linux/arch/mips/mti-sead3/sead3-time.c

99 lines
2.1 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
*/
#include <linux/init.h>
#include <linux/irqchip/mips-gic.h>
#include <asm/cpu.h>
#include <asm/setup.h>
#include <asm/time.h>
#include <asm/irq.h>
#include <asm/mips-boards/generic.h>
static void __iomem *status_reg = (void __iomem *)0xbf000410;
/*
* Estimate CPU frequency. Sets mips_hpt_frequency as a side-effect.
*/
static unsigned int __init estimate_cpu_frequency(void)
{
unsigned int prid = read_c0_prid() & (PRID_COMP_MASK | PRID_IMP_MASK);
unsigned int tick = 0;
unsigned int freq;
unsigned int orig;
unsigned long flags;
local_irq_save(flags);
orig = readl(status_reg) & 0x2; /* get original sample */
/* wait for transition */
while ((readl(status_reg) & 0x2) == orig)
;
orig = orig ^ 0x2; /* flip the bit */
write_c0_count(0);
/* wait 1 second (the sampling clock transitions every 10ms) */
while (tick < 100) {
/* wait for transition */
while ((readl(status_reg) & 0x2) == orig)
;
orig = orig ^ 0x2; /* flip the bit */
tick++;
}
freq = read_c0_count();
local_irq_restore(flags);
mips_hpt_frequency = freq;
/* Adjust for processor */
if ((prid != (PRID_COMP_MIPS | PRID_IMP_20KC)) &&
(prid != (PRID_COMP_MIPS | PRID_IMP_25KF)))
freq *= 2;
freq += 5000; /* rounding */
freq -= freq%10000;
return freq ;
}
void read_persistent_clock(struct timespec *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
2014-09-18 23:47:12 +02:00
int get_c0_perfcount_int(void)
{
irqchip: mips-gic: Support local interrupts The MIPS GIC supports 7 local interrupts, 2 of which are the GIC local watchdog and count/compare timer. The remainder are CPU interrupts which may optionally be re-routed through the GIC. GIC hardware IRQs 0-6 are now used for local interrupts while hardware IRQs 7+ are used for external (shared) interrupts. Note that the 5 CPU interrupts may not be re-routable through the GIC. In that case mapping will fail and the vectors reported in C0_IntCtl should be used instead. gic_get_c0_compare_int() and gic_get_c0_perfcount_int() will return the correct IRQ number to use for the C0 timer and perfcounter interrupts based on the routability of those interrupts through the GIC. A separate irq_chip, with callbacks that mask/unmask the local interrupt on all CPUs, is used for the C0 timer and performance counter interrupts since all other platforms do not use the percpu IRQ API for those interrupts. Malta, SEAD-3, and the GIC clockevent driver have been updated to use local interrupts and the R4K clockevent driver has been updated to poll for C0 timer interrupts through the GIC when the GIC is present. Signed-off-by: Andrew Bresticker <abrestic@chromium.org> Acked-by: Jason Cooper <jason@lakedaemon.net> Reviewed-by: Qais Yousef <qais.yousef@imgtec.com> Tested-by: Qais Yousef <qais.yousef@imgtec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jeffrey Deans <jeffrey.deans@imgtec.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Jonas Gorski <jogo@openwrt.org> Cc: John Crispin <blogic@openwrt.org> Cc: David Daney <ddaney.cavm@gmail.com> Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/7819/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-09-18 23:47:27 +02:00
if (gic_present)
return gic_get_c0_perfcount_int();
irqchip: mips-gic: Support local interrupts The MIPS GIC supports 7 local interrupts, 2 of which are the GIC local watchdog and count/compare timer. The remainder are CPU interrupts which may optionally be re-routed through the GIC. GIC hardware IRQs 0-6 are now used for local interrupts while hardware IRQs 7+ are used for external (shared) interrupts. Note that the 5 CPU interrupts may not be re-routable through the GIC. In that case mapping will fail and the vectors reported in C0_IntCtl should be used instead. gic_get_c0_compare_int() and gic_get_c0_perfcount_int() will return the correct IRQ number to use for the C0 timer and perfcounter interrupts based on the routability of those interrupts through the GIC. A separate irq_chip, with callbacks that mask/unmask the local interrupt on all CPUs, is used for the C0 timer and performance counter interrupts since all other platforms do not use the percpu IRQ API for those interrupts. Malta, SEAD-3, and the GIC clockevent driver have been updated to use local interrupts and the R4K clockevent driver has been updated to poll for C0 timer interrupts through the GIC when the GIC is present. Signed-off-by: Andrew Bresticker <abrestic@chromium.org> Acked-by: Jason Cooper <jason@lakedaemon.net> Reviewed-by: Qais Yousef <qais.yousef@imgtec.com> Tested-by: Qais Yousef <qais.yousef@imgtec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jeffrey Deans <jeffrey.deans@imgtec.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Jonas Gorski <jogo@openwrt.org> Cc: John Crispin <blogic@openwrt.org> Cc: David Daney <ddaney.cavm@gmail.com> Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/7819/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-09-18 23:47:27 +02:00
if (cp0_perfcount_irq >= 0)
return MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
return -1;
}
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 15:38:59 +02:00
unsigned int get_c0_compare_int(void)
{
irqchip: mips-gic: Support local interrupts The MIPS GIC supports 7 local interrupts, 2 of which are the GIC local watchdog and count/compare timer. The remainder are CPU interrupts which may optionally be re-routed through the GIC. GIC hardware IRQs 0-6 are now used for local interrupts while hardware IRQs 7+ are used for external (shared) interrupts. Note that the 5 CPU interrupts may not be re-routable through the GIC. In that case mapping will fail and the vectors reported in C0_IntCtl should be used instead. gic_get_c0_compare_int() and gic_get_c0_perfcount_int() will return the correct IRQ number to use for the C0 timer and perfcounter interrupts based on the routability of those interrupts through the GIC. A separate irq_chip, with callbacks that mask/unmask the local interrupt on all CPUs, is used for the C0 timer and performance counter interrupts since all other platforms do not use the percpu IRQ API for those interrupts. Malta, SEAD-3, and the GIC clockevent driver have been updated to use local interrupts and the R4K clockevent driver has been updated to poll for C0 timer interrupts through the GIC when the GIC is present. Signed-off-by: Andrew Bresticker <abrestic@chromium.org> Acked-by: Jason Cooper <jason@lakedaemon.net> Reviewed-by: Qais Yousef <qais.yousef@imgtec.com> Tested-by: Qais Yousef <qais.yousef@imgtec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Jeffrey Deans <jeffrey.deans@imgtec.com> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Jonas Gorski <jogo@openwrt.org> Cc: John Crispin <blogic@openwrt.org> Cc: David Daney <ddaney.cavm@gmail.com> Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/7819/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2014-09-18 23:47:27 +02:00
if (gic_present)
return gic_get_c0_compare_int();
return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
}
void __init plat_time_init(void)
{
unsigned int est_freq;
est_freq = estimate_cpu_frequency();
pr_debug("CPU frequency %d.%02d MHz\n", (est_freq / 1000000),
(est_freq % 1000000) * 100 / 1000000);
mips_scroll_message();
}