412 lines
14 KiB
C
412 lines
14 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||
|
/*
|
||
|
* Copyright 2013 Red Hat Inc.
|
||
|
*
|
||
|
* Authors: Jérôme Glisse <jglisse@redhat.com>
|
||
|
*/
|
||
|
/*
|
||
|
* Heterogeneous Memory Management (HMM)
|
||
|
*
|
||
|
* See Documentation/vm/hmm.rst for reasons and overview of what HMM is and it
|
||
|
* is for. Here we focus on the HMM API description, with some explanation of
|
||
|
* the underlying implementation.
|
||
|
*
|
||
|
* Short description: HMM provides a set of helpers to share a virtual address
|
||
|
* space between CPU and a device, so that the device can access any valid
|
||
|
* address of the process (while still obeying memory protection). HMM also
|
||
|
* provides helpers to migrate process memory to device memory, and back. Each
|
||
|
* set of functionality (address space mirroring, and migration to and from
|
||
|
* device memory) can be used independently of the other.
|
||
|
*
|
||
|
*
|
||
|
* HMM address space mirroring API:
|
||
|
*
|
||
|
* Use HMM address space mirroring if you want to mirror a range of the CPU
|
||
|
* page tables of a process into a device page table. Here, "mirror" means "keep
|
||
|
* synchronized". Prerequisites: the device must provide the ability to write-
|
||
|
* protect its page tables (at PAGE_SIZE granularity), and must be able to
|
||
|
* recover from the resulting potential page faults.
|
||
|
*
|
||
|
* HMM guarantees that at any point in time, a given virtual address points to
|
||
|
* either the same memory in both CPU and device page tables (that is: CPU and
|
||
|
* device page tables each point to the same pages), or that one page table (CPU
|
||
|
* or device) points to no entry, while the other still points to the old page
|
||
|
* for the address. The latter case happens when the CPU page table update
|
||
|
* happens first, and then the update is mirrored over to the device page table.
|
||
|
* This does not cause any issue, because the CPU page table cannot start
|
||
|
* pointing to a new page until the device page table is invalidated.
|
||
|
*
|
||
|
* HMM uses mmu_notifiers to monitor the CPU page tables, and forwards any
|
||
|
* updates to each device driver that has registered a mirror. It also provides
|
||
|
* some API calls to help with taking a snapshot of the CPU page table, and to
|
||
|
* synchronize with any updates that might happen concurrently.
|
||
|
*
|
||
|
*
|
||
|
* HMM migration to and from device memory:
|
||
|
*
|
||
|
* HMM provides a set of helpers to hotplug device memory as ZONE_DEVICE, with
|
||
|
* a new MEMORY_DEVICE_PRIVATE type. This provides a struct page for each page
|
||
|
* of the device memory, and allows the device driver to manage its memory
|
||
|
* using those struct pages. Having struct pages for device memory makes
|
||
|
* migration easier. Because that memory is not addressable by the CPU it must
|
||
|
* never be pinned to the device; in other words, any CPU page fault can always
|
||
|
* cause the device memory to be migrated (copied/moved) back to regular memory.
|
||
|
*
|
||
|
* A new migrate helper (migrate_vma()) has been added (see mm/migrate.c) that
|
||
|
* allows use of a device DMA engine to perform the copy operation between
|
||
|
* regular system memory and device memory.
|
||
|
*/
|
||
|
#ifndef LINUX_HMM_H
|
||
|
#define LINUX_HMM_H
|
||
|
|
||
|
#include <linux/kconfig.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
|
||
|
#ifdef CONFIG_HMM_MIRROR
|
||
|
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/migrate.h>
|
||
|
#include <linux/memremap.h>
|
||
|
#include <linux/completion.h>
|
||
|
#include <linux/mmu_notifier.h>
|
||
|
|
||
|
|
||
|
/*
|
||
|
* struct hmm - HMM per mm struct
|
||
|
*
|
||
|
* @mm: mm struct this HMM struct is bound to
|
||
|
* @lock: lock protecting ranges list
|
||
|
* @ranges: list of range being snapshotted
|
||
|
* @mirrors: list of mirrors for this mm
|
||
|
* @mmu_notifier: mmu notifier to track updates to CPU page table
|
||
|
* @mirrors_sem: read/write semaphore protecting the mirrors list
|
||
|
* @wq: wait queue for user waiting on a range invalidation
|
||
|
* @notifiers: count of active mmu notifiers
|
||
|
*/
|
||
|
struct hmm {
|
||
|
struct mmu_notifier mmu_notifier;
|
||
|
spinlock_t ranges_lock;
|
||
|
struct list_head ranges;
|
||
|
struct list_head mirrors;
|
||
|
struct rw_semaphore mirrors_sem;
|
||
|
wait_queue_head_t wq;
|
||
|
long notifiers;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* hmm_pfn_flag_e - HMM flag enums
|
||
|
*
|
||
|
* Flags:
|
||
|
* HMM_PFN_VALID: pfn is valid. It has, at least, read permission.
|
||
|
* HMM_PFN_WRITE: CPU page table has write permission set
|
||
|
* HMM_PFN_DEVICE_PRIVATE: private device memory (ZONE_DEVICE)
|
||
|
*
|
||
|
* The driver provides a flags array for mapping page protections to device
|
||
|
* PTE bits. If the driver valid bit for an entry is bit 3,
|
||
|
* i.e., (entry & (1 << 3)), then the driver must provide
|
||
|
* an array in hmm_range.flags with hmm_range.flags[HMM_PFN_VALID] == 1 << 3.
|
||
|
* Same logic apply to all flags. This is the same idea as vm_page_prot in vma
|
||
|
* except that this is per device driver rather than per architecture.
|
||
|
*/
|
||
|
enum hmm_pfn_flag_e {
|
||
|
HMM_PFN_VALID = 0,
|
||
|
HMM_PFN_WRITE,
|
||
|
HMM_PFN_DEVICE_PRIVATE,
|
||
|
HMM_PFN_FLAG_MAX
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* hmm_pfn_value_e - HMM pfn special value
|
||
|
*
|
||
|
* Flags:
|
||
|
* HMM_PFN_ERROR: corresponding CPU page table entry points to poisoned memory
|
||
|
* HMM_PFN_NONE: corresponding CPU page table entry is pte_none()
|
||
|
* HMM_PFN_SPECIAL: corresponding CPU page table entry is special; i.e., the
|
||
|
* result of vmf_insert_pfn() or vm_insert_page(). Therefore, it should not
|
||
|
* be mirrored by a device, because the entry will never have HMM_PFN_VALID
|
||
|
* set and the pfn value is undefined.
|
||
|
*
|
||
|
* Driver provides values for none entry, error entry, and special entry.
|
||
|
* Driver can alias (i.e., use same value) error and special, but
|
||
|
* it should not alias none with error or special.
|
||
|
*
|
||
|
* HMM pfn value returned by hmm_vma_get_pfns() or hmm_vma_fault() will be:
|
||
|
* hmm_range.values[HMM_PFN_ERROR] if CPU page table entry is poisonous,
|
||
|
* hmm_range.values[HMM_PFN_NONE] if there is no CPU page table entry,
|
||
|
* hmm_range.values[HMM_PFN_SPECIAL] if CPU page table entry is a special one
|
||
|
*/
|
||
|
enum hmm_pfn_value_e {
|
||
|
HMM_PFN_ERROR,
|
||
|
HMM_PFN_NONE,
|
||
|
HMM_PFN_SPECIAL,
|
||
|
HMM_PFN_VALUE_MAX
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* struct hmm_range - track invalidation lock on virtual address range
|
||
|
*
|
||
|
* @hmm: the core HMM structure this range is active against
|
||
|
* @vma: the vm area struct for the range
|
||
|
* @list: all range lock are on a list
|
||
|
* @start: range virtual start address (inclusive)
|
||
|
* @end: range virtual end address (exclusive)
|
||
|
* @pfns: array of pfns (big enough for the range)
|
||
|
* @flags: pfn flags to match device driver page table
|
||
|
* @values: pfn value for some special case (none, special, error, ...)
|
||
|
* @default_flags: default flags for the range (write, read, ... see hmm doc)
|
||
|
* @pfn_flags_mask: allows to mask pfn flags so that only default_flags matter
|
||
|
* @pfn_shifts: pfn shift value (should be <= PAGE_SHIFT)
|
||
|
* @valid: pfns array did not change since it has been fill by an HMM function
|
||
|
*/
|
||
|
struct hmm_range {
|
||
|
struct hmm *hmm;
|
||
|
struct list_head list;
|
||
|
unsigned long start;
|
||
|
unsigned long end;
|
||
|
uint64_t *pfns;
|
||
|
const uint64_t *flags;
|
||
|
const uint64_t *values;
|
||
|
uint64_t default_flags;
|
||
|
uint64_t pfn_flags_mask;
|
||
|
uint8_t pfn_shift;
|
||
|
bool valid;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* hmm_range_wait_until_valid() - wait for range to be valid
|
||
|
* @range: range affected by invalidation to wait on
|
||
|
* @timeout: time out for wait in ms (ie abort wait after that period of time)
|
||
|
* Return: true if the range is valid, false otherwise.
|
||
|
*/
|
||
|
static inline bool hmm_range_wait_until_valid(struct hmm_range *range,
|
||
|
unsigned long timeout)
|
||
|
{
|
||
|
return wait_event_timeout(range->hmm->wq, range->valid,
|
||
|
msecs_to_jiffies(timeout)) != 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* hmm_range_valid() - test if a range is valid or not
|
||
|
* @range: range
|
||
|
* Return: true if the range is valid, false otherwise.
|
||
|
*/
|
||
|
static inline bool hmm_range_valid(struct hmm_range *range)
|
||
|
{
|
||
|
return range->valid;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* hmm_device_entry_to_page() - return struct page pointed to by a device entry
|
||
|
* @range: range use to decode device entry value
|
||
|
* @entry: device entry value to get corresponding struct page from
|
||
|
* Return: struct page pointer if entry is a valid, NULL otherwise
|
||
|
*
|
||
|
* If the device entry is valid (ie valid flag set) then return the struct page
|
||
|
* matching the entry value. Otherwise return NULL.
|
||
|
*/
|
||
|
static inline struct page *hmm_device_entry_to_page(const struct hmm_range *range,
|
||
|
uint64_t entry)
|
||
|
{
|
||
|
if (entry == range->values[HMM_PFN_NONE])
|
||
|
return NULL;
|
||
|
if (entry == range->values[HMM_PFN_ERROR])
|
||
|
return NULL;
|
||
|
if (entry == range->values[HMM_PFN_SPECIAL])
|
||
|
return NULL;
|
||
|
if (!(entry & range->flags[HMM_PFN_VALID]))
|
||
|
return NULL;
|
||
|
return pfn_to_page(entry >> range->pfn_shift);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* hmm_device_entry_to_pfn() - return pfn value store in a device entry
|
||
|
* @range: range use to decode device entry value
|
||
|
* @entry: device entry to extract pfn from
|
||
|
* Return: pfn value if device entry is valid, -1UL otherwise
|
||
|
*/
|
||
|
static inline unsigned long
|
||
|
hmm_device_entry_to_pfn(const struct hmm_range *range, uint64_t pfn)
|
||
|
{
|
||
|
if (pfn == range->values[HMM_PFN_NONE])
|
||
|
return -1UL;
|
||
|
if (pfn == range->values[HMM_PFN_ERROR])
|
||
|
return -1UL;
|
||
|
if (pfn == range->values[HMM_PFN_SPECIAL])
|
||
|
return -1UL;
|
||
|
if (!(pfn & range->flags[HMM_PFN_VALID]))
|
||
|
return -1UL;
|
||
|
return (pfn >> range->pfn_shift);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* hmm_device_entry_from_page() - create a valid device entry for a page
|
||
|
* @range: range use to encode HMM pfn value
|
||
|
* @page: page for which to create the device entry
|
||
|
* Return: valid device entry for the page
|
||
|
*/
|
||
|
static inline uint64_t hmm_device_entry_from_page(const struct hmm_range *range,
|
||
|
struct page *page)
|
||
|
{
|
||
|
return (page_to_pfn(page) << range->pfn_shift) |
|
||
|
range->flags[HMM_PFN_VALID];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* hmm_device_entry_from_pfn() - create a valid device entry value from pfn
|
||
|
* @range: range use to encode HMM pfn value
|
||
|
* @pfn: pfn value for which to create the device entry
|
||
|
* Return: valid device entry for the pfn
|
||
|
*/
|
||
|
static inline uint64_t hmm_device_entry_from_pfn(const struct hmm_range *range,
|
||
|
unsigned long pfn)
|
||
|
{
|
||
|
return (pfn << range->pfn_shift) |
|
||
|
range->flags[HMM_PFN_VALID];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Mirroring: how to synchronize device page table with CPU page table.
|
||
|
*
|
||
|
* A device driver that is participating in HMM mirroring must always
|
||
|
* synchronize with CPU page table updates. For this, device drivers can either
|
||
|
* directly use mmu_notifier APIs or they can use the hmm_mirror API. Device
|
||
|
* drivers can decide to register one mirror per device per process, or just
|
||
|
* one mirror per process for a group of devices. The pattern is:
|
||
|
*
|
||
|
* int device_bind_address_space(..., struct mm_struct *mm, ...)
|
||
|
* {
|
||
|
* struct device_address_space *das;
|
||
|
*
|
||
|
* // Device driver specific initialization, and allocation of das
|
||
|
* // which contains an hmm_mirror struct as one of its fields.
|
||
|
* ...
|
||
|
*
|
||
|
* ret = hmm_mirror_register(&das->mirror, mm, &device_mirror_ops);
|
||
|
* if (ret) {
|
||
|
* // Cleanup on error
|
||
|
* return ret;
|
||
|
* }
|
||
|
*
|
||
|
* // Other device driver specific initialization
|
||
|
* ...
|
||
|
* }
|
||
|
*
|
||
|
* Once an hmm_mirror is registered for an address space, the device driver
|
||
|
* will get callbacks through sync_cpu_device_pagetables() operation (see
|
||
|
* hmm_mirror_ops struct).
|
||
|
*
|
||
|
* Device driver must not free the struct containing the hmm_mirror struct
|
||
|
* before calling hmm_mirror_unregister(). The expected usage is to do that when
|
||
|
* the device driver is unbinding from an address space.
|
||
|
*
|
||
|
*
|
||
|
* void device_unbind_address_space(struct device_address_space *das)
|
||
|
* {
|
||
|
* // Device driver specific cleanup
|
||
|
* ...
|
||
|
*
|
||
|
* hmm_mirror_unregister(&das->mirror);
|
||
|
*
|
||
|
* // Other device driver specific cleanup, and now das can be freed
|
||
|
* ...
|
||
|
* }
|
||
|
*/
|
||
|
|
||
|
struct hmm_mirror;
|
||
|
|
||
|
/*
|
||
|
* struct hmm_mirror_ops - HMM mirror device operations callback
|
||
|
*
|
||
|
* @update: callback to update range on a device
|
||
|
*/
|
||
|
struct hmm_mirror_ops {
|
||
|
/* release() - release hmm_mirror
|
||
|
*
|
||
|
* @mirror: pointer to struct hmm_mirror
|
||
|
*
|
||
|
* This is called when the mm_struct is being released. The callback
|
||
|
* must ensure that all access to any pages obtained from this mirror
|
||
|
* is halted before the callback returns. All future access should
|
||
|
* fault.
|
||
|
*/
|
||
|
void (*release)(struct hmm_mirror *mirror);
|
||
|
|
||
|
/* sync_cpu_device_pagetables() - synchronize page tables
|
||
|
*
|
||
|
* @mirror: pointer to struct hmm_mirror
|
||
|
* @update: update information (see struct mmu_notifier_range)
|
||
|
* Return: -EAGAIN if mmu_notifier_range_blockable(update) is false
|
||
|
* and callback needs to block, 0 otherwise.
|
||
|
*
|
||
|
* This callback ultimately originates from mmu_notifiers when the CPU
|
||
|
* page table is updated. The device driver must update its page table
|
||
|
* in response to this callback. The update argument tells what action
|
||
|
* to perform.
|
||
|
*
|
||
|
* The device driver must not return from this callback until the device
|
||
|
* page tables are completely updated (TLBs flushed, etc); this is a
|
||
|
* synchronous call.
|
||
|
*/
|
||
|
int (*sync_cpu_device_pagetables)(
|
||
|
struct hmm_mirror *mirror,
|
||
|
const struct mmu_notifier_range *update);
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* struct hmm_mirror - mirror struct for a device driver
|
||
|
*
|
||
|
* @hmm: pointer to struct hmm (which is unique per mm_struct)
|
||
|
* @ops: device driver callback for HMM mirror operations
|
||
|
* @list: for list of mirrors of a given mm
|
||
|
*
|
||
|
* Each address space (mm_struct) being mirrored by a device must register one
|
||
|
* instance of an hmm_mirror struct with HMM. HMM will track the list of all
|
||
|
* mirrors for each mm_struct.
|
||
|
*/
|
||
|
struct hmm_mirror {
|
||
|
struct hmm *hmm;
|
||
|
const struct hmm_mirror_ops *ops;
|
||
|
struct list_head list;
|
||
|
};
|
||
|
|
||
|
int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm);
|
||
|
void hmm_mirror_unregister(struct hmm_mirror *mirror);
|
||
|
|
||
|
/*
|
||
|
* Please see Documentation/vm/hmm.rst for how to use the range API.
|
||
|
*/
|
||
|
int hmm_range_register(struct hmm_range *range, struct hmm_mirror *mirror);
|
||
|
void hmm_range_unregister(struct hmm_range *range);
|
||
|
|
||
|
/*
|
||
|
* Retry fault if non-blocking, drop mmap_sem and return -EAGAIN in that case.
|
||
|
*/
|
||
|
#define HMM_FAULT_ALLOW_RETRY (1 << 0)
|
||
|
|
||
|
/* Don't fault in missing PTEs, just snapshot the current state. */
|
||
|
#define HMM_FAULT_SNAPSHOT (1 << 1)
|
||
|
|
||
|
long hmm_range_fault(struct hmm_range *range, unsigned int flags);
|
||
|
|
||
|
long hmm_range_dma_map(struct hmm_range *range,
|
||
|
struct device *device,
|
||
|
dma_addr_t *daddrs,
|
||
|
unsigned int flags);
|
||
|
long hmm_range_dma_unmap(struct hmm_range *range,
|
||
|
struct device *device,
|
||
|
dma_addr_t *daddrs,
|
||
|
bool dirty);
|
||
|
|
||
|
/*
|
||
|
* HMM_RANGE_DEFAULT_TIMEOUT - default timeout (ms) when waiting for a range
|
||
|
*
|
||
|
* When waiting for mmu notifiers we need some kind of time out otherwise we
|
||
|
* could potentialy wait for ever, 1000ms ie 1s sounds like a long time to
|
||
|
* wait already.
|
||
|
*/
|
||
|
#define HMM_RANGE_DEFAULT_TIMEOUT 1000
|
||
|
|
||
|
#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
|
||
|
|
||
|
#endif /* LINUX_HMM_H */
|