linux/sound/mips/au1x00.c

697 lines
19 KiB
C
Raw Normal View History

/*
* BRIEF MODULE DESCRIPTION
* Driver for AMD Au1000 MIPS Processor, AC'97 Sound Port
*
* Copyright 2004 Cooper Street Innovations Inc.
* Author: Charles Eidsness <charles@cooper-street.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
* History:
*
* 2004-09-09 Charles Eidsness -- Original verion -- based on
* sa11xx-uda1341.c ALSA driver and the
* au1000.c OSS driver.
* 2004-09-09 Matt Porter -- Added support for ALSA 1.0.6
*
*/
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/ac97_codec.h>
#include <asm/mach-au1x00/au1000.h>
#include <asm/mach-au1x00/au1000_dma.h>
MODULE_AUTHOR("Charles Eidsness <charles@cooper-street.com>");
MODULE_DESCRIPTION("Au1000 AC'97 ALSA Driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{AMD,Au1000 AC'97}}");
#define PLAYBACK 0
#define CAPTURE 1
#define AC97_SLOT_3 0x01
#define AC97_SLOT_4 0x02
#define AC97_SLOT_6 0x08
#define AC97_CMD_IRQ 31
#define READ 0
#define WRITE 1
#define READ_WAIT 2
#define RW_DONE 3
struct au1000_period
{
u32 start;
u32 relative_end; /*realtive to start of buffer*/
struct au1000_period * next;
};
/*Au1000 AC97 Port Control Reisters*/
struct au1000_ac97_reg {
u32 volatile config;
u32 volatile status;
u32 volatile data;
u32 volatile cmd;
u32 volatile cntrl;
};
struct audio_stream {
struct snd_pcm_substream *substream;
int dma;
spinlock_t dma_lock;
struct au1000_period * buffer;
unsigned int period_size;
unsigned int periods;
};
struct snd_au1000 {
struct snd_card *card;
struct au1000_ac97_reg volatile *ac97_ioport;
struct resource *ac97_res_port;
spinlock_t ac97_lock;
struct snd_ac97 *ac97;
struct snd_pcm *pcm;
struct audio_stream *stream[2]; /* playback & capture */
};
/*--------------------------- Local Functions --------------------------------*/
static void
au1000_set_ac97_xmit_slots(struct snd_au1000 *au1000, long xmit_slots)
{
u32 volatile ac97_config;
spin_lock(&au1000->ac97_lock);
ac97_config = au1000->ac97_ioport->config;
ac97_config = ac97_config & ~AC97C_XMIT_SLOTS_MASK;
ac97_config |= (xmit_slots << AC97C_XMIT_SLOTS_BIT);
au1000->ac97_ioport->config = ac97_config;
spin_unlock(&au1000->ac97_lock);
}
static void
au1000_set_ac97_recv_slots(struct snd_au1000 *au1000, long recv_slots)
{
u32 volatile ac97_config;
spin_lock(&au1000->ac97_lock);
ac97_config = au1000->ac97_ioport->config;
ac97_config = ac97_config & ~AC97C_RECV_SLOTS_MASK;
ac97_config |= (recv_slots << AC97C_RECV_SLOTS_BIT);
au1000->ac97_ioport->config = ac97_config;
spin_unlock(&au1000->ac97_lock);
}
static void
au1000_release_dma_link(struct audio_stream *stream)
{
struct au1000_period * pointer;
struct au1000_period * pointer_next;
stream->period_size = 0;
stream->periods = 0;
pointer = stream->buffer;
if (! pointer)
return;
do {
pointer_next = pointer->next;
kfree(pointer);
pointer = pointer_next;
} while (pointer != stream->buffer);
stream->buffer = NULL;
}
static int
au1000_setup_dma_link(struct audio_stream *stream, unsigned int period_bytes,
unsigned int periods)
{
struct snd_pcm_substream *substream = stream->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
struct au1000_period *pointer;
unsigned long dma_start;
int i;
dma_start = virt_to_phys(runtime->dma_area);
if (stream->period_size == period_bytes &&
stream->periods == periods)
return 0; /* not changed */
au1000_release_dma_link(stream);
stream->period_size = period_bytes;
stream->periods = periods;
stream->buffer = kmalloc(sizeof(struct au1000_period), GFP_KERNEL);
if (! stream->buffer)
return -ENOMEM;
pointer = stream->buffer;
for (i = 0; i < periods; i++) {
pointer->start = (u32)(dma_start + (i * period_bytes));
pointer->relative_end = (u32) (((i+1) * period_bytes) - 0x1);
if (i < periods - 1) {
pointer->next = kmalloc(sizeof(struct au1000_period), GFP_KERNEL);
if (! pointer->next) {
au1000_release_dma_link(stream);
return -ENOMEM;
}
pointer = pointer->next;
}
}
pointer->next = stream->buffer;
return 0;
}
static void
au1000_dma_stop(struct audio_stream *stream)
{
if (snd_BUG_ON(!stream->buffer))
return;
disable_dma(stream->dma);
}
static void
au1000_dma_start(struct audio_stream *stream)
{
if (snd_BUG_ON(!stream->buffer))
return;
init_dma(stream->dma);
if (get_dma_active_buffer(stream->dma) == 0) {
clear_dma_done0(stream->dma);
set_dma_addr0(stream->dma, stream->buffer->start);
set_dma_count0(stream->dma, stream->period_size >> 1);
set_dma_addr1(stream->dma, stream->buffer->next->start);
set_dma_count1(stream->dma, stream->period_size >> 1);
} else {
clear_dma_done1(stream->dma);
set_dma_addr1(stream->dma, stream->buffer->start);
set_dma_count1(stream->dma, stream->period_size >> 1);
set_dma_addr0(stream->dma, stream->buffer->next->start);
set_dma_count0(stream->dma, stream->period_size >> 1);
}
enable_dma_buffers(stream->dma);
start_dma(stream->dma);
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
au1000_dma_interrupt(int irq, void *dev_id)
{
struct audio_stream *stream = (struct audio_stream *) dev_id;
struct snd_pcm_substream *substream = stream->substream;
spin_lock(&stream->dma_lock);
switch (get_dma_buffer_done(stream->dma)) {
case DMA_D0:
stream->buffer = stream->buffer->next;
clear_dma_done0(stream->dma);
set_dma_addr0(stream->dma, stream->buffer->next->start);
set_dma_count0(stream->dma, stream->period_size >> 1);
enable_dma_buffer0(stream->dma);
break;
case DMA_D1:
stream->buffer = stream->buffer->next;
clear_dma_done1(stream->dma);
set_dma_addr1(stream->dma, stream->buffer->next->start);
set_dma_count1(stream->dma, stream->period_size >> 1);
enable_dma_buffer1(stream->dma);
break;
case (DMA_D0 | DMA_D1):
printk(KERN_ERR "DMA %d missed interrupt.\n",stream->dma);
au1000_dma_stop(stream);
au1000_dma_start(stream);
break;
case (~DMA_D0 & ~DMA_D1):
printk(KERN_ERR "DMA %d empty irq.\n",stream->dma);
}
spin_unlock(&stream->dma_lock);
snd_pcm_period_elapsed(substream);
return IRQ_HANDLED;
}
/*-------------------------- PCM Audio Streams -------------------------------*/
static unsigned int rates[] = {8000, 11025, 16000, 22050};
static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
.count = ARRAY_SIZE(rates),
.list = rates,
.mask = 0,
};
static struct snd_pcm_hardware snd_au1000_hw =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED | \
SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |
SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050),
.rate_min = 8000,
.rate_max = 22050,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 128*1024,
.period_bytes_min = 32,
.period_bytes_max = 16*1024,
.periods_min = 8,
.periods_max = 255,
.fifo_size = 16,
};
static int
snd_au1000_playback_open(struct snd_pcm_substream *substream)
{
struct snd_au1000 *au1000 = substream->pcm->private_data;
au1000->stream[PLAYBACK]->substream = substream;
au1000->stream[PLAYBACK]->buffer = NULL;
substream->private_data = au1000->stream[PLAYBACK];
substream->runtime->hw = snd_au1000_hw;
return (snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates) < 0);
}
static int
snd_au1000_capture_open(struct snd_pcm_substream *substream)
{
struct snd_au1000 *au1000 = substream->pcm->private_data;
au1000->stream[CAPTURE]->substream = substream;
au1000->stream[CAPTURE]->buffer = NULL;
substream->private_data = au1000->stream[CAPTURE];
substream->runtime->hw = snd_au1000_hw;
return (snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates) < 0);
}
static int
snd_au1000_playback_close(struct snd_pcm_substream *substream)
{
struct snd_au1000 *au1000 = substream->pcm->private_data;
au1000->stream[PLAYBACK]->substream = NULL;
return 0;
}
static int
snd_au1000_capture_close(struct snd_pcm_substream *substream)
{
struct snd_au1000 *au1000 = substream->pcm->private_data;
au1000->stream[CAPTURE]->substream = NULL;
return 0;
}
static int
snd_au1000_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct audio_stream *stream = substream->private_data;
int err;
err = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
if (err < 0)
return err;
return au1000_setup_dma_link(stream,
params_period_bytes(hw_params),
params_periods(hw_params));
}
static int
snd_au1000_hw_free(struct snd_pcm_substream *substream)
{
struct audio_stream *stream = substream->private_data;
au1000_release_dma_link(stream);
return snd_pcm_lib_free_pages(substream);
}
static int
snd_au1000_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_au1000 *au1000 = substream->pcm->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
if (runtime->channels == 1)
au1000_set_ac97_xmit_slots(au1000, AC97_SLOT_4);
else
au1000_set_ac97_xmit_slots(au1000, AC97_SLOT_3 | AC97_SLOT_4);
snd_ac97_set_rate(au1000->ac97, AC97_PCM_FRONT_DAC_RATE, runtime->rate);
return 0;
}
static int
snd_au1000_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_au1000 *au1000 = substream->pcm->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
if (runtime->channels == 1)
au1000_set_ac97_recv_slots(au1000, AC97_SLOT_4);
else
au1000_set_ac97_recv_slots(au1000, AC97_SLOT_3 | AC97_SLOT_4);
snd_ac97_set_rate(au1000->ac97, AC97_PCM_LR_ADC_RATE, runtime->rate);
return 0;
}
static int
snd_au1000_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct audio_stream *stream = substream->private_data;
int err = 0;
spin_lock(&stream->dma_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
au1000_dma_start(stream);
break;
case SNDRV_PCM_TRIGGER_STOP:
au1000_dma_stop(stream);
break;
default:
err = -EINVAL;
break;
}
spin_unlock(&stream->dma_lock);
return err;
}
static snd_pcm_uframes_t
snd_au1000_pointer(struct snd_pcm_substream *substream)
{
struct audio_stream *stream = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
long location;
spin_lock(&stream->dma_lock);
location = get_dma_residue(stream->dma);
spin_unlock(&stream->dma_lock);
location = stream->buffer->relative_end - location;
if (location == -1)
location = 0;
return bytes_to_frames(runtime,location);
}
static struct snd_pcm_ops snd_card_au1000_playback_ops = {
.open = snd_au1000_playback_open,
.close = snd_au1000_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_au1000_hw_params,
.hw_free = snd_au1000_hw_free,
.prepare = snd_au1000_playback_prepare,
.trigger = snd_au1000_trigger,
.pointer = snd_au1000_pointer,
};
static struct snd_pcm_ops snd_card_au1000_capture_ops = {
.open = snd_au1000_capture_open,
.close = snd_au1000_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_au1000_hw_params,
.hw_free = snd_au1000_hw_free,
.prepare = snd_au1000_capture_prepare,
.trigger = snd_au1000_trigger,
.pointer = snd_au1000_pointer,
};
static int __devinit
snd_au1000_pcm_new(struct snd_au1000 *au1000)
{
struct snd_pcm *pcm;
int err;
unsigned long flags;
if ((err = snd_pcm_new(au1000->card, "AU1000 AC97 PCM", 0, 1, 1, &pcm)) < 0)
return err;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL), 128*1024, 128*1024);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_card_au1000_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_card_au1000_capture_ops);
pcm->private_data = au1000;
pcm->info_flags = 0;
strcpy(pcm->name, "Au1000 AC97 PCM");
spin_lock_init(&au1000->stream[PLAYBACK]->dma_lock);
spin_lock_init(&au1000->stream[CAPTURE]->dma_lock);
flags = claim_dma_lock();
if ((au1000->stream[PLAYBACK]->dma = request_au1000_dma(DMA_ID_AC97C_TX,
"AC97 TX", au1000_dma_interrupt, 0,
au1000->stream[PLAYBACK])) < 0) {
release_dma_lock(flags);
return -EBUSY;
}
if ((au1000->stream[CAPTURE]->dma = request_au1000_dma(DMA_ID_AC97C_RX,
"AC97 RX", au1000_dma_interrupt, 0,
au1000->stream[CAPTURE])) < 0){
release_dma_lock(flags);
return -EBUSY;
}
/* enable DMA coherency in read/write DMA channels */
set_dma_mode(au1000->stream[PLAYBACK]->dma,
get_dma_mode(au1000->stream[PLAYBACK]->dma) & ~DMA_NC);
set_dma_mode(au1000->stream[CAPTURE]->dma,
get_dma_mode(au1000->stream[CAPTURE]->dma) & ~DMA_NC);
release_dma_lock(flags);
au1000->pcm = pcm;
return 0;
}
/*-------------------------- AC97 CODEC Control ------------------------------*/
static unsigned short
snd_au1000_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
struct snd_au1000 *au1000 = ac97->private_data;
u32 volatile cmd;
u16 volatile data;
int i;
spin_lock(&au1000->ac97_lock);
/* would rather use the interrupt than this polling but it works and I can't
get the interrupt driven case to work efficiently */
for (i = 0; i < 0x5000; i++)
if (!(au1000->ac97_ioport->status & AC97C_CP))
break;
if (i == 0x5000)
printk(KERN_ERR "au1000 AC97: AC97 command read timeout\n");
cmd = (u32) reg & AC97C_INDEX_MASK;
cmd |= AC97C_READ;
au1000->ac97_ioport->cmd = cmd;
/* now wait for the data */
for (i = 0; i < 0x5000; i++)
if (!(au1000->ac97_ioport->status & AC97C_CP))
break;
if (i == 0x5000) {
printk(KERN_ERR "au1000 AC97: AC97 command read timeout\n");
spin_unlock(&au1000->ac97_lock);
return 0;
}
data = au1000->ac97_ioport->cmd & 0xffff;
spin_unlock(&au1000->ac97_lock);
return data;
}
static void
snd_au1000_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val)
{
struct snd_au1000 *au1000 = ac97->private_data;
u32 cmd;
int i;
spin_lock(&au1000->ac97_lock);
/* would rather use the interrupt than this polling but it works and I can't
get the interrupt driven case to work efficiently */
for (i = 0; i < 0x5000; i++)
if (!(au1000->ac97_ioport->status & AC97C_CP))
break;
if (i == 0x5000)
printk(KERN_ERR "au1000 AC97: AC97 command write timeout\n");
cmd = (u32) reg & AC97C_INDEX_MASK;
cmd &= ~AC97C_READ;
cmd |= ((u32) val << AC97C_WD_BIT);
au1000->ac97_ioport->cmd = cmd;
spin_unlock(&au1000->ac97_lock);
}
static int __devinit
snd_au1000_ac97_new(struct snd_au1000 *au1000)
{
int err;
struct snd_ac97_bus *pbus;
struct snd_ac97_template ac97;
static struct snd_ac97_bus_ops ops = {
.write = snd_au1000_ac97_write,
.read = snd_au1000_ac97_read,
};
if ((au1000->ac97_res_port = request_mem_region(CPHYSADDR(AC97C_CONFIG),
0x100000, "Au1x00 AC97")) == NULL) {
snd_printk(KERN_ERR "ALSA AC97: can't grap AC97 port\n");
return -EBUSY;
}
au1000->ac97_ioport = (struct au1000_ac97_reg *)
KSEG1ADDR(au1000->ac97_res_port->start);
spin_lock_init(&au1000->ac97_lock);
/* configure pins for AC'97
TODO: move to board_setup.c */
au_writel(au_readl(SYS_PINFUNC) & ~0x02, SYS_PINFUNC);
/* Initialise Au1000's AC'97 Control Block */
au1000->ac97_ioport->cntrl = AC97C_RS | AC97C_CE;
udelay(10);
au1000->ac97_ioport->cntrl = AC97C_CE;
udelay(10);
/* Initialise External CODEC -- cold reset */
au1000->ac97_ioport->config = AC97C_RESET;
udelay(10);
au1000->ac97_ioport->config = 0x0;
mdelay(5);
/* Initialise AC97 middle-layer */
if ((err = snd_ac97_bus(au1000->card, 0, &ops, au1000, &pbus)) < 0)
return err;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = au1000;
if ((err = snd_ac97_mixer(pbus, &ac97, &au1000->ac97)) < 0)
return err;
return 0;
}
/*------------------------------ Setup / Destroy ----------------------------*/
void
snd_au1000_free(struct snd_card *card)
{
struct snd_au1000 *au1000 = card->private_data;
if (au1000->ac97_res_port) {
/* put internal AC97 block into reset */
au1000->ac97_ioport->cntrl = AC97C_RS;
au1000->ac97_ioport = NULL;
release_and_free_resource(au1000->ac97_res_port);
}
if (au1000->stream[PLAYBACK]) {
if (au1000->stream[PLAYBACK]->dma >= 0)
free_au1000_dma(au1000->stream[PLAYBACK]->dma);
kfree(au1000->stream[PLAYBACK]);
}
if (au1000->stream[CAPTURE]) {
if (au1000->stream[CAPTURE]->dma >= 0)
free_au1000_dma(au1000->stream[CAPTURE]->dma);
kfree(au1000->stream[CAPTURE]);
}
}
static struct snd_card *au1000_card;
static int __init
au1000_init(void)
{
int err;
struct snd_card *card;
struct snd_au1000 *au1000;
err = snd_card_create(-1, "AC97", THIS_MODULE,
sizeof(struct snd_au1000), &card);
if (err < 0)
return err;
card->private_free = snd_au1000_free;
au1000 = card->private_data;
au1000->card = card;
au1000->stream[PLAYBACK] = kmalloc(sizeof(struct audio_stream), GFP_KERNEL);
au1000->stream[CAPTURE ] = kmalloc(sizeof(struct audio_stream), GFP_KERNEL);
/* so that snd_au1000_free will work as intended */
au1000->ac97_res_port = NULL;
if (au1000->stream[PLAYBACK])
au1000->stream[PLAYBACK]->dma = -1;
if (au1000->stream[CAPTURE ])
au1000->stream[CAPTURE ]->dma = -1;
if (au1000->stream[PLAYBACK] == NULL ||
au1000->stream[CAPTURE ] == NULL) {
snd_card_free(card);
return -ENOMEM;
}
if ((err = snd_au1000_ac97_new(au1000)) < 0 ) {
snd_card_free(card);
return err;
}
if ((err = snd_au1000_pcm_new(au1000)) < 0) {
snd_card_free(card);
return err;
}
strcpy(card->driver, "Au1000-AC97");
strcpy(card->shortname, "AMD Au1000-AC97");
sprintf(card->longname, "AMD Au1000--AC97 ALSA Driver");
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
printk(KERN_INFO "ALSA AC97: Driver Initialized\n");
au1000_card = card;
return 0;
}
static void __exit au1000_exit(void)
{
snd_card_free(au1000_card);
}
module_init(au1000_init);
module_exit(au1000_exit);