):
{ .mfb
getf.exp ceil_GR_signexp = CEIL_NORM_f8
fcvt.fx.trunc.s1 CEIL_INT_f8 = CEIL_NORM_f8
br.cond.sptk L(CEIL_COMMON) ;;
}
.endp ceill
ASM_SIZE_DIRECTIVE(ceill)