d111572f2f
1998-02-26 Ulrich Drepper <drepper@cygnus.com> * nis/ypclnt.c (yp_master): Check result of strdup. Patch by Thorsten Kukuk. 1998-02-26 Thorsten Kukuk <kukuk@vt.uni-paderborn.de> * nis/ypclnt.c: Give clnt handle after error checking free, change return codes to fix problems with rpc.nisd in YP mode on Ultra's. 1998-02-26 09:00 Ulrich Drepper <drepper@cygnus.com> * misc/fstab.c: Partly rewritten to use dynamically allocated buffer. Patch by Joe Keane <jgk@jgk.org>. * misc/fstab.h (struct fstab): Change fs_type member to be const. * misc/fstab.c: Remove casts in fs_type assignments. 1998-02-26 Andreas Jaeger <aj@arthur.rhein-neckar.de> * sysdeps/i386/fpu/bits/fenv.h: Correct typo. ISO C 9X defines FE_TOWARDZERO and not FE_TOWARDSZERO. Reported by H.J. Lu. * sysdeps/sparc/sparc64/fpu/bits/fenv.h: Likewise. * sysdeps/sparc/sparc32/fpu/bits/fenv.h: Likewise. * sysdeps/powerpc/bits/fenv.h: Likewise. * sysdeps/m68k/fpu/bits/fenv.h: Likewise. * sysdeps/generic/bits/fenv.h: Likewise. * sysdeps/alpha/fpu/bits/fenv.h: Likewise. * sysdeps/i386/fpu/fesetenv.c (fesetenv): Likewise. * sysdeps/powerpc/test-arith.c (main): Likewise. 1998-02-25 Ulrich Drepper <drepper@cygnus.com> * sysdeps/i386/fpu/bits/mathinline.h: Also fix i386 versions of the comparison macros. 1998-02-21 20:14 H.J. Lu <hjl@gnu.org> * sysdeps/libm-ieee754/s_log2.c (ln2): Added. (__log2): Fixed return values. * sysdeps/libm-ieee754/s_log2f.c: Likewise. 1998-02-25 Ulrich Drepper <drepper@cygnus.com> * math/math.h (isunordered): Rename local variables to ensure correct code. Reported by HJ Lu. 1998-02-25 10:34 Ulrich Drepper <drepper@cygnus.com> * sysdpes/i386/fpu/bits/mathinline.h (isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered): Fix syntax for fucompip instruction. (isless, islessequal): Fix logic. 1998-02-21 Andreas Jaeger <aj@arthur.rhein-neckar.de> * math/libm-test.c (sqrt_test): Add test for sqrt(2). (comparisons_test): New tests for comparison macros.
137 lines
3.9 KiB
C
137 lines
3.9 KiB
C
/* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>. */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* __log2(x)
|
|
* Return the logarithm to base 2 of x
|
|
*
|
|
* Method :
|
|
* 1. Argument Reduction: find k and f such that
|
|
* x = 2^k * (1+f),
|
|
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
*
|
|
* 2. Approximation of log(1+f).
|
|
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
* = 2s + s*R
|
|
* We use a special Reme algorithm on [0,0.1716] to generate
|
|
* a polynomial of degree 14 to approximate R The maximum error
|
|
* of this polynomial approximation is bounded by 2**-58.45. In
|
|
* other words,
|
|
* 2 4 6 8 10 12 14
|
|
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
|
* (the values of Lg1 to Lg7 are listed in the program)
|
|
* and
|
|
* | 2 14 | -58.45
|
|
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
|
* | |
|
|
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
* In order to guarantee error in log below 1ulp, we compute log
|
|
* by
|
|
* log(1+f) = f - s*(f - R) (if f is not too large)
|
|
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
|
*
|
|
* 3. Finally, log(x) = k + log(1+f).
|
|
* = k+(f-(hfsq-(s*(hfsq+R))))
|
|
*
|
|
* Special cases:
|
|
* log2(x) is NaN with signal if x < 0 (including -INF) ;
|
|
* log2(+INF) is +INF; log(0) is -INF with signal;
|
|
* log2(NaN) is that NaN with no signal.
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
|
|
#ifdef __STDC__
|
|
static const double
|
|
#else
|
|
static double
|
|
#endif
|
|
ln2 = 0.69314718055994530942,
|
|
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
|
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
|
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
|
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
|
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
|
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
|
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
|
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
|
|
|
#ifdef __STDC__
|
|
static const double zero = 0.0;
|
|
#else
|
|
static double zero = 0.0;
|
|
#endif
|
|
|
|
#ifdef __STDC__
|
|
double __log2(double x)
|
|
#else
|
|
double __log2(x)
|
|
double x;
|
|
#endif
|
|
{
|
|
double hfsq,f,s,z,R,w,t1,t2,dk;
|
|
int32_t k,hx,i,j;
|
|
u_int32_t lx;
|
|
|
|
EXTRACT_WORDS(hx,lx,x);
|
|
|
|
k=0;
|
|
if (hx < 0x00100000) { /* x < 2**-1022 */
|
|
if (((hx&0x7fffffff)|lx)==0)
|
|
return -two54/(x-x); /* log(+-0)=-inf */
|
|
if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
|
|
k -= 54; x *= two54; /* subnormal number, scale up x */
|
|
GET_HIGH_WORD(hx,x);
|
|
}
|
|
if (hx >= 0x7ff00000) return x+x;
|
|
k += (hx>>20)-1023;
|
|
hx &= 0x000fffff;
|
|
i = (hx+0x95f64)&0x100000;
|
|
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
|
k += (i>>20);
|
|
dk = (double) k;
|
|
f = x-1.0;
|
|
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
|
|
if(f==zero) return dk;
|
|
R = f*f*(0.5-0.33333333333333333*f);
|
|
return dk-(R-f)/ln2;
|
|
}
|
|
s = f/(2.0+f);
|
|
z = s*s;
|
|
i = hx-0x6147a;
|
|
w = z*z;
|
|
j = 0x6b851-hx;
|
|
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
|
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
|
i |= j;
|
|
R = t2+t1;
|
|
if(i>0) {
|
|
hfsq=0.5*f*f;
|
|
return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
|
|
} else {
|
|
return dk-((s*(f-R))-f)/ln2;
|
|
}
|
|
}
|
|
|
|
weak_alias (__log2, log2)
|
|
#ifdef NO_LONG_DOUBLE
|
|
strong_alias (__log2, __log2l)
|
|
weak_alias (__log2, log2l)
|
|
#endif
|