linux/drivers/mmc/host/sdhci-s3c.c

933 lines
24 KiB
C
Raw Normal View History

/* linux/drivers/mmc/host/sdhci-s3c.c
*
* Copyright 2008 Openmoko Inc.
* Copyright 2008 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* http://armlinux.simtec.co.uk/
*
* SDHCI (HSMMC) support for Samsung SoC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 09:04:11 +01:00
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io.h>
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
#include <linux/gpio.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/mmc/host.h>
#include <plat/sdhci.h>
#include <plat/regs-sdhci.h>
#include "sdhci.h"
#define MAX_BUS_CLK (4)
/* Number of gpio's used is max data bus width + command and clock lines */
#define NUM_GPIOS(x) (x + 2)
/**
* struct sdhci_s3c - S3C SDHCI instance
* @host: The SDHCI host created
* @pdev: The platform device we where created from.
* @ioarea: The resource created when we claimed the IO area.
* @pdata: The platform data for this controller.
* @cur_clk: The index of the current bus clock.
* @gpios: List of gpio numbers parsed from device tree.
* @clk_io: The clock for the internal bus interface.
* @clk_bus: The clocks that are available for the SD/MMC bus clock.
*/
struct sdhci_s3c {
struct sdhci_host *host;
struct platform_device *pdev;
struct resource *ioarea;
struct s3c_sdhci_platdata *pdata;
unsigned int cur_clk;
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
int ext_cd_irq;
int ext_cd_gpio;
int *gpios;
struct clk *clk_io;
struct clk *clk_bus[MAX_BUS_CLK];
};
/**
* struct sdhci_s3c_driver_data - S3C SDHCI platform specific driver data
* @sdhci_quirks: sdhci host specific quirks.
*
* Specifies platform specific configuration of sdhci controller.
* Note: A structure for driver specific platform data is used for future
* expansion of its usage.
*/
struct sdhci_s3c_drv_data {
unsigned int sdhci_quirks;
};
static inline struct sdhci_s3c *to_s3c(struct sdhci_host *host)
{
return sdhci_priv(host);
}
/**
* get_curclk - convert ctrl2 register to clock source number
* @ctrl2: Control2 register value.
*/
static u32 get_curclk(u32 ctrl2)
{
ctrl2 &= S3C_SDHCI_CTRL2_SELBASECLK_MASK;
ctrl2 >>= S3C_SDHCI_CTRL2_SELBASECLK_SHIFT;
return ctrl2;
}
static void sdhci_s3c_check_sclk(struct sdhci_host *host)
{
struct sdhci_s3c *ourhost = to_s3c(host);
u32 tmp = readl(host->ioaddr + S3C_SDHCI_CONTROL2);
if (get_curclk(tmp) != ourhost->cur_clk) {
dev_dbg(&ourhost->pdev->dev, "restored ctrl2 clock setting\n");
tmp &= ~S3C_SDHCI_CTRL2_SELBASECLK_MASK;
tmp |= ourhost->cur_clk << S3C_SDHCI_CTRL2_SELBASECLK_SHIFT;
writel(tmp, host->ioaddr + S3C_SDHCI_CONTROL2);
}
}
/**
* sdhci_s3c_get_max_clk - callback to get maximum clock frequency.
* @host: The SDHCI host instance.
*
* Callback to return the maximum clock rate acheivable by the controller.
*/
static unsigned int sdhci_s3c_get_max_clk(struct sdhci_host *host)
{
struct sdhci_s3c *ourhost = to_s3c(host);
struct clk *busclk;
unsigned int rate, max;
int clk;
/* note, a reset will reset the clock source */
sdhci_s3c_check_sclk(host);
for (max = 0, clk = 0; clk < MAX_BUS_CLK; clk++) {
busclk = ourhost->clk_bus[clk];
if (!busclk)
continue;
rate = clk_get_rate(busclk);
if (rate > max)
max = rate;
}
return max;
}
/**
* sdhci_s3c_consider_clock - consider one the bus clocks for current setting
* @ourhost: Our SDHCI instance.
* @src: The source clock index.
* @wanted: The clock frequency wanted.
*/
static unsigned int sdhci_s3c_consider_clock(struct sdhci_s3c *ourhost,
unsigned int src,
unsigned int wanted)
{
unsigned long rate;
struct clk *clksrc = ourhost->clk_bus[src];
int div;
if (!clksrc)
return UINT_MAX;
/*
* If controller uses a non-standard clock division, find the best clock
* speed possible with selected clock source and skip the division.
*/
if (ourhost->host->quirks & SDHCI_QUIRK_NONSTANDARD_CLOCK) {
rate = clk_round_rate(clksrc, wanted);
return wanted - rate;
}
rate = clk_get_rate(clksrc);
for (div = 1; div < 256; div *= 2) {
if ((rate / div) <= wanted)
break;
}
dev_dbg(&ourhost->pdev->dev, "clk %d: rate %ld, want %d, got %ld\n",
src, rate, wanted, rate / div);
return wanted - (rate / div);
}
/**
* sdhci_s3c_set_clock - callback on clock change
* @host: The SDHCI host being changed
* @clock: The clock rate being requested.
*
* When the card's clock is going to be changed, look at the new frequency
* and find the best clock source to go with it.
*/
static void sdhci_s3c_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_s3c *ourhost = to_s3c(host);
unsigned int best = UINT_MAX;
unsigned int delta;
int best_src = 0;
int src;
u32 ctrl;
/* don't bother if the clock is going off. */
if (clock == 0)
return;
for (src = 0; src < MAX_BUS_CLK; src++) {
delta = sdhci_s3c_consider_clock(ourhost, src, clock);
if (delta < best) {
best = delta;
best_src = src;
}
}
dev_dbg(&ourhost->pdev->dev,
"selected source %d, clock %d, delta %d\n",
best_src, clock, best);
/* select the new clock source */
if (ourhost->cur_clk != best_src) {
struct clk *clk = ourhost->clk_bus[best_src];
clk_enable(clk);
clk_disable(ourhost->clk_bus[ourhost->cur_clk]);
/* turn clock off to card before changing clock source */
writew(0, host->ioaddr + SDHCI_CLOCK_CONTROL);
ourhost->cur_clk = best_src;
host->max_clk = clk_get_rate(clk);
ctrl = readl(host->ioaddr + S3C_SDHCI_CONTROL2);
ctrl &= ~S3C_SDHCI_CTRL2_SELBASECLK_MASK;
ctrl |= best_src << S3C_SDHCI_CTRL2_SELBASECLK_SHIFT;
writel(ctrl, host->ioaddr + S3C_SDHCI_CONTROL2);
}
/* reprogram default hardware configuration */
writel(S3C64XX_SDHCI_CONTROL4_DRIVE_9mA,
host->ioaddr + S3C64XX_SDHCI_CONTROL4);
ctrl = readl(host->ioaddr + S3C_SDHCI_CONTROL2);
ctrl |= (S3C64XX_SDHCI_CTRL2_ENSTAASYNCCLR |
S3C64XX_SDHCI_CTRL2_ENCMDCNFMSK |
S3C_SDHCI_CTRL2_ENFBCLKRX |
S3C_SDHCI_CTRL2_DFCNT_NONE |
S3C_SDHCI_CTRL2_ENCLKOUTHOLD);
writel(ctrl, host->ioaddr + S3C_SDHCI_CONTROL2);
/* reconfigure the controller for new clock rate */
ctrl = (S3C_SDHCI_CTRL3_FCSEL1 | S3C_SDHCI_CTRL3_FCSEL0);
if (clock < 25 * 1000000)
ctrl |= (S3C_SDHCI_CTRL3_FCSEL3 | S3C_SDHCI_CTRL3_FCSEL2);
writel(ctrl, host->ioaddr + S3C_SDHCI_CONTROL3);
}
/**
* sdhci_s3c_get_min_clock - callback to get minimal supported clock value
* @host: The SDHCI host being queried
*
* To init mmc host properly a minimal clock value is needed. For high system
* bus clock's values the standard formula gives values out of allowed range.
* The clock still can be set to lower values, if clock source other then
* system bus is selected.
*/
static unsigned int sdhci_s3c_get_min_clock(struct sdhci_host *host)
{
struct sdhci_s3c *ourhost = to_s3c(host);
unsigned int delta, min = UINT_MAX;
int src;
for (src = 0; src < MAX_BUS_CLK; src++) {
delta = sdhci_s3c_consider_clock(ourhost, src, 0);
if (delta == UINT_MAX)
continue;
/* delta is a negative value in this case */
if (-delta < min)
min = -delta;
}
return min;
}
/* sdhci_cmu_get_max_clk - callback to get maximum clock frequency.*/
static unsigned int sdhci_cmu_get_max_clock(struct sdhci_host *host)
{
struct sdhci_s3c *ourhost = to_s3c(host);
return clk_round_rate(ourhost->clk_bus[ourhost->cur_clk], UINT_MAX);
}
/* sdhci_cmu_get_min_clock - callback to get minimal supported clock value. */
static unsigned int sdhci_cmu_get_min_clock(struct sdhci_host *host)
{
struct sdhci_s3c *ourhost = to_s3c(host);
/*
* initial clock can be in the frequency range of
* 100KHz-400KHz, so we set it as max value.
*/
return clk_round_rate(ourhost->clk_bus[ourhost->cur_clk], 400000);
}
/* sdhci_cmu_set_clock - callback on clock change.*/
static void sdhci_cmu_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_s3c *ourhost = to_s3c(host);
struct device *dev = &ourhost->pdev->dev;
unsigned long timeout;
u16 clk = 0;
/* don't bother if the clock is going off */
if (clock == 0)
return;
sdhci_s3c_set_clock(host, clock);
clk_set_rate(ourhost->clk_bus[ourhost->cur_clk], clock);
host->clock = clock;
clk = SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 20 ms */
timeout = 20;
while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
dev_err(dev, "%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
return;
}
timeout--;
mdelay(1);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
/**
* sdhci_s3c_platform_8bit_width - support 8bit buswidth
* @host: The SDHCI host being queried
* @width: MMC_BUS_WIDTH_ macro for the bus width being requested
*
* We have 8-bit width support but is not a v3 controller.
* So we add platform_8bit_width() and support 8bit width.
*/
static int sdhci_s3c_platform_8bit_width(struct sdhci_host *host, int width)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
switch (width) {
case MMC_BUS_WIDTH_8:
ctrl |= SDHCI_CTRL_8BITBUS;
ctrl &= ~SDHCI_CTRL_4BITBUS;
break;
case MMC_BUS_WIDTH_4:
ctrl |= SDHCI_CTRL_4BITBUS;
ctrl &= ~SDHCI_CTRL_8BITBUS;
break;
default:
ctrl &= ~SDHCI_CTRL_4BITBUS;
ctrl &= ~SDHCI_CTRL_8BITBUS;
break;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
return 0;
}
static struct sdhci_ops sdhci_s3c_ops = {
.get_max_clock = sdhci_s3c_get_max_clk,
.set_clock = sdhci_s3c_set_clock,
.get_min_clock = sdhci_s3c_get_min_clock,
.platform_8bit_width = sdhci_s3c_platform_8bit_width,
};
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
static void sdhci_s3c_notify_change(struct platform_device *dev, int state)
{
struct sdhci_host *host = platform_get_drvdata(dev);
unsigned long flags;
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
if (host) {
spin_lock_irqsave(&host->lock, flags);
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
if (state) {
dev_dbg(&dev->dev, "card inserted.\n");
host->flags &= ~SDHCI_DEVICE_DEAD;
host->quirks |= SDHCI_QUIRK_BROKEN_CARD_DETECTION;
} else {
dev_dbg(&dev->dev, "card removed.\n");
host->flags |= SDHCI_DEVICE_DEAD;
host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
}
tasklet_schedule(&host->card_tasklet);
spin_unlock_irqrestore(&host->lock, flags);
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
}
}
static irqreturn_t sdhci_s3c_gpio_card_detect_thread(int irq, void *dev_id)
{
struct sdhci_s3c *sc = dev_id;
int status = gpio_get_value(sc->ext_cd_gpio);
if (sc->pdata->ext_cd_gpio_invert)
status = !status;
sdhci_s3c_notify_change(sc->pdev, status);
return IRQ_HANDLED;
}
static void sdhci_s3c_setup_card_detect_gpio(struct sdhci_s3c *sc)
{
struct s3c_sdhci_platdata *pdata = sc->pdata;
struct device *dev = &sc->pdev->dev;
if (gpio_request(pdata->ext_cd_gpio, "SDHCI EXT CD") == 0) {
sc->ext_cd_gpio = pdata->ext_cd_gpio;
sc->ext_cd_irq = gpio_to_irq(pdata->ext_cd_gpio);
if (sc->ext_cd_irq &&
request_threaded_irq(sc->ext_cd_irq, NULL,
sdhci_s3c_gpio_card_detect_thread,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
dev_name(dev), sc) == 0) {
int status = gpio_get_value(sc->ext_cd_gpio);
if (pdata->ext_cd_gpio_invert)
status = !status;
sdhci_s3c_notify_change(sc->pdev, status);
} else {
dev_warn(dev, "cannot request irq for card detect\n");
sc->ext_cd_irq = 0;
}
} else {
dev_err(dev, "cannot request gpio for card detect\n");
}
}
#ifdef CONFIG_OF
static int __devinit sdhci_s3c_parse_dt(struct device *dev,
struct sdhci_host *host, struct s3c_sdhci_platdata *pdata)
{
struct device_node *node = dev->of_node;
struct sdhci_s3c *ourhost = to_s3c(host);
u32 max_width;
int gpio, cnt, ret;
/* if the bus-width property is not specified, assume width as 1 */
if (of_property_read_u32(node, "bus-width", &max_width))
max_width = 1;
pdata->max_width = max_width;
ourhost->gpios = devm_kzalloc(dev, NUM_GPIOS(pdata->max_width) *
sizeof(int), GFP_KERNEL);
if (!ourhost->gpios)
return -ENOMEM;
/* get the card detection method */
if (of_get_property(node, "broken-cd", 0)) {
pdata->cd_type = S3C_SDHCI_CD_NONE;
goto setup_bus;
}
if (of_get_property(node, "non-removable", 0)) {
pdata->cd_type = S3C_SDHCI_CD_PERMANENT;
goto setup_bus;
}
gpio = of_get_named_gpio(node, "cd-gpios", 0);
if (gpio_is_valid(gpio)) {
pdata->cd_type = S3C_SDHCI_CD_GPIO;
goto found_cd;
} else if (gpio != -ENOENT) {
dev_err(dev, "invalid card detect gpio specified\n");
return -EINVAL;
}
gpio = of_get_named_gpio(node, "samsung,cd-pinmux-gpio", 0);
if (gpio_is_valid(gpio)) {
pdata->cd_type = S3C_SDHCI_CD_INTERNAL;
goto found_cd;
} else if (gpio != -ENOENT) {
dev_err(dev, "invalid card detect gpio specified\n");
return -EINVAL;
}
dev_info(dev, "assuming no card detect line available\n");
pdata->cd_type = S3C_SDHCI_CD_NONE;
found_cd:
if (pdata->cd_type == S3C_SDHCI_CD_GPIO) {
pdata->ext_cd_gpio = gpio;
ourhost->ext_cd_gpio = -1;
if (of_get_property(node, "cd-inverted", NULL))
pdata->ext_cd_gpio_invert = 1;
} else if (pdata->cd_type == S3C_SDHCI_CD_INTERNAL) {
ret = gpio_request(gpio, "sdhci-cd");
if (ret) {
dev_err(dev, "card detect gpio request failed\n");
return -EINVAL;
}
ourhost->ext_cd_gpio = gpio;
}
setup_bus:
/* get the gpios for command, clock and data lines */
for (cnt = 0; cnt < NUM_GPIOS(pdata->max_width); cnt++) {
gpio = of_get_gpio(node, cnt);
if (!gpio_is_valid(gpio)) {
dev_err(dev, "invalid gpio[%d]\n", cnt);
goto err_free_dt_cd_gpio;
}
ourhost->gpios[cnt] = gpio;
}
for (cnt = 0; cnt < NUM_GPIOS(pdata->max_width); cnt++) {
ret = gpio_request(ourhost->gpios[cnt], "sdhci-gpio");
if (ret) {
dev_err(dev, "gpio[%d] request failed\n", cnt);
goto err_free_dt_gpios;
}
}
return 0;
err_free_dt_gpios:
while (--cnt >= 0)
gpio_free(ourhost->gpios[cnt]);
err_free_dt_cd_gpio:
if (pdata->cd_type == S3C_SDHCI_CD_INTERNAL)
gpio_free(ourhost->ext_cd_gpio);
return -EINVAL;
}
#else
static int __devinit sdhci_s3c_parse_dt(struct device *dev,
struct sdhci_host *host, struct s3c_sdhci_platdata *pdata)
{
return -EINVAL;
}
#endif
static const struct of_device_id sdhci_s3c_dt_match[];
static inline struct sdhci_s3c_drv_data *sdhci_s3c_get_driver_data(
struct platform_device *pdev)
{
#ifdef CONFIG_OF
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(sdhci_s3c_dt_match, pdev->dev.of_node);
return (struct sdhci_s3c_drv_data *)match->data;
}
#endif
return (struct sdhci_s3c_drv_data *)
platform_get_device_id(pdev)->driver_data;
}
static int __devinit sdhci_s3c_probe(struct platform_device *pdev)
{
struct s3c_sdhci_platdata *pdata;
struct sdhci_s3c_drv_data *drv_data;
struct device *dev = &pdev->dev;
struct sdhci_host *host;
struct sdhci_s3c *sc;
struct resource *res;
int ret, irq, ptr, clks;
if (!pdev->dev.platform_data && !pdev->dev.of_node) {
dev_err(dev, "no device data specified\n");
return -ENOENT;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "no irq specified\n");
return irq;
}
host = sdhci_alloc_host(dev, sizeof(struct sdhci_s3c));
if (IS_ERR(host)) {
dev_err(dev, "sdhci_alloc_host() failed\n");
return PTR_ERR(host);
}
sc = sdhci_priv(host);
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
ret = -ENOMEM;
goto err_pdata;
}
if (pdev->dev.of_node) {
ret = sdhci_s3c_parse_dt(&pdev->dev, host, pdata);
if (ret)
goto err_pdata;
} else {
memcpy(pdata, pdev->dev.platform_data, sizeof(*pdata));
sc->ext_cd_gpio = -1; /* invalid gpio number */
}
drv_data = sdhci_s3c_get_driver_data(pdev);
sc->host = host;
sc->pdev = pdev;
sc->pdata = pdata;
platform_set_drvdata(pdev, host);
sc->clk_io = clk_get(dev, "hsmmc");
if (IS_ERR(sc->clk_io)) {
dev_err(dev, "failed to get io clock\n");
ret = PTR_ERR(sc->clk_io);
goto err_io_clk;
}
/* enable the local io clock and keep it running for the moment. */
clk_enable(sc->clk_io);
for (clks = 0, ptr = 0; ptr < MAX_BUS_CLK; ptr++) {
struct clk *clk;
char name[14];
snprintf(name, 14, "mmc_busclk.%d", ptr);
clk = clk_get(dev, name);
if (IS_ERR(clk))
continue;
clks++;
sc->clk_bus[ptr] = clk;
/*
* save current clock index to know which clock bus
* is used later in overriding functions.
*/
sc->cur_clk = ptr;
dev_info(dev, "clock source %d: %s (%ld Hz)\n",
ptr, name, clk_get_rate(clk));
}
if (clks == 0) {
dev_err(dev, "failed to find any bus clocks\n");
ret = -ENOENT;
goto err_no_busclks;
}
#ifndef CONFIG_PM_RUNTIME
clk_enable(sc->clk_bus[sc->cur_clk]);
#endif
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->ioaddr = devm_request_and_ioremap(&pdev->dev, res);
if (!host->ioaddr) {
dev_err(dev, "failed to map registers\n");
ret = -ENXIO;
goto err_req_regs;
}
/* Ensure we have minimal gpio selected CMD/CLK/Detect */
if (pdata->cfg_gpio)
pdata->cfg_gpio(pdev, pdata->max_width);
host->hw_name = "samsung-hsmmc";
host->ops = &sdhci_s3c_ops;
host->quirks = 0;
host->irq = irq;
/* Setup quirks for the controller */
host->quirks |= SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC;
host->quirks |= SDHCI_QUIRK_NO_HISPD_BIT;
if (drv_data)
host->quirks |= drv_data->sdhci_quirks;
#ifndef CONFIG_MMC_SDHCI_S3C_DMA
/* we currently see overruns on errors, so disable the SDMA
* support as well. */
host->quirks |= SDHCI_QUIRK_BROKEN_DMA;
#endif /* CONFIG_MMC_SDHCI_S3C_DMA */
/* It seems we do not get an DATA transfer complete on non-busy
* transfers, not sure if this is a problem with this specific
* SDHCI block, or a missing configuration that needs to be set. */
host->quirks |= SDHCI_QUIRK_NO_BUSY_IRQ;
/* This host supports the Auto CMD12 */
host->quirks |= SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12;
/* Samsung SoCs need BROKEN_ADMA_ZEROLEN_DESC */
host->quirks |= SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC;
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
if (pdata->cd_type == S3C_SDHCI_CD_NONE ||
pdata->cd_type == S3C_SDHCI_CD_PERMANENT)
host->quirks |= SDHCI_QUIRK_BROKEN_CARD_DETECTION;
if (pdata->cd_type == S3C_SDHCI_CD_PERMANENT)
host->mmc->caps = MMC_CAP_NONREMOVABLE;
switch (pdata->max_width) {
case 8:
host->mmc->caps |= MMC_CAP_8_BIT_DATA;
case 4:
host->mmc->caps |= MMC_CAP_4_BIT_DATA;
break;
}
if (pdata->pm_caps)
host->mmc->pm_caps |= pdata->pm_caps;
host->quirks |= (SDHCI_QUIRK_32BIT_DMA_ADDR |
SDHCI_QUIRK_32BIT_DMA_SIZE);
/* HSMMC on Samsung SoCs uses SDCLK as timeout clock */
host->quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
/*
* If controller does not have internal clock divider,
* we can use overriding functions instead of default.
*/
if (host->quirks & SDHCI_QUIRK_NONSTANDARD_CLOCK) {
sdhci_s3c_ops.set_clock = sdhci_cmu_set_clock;
sdhci_s3c_ops.get_min_clock = sdhci_cmu_get_min_clock;
sdhci_s3c_ops.get_max_clock = sdhci_cmu_get_max_clock;
}
/* It supports additional host capabilities if needed */
if (pdata->host_caps)
host->mmc->caps |= pdata->host_caps;
if (pdata->host_caps2)
host->mmc->caps2 |= pdata->host_caps2;
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_suspend_ignore_children(&pdev->dev, 1);
ret = sdhci_add_host(host);
if (ret) {
dev_err(dev, "sdhci_add_host() failed\n");
pm_runtime_forbid(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
goto err_req_regs;
}
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
/* The following two methods of card detection might call
sdhci_s3c_notify_change() immediately, so they can be called
only after sdhci_add_host(). Setup errors are ignored. */
if (pdata->cd_type == S3C_SDHCI_CD_EXTERNAL && pdata->ext_cd_init)
pdata->ext_cd_init(&sdhci_s3c_notify_change);
if (pdata->cd_type == S3C_SDHCI_CD_GPIO &&
gpio_is_valid(pdata->ext_cd_gpio))
sdhci_s3c_setup_card_detect_gpio(sc);
#ifdef CONFIG_PM_RUNTIME
clk_disable(sc->clk_io);
#endif
return 0;
err_req_regs:
#ifndef CONFIG_PM_RUNTIME
clk_disable(sc->clk_bus[sc->cur_clk]);
#endif
for (ptr = 0; ptr < MAX_BUS_CLK; ptr++) {
if (sc->clk_bus[ptr]) {
clk_put(sc->clk_bus[ptr]);
}
}
err_no_busclks:
clk_disable(sc->clk_io);
clk_put(sc->clk_io);
err_io_clk:
for (ptr = 0; ptr < NUM_GPIOS(sc->pdata->max_width); ptr++)
gpio_free(sc->gpios[ptr]);
if (pdata->cd_type == S3C_SDHCI_CD_INTERNAL)
gpio_free(sc->ext_cd_gpio);
err_pdata:
sdhci_free_host(host);
return ret;
}
static int __devexit sdhci_s3c_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_s3c *sc = sdhci_priv(host);
struct s3c_sdhci_platdata *pdata = sc->pdata;
int ptr;
sdhci-s3c: add support for new card detection methods On some Samsung SoCs not all SDHCI controllers have card detect (CD) line. For some embedded designs it is not even needed, because ususally the device (like SDIO flash memory or wifi controller) is permanently wired to the controller. There are also systems which have a card detect line connected to some of the external interrupt lines or the presence of the card depends on some other actions (like enabling a power regulator). This patch adds support for all these cases. The following card detection methods are possible: 1. internal sdhci host card detect line 2. external event 3. external gpio interrupt 4. no card detect line, controller will poll for the card 5. no card detect line, card is permanently wired to the controller (once detected host won't poll it any more) By default, all existing code would use method #1, what is compatible with the previous version of the driver. In case of external event, two callbacks must be provided in platdata: ext_cd_init and ext_cd_cleanup. Both of them get a callback to a function that notifies the s3c-sdhci host contoller as their argument. That callback function should be called from the even dispatcher to let host notice the card insertion/removal. In case of external gpio interrupt, a gpio pin number must be provided in platdata (ext_cd_gpio parameter), as well as the information about the polarity of that gpio pin (ext_cd_gpio_invert). By default (ext_cd_gpio_invert == 0) gpio value 0 means 'card has been removed', but this can be changed to 'card has been removed' when ext_cd_gpio_invert == 1. This patch adds all required changes to sdhci-s3c driver. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: <linux-mmc@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-11 03:01:58 +02:00
if (pdata->cd_type == S3C_SDHCI_CD_EXTERNAL && pdata->ext_cd_cleanup)
pdata->ext_cd_cleanup(&sdhci_s3c_notify_change);
if (sc->ext_cd_irq)
free_irq(sc->ext_cd_irq, sc);
if (gpio_is_valid(sc->ext_cd_gpio))
gpio_free(sc->ext_cd_gpio);
#ifdef CONFIG_PM_RUNTIME
clk_enable(sc->clk_io);
#endif
sdhci_remove_host(host, 1);
mmc: sdhci-s3c: Fix crash on module insertion for second time If sdhci-s3c driver is built as module, it gives following error if inserted again after removing. This was happening as pm_runtime_use_autosuspend() is called in sdhci_s3c_probe() function but in sdhci_s3c_remove() its complementary pm_runtime_dont_use_autosuspend() is not called. BUG: spinlock bad magic on CPU#1, insmod/955 lock: 0xee771368, .magic: 00000000, .owner: insmod/955, .owner_cpu: 1 [<c00147e0>] (unwind_backtrace+0x0/0xf8) from [<c0136b40>] (do_raw_spin_unlock+0xa4/0xe4) [<c0136b40>] (do_raw_spin_unlock+0xa4/0xe4) from [<c01be508>] (_raw_spin_unlock_irqrestore+0xc/0x38) [<c01be508>] (_raw_spin_unlock_irqrestore+0xc/0x38) from [<c01a9334>] (sdhci_runtime_suspend_host+0x54/0x80) [<c01a9334>] (sdhci_runtime_suspend_host+0x54/0x80) from [<bf0060a8>] (sdhci_s3c_runtime_suspend+0x14/0x38 [sdhci_s3c]) [<bf0060a8>] (sdhci_s3c_runtime_suspend+0x14/0x38 [sdhci_s3c]) from [<c016cb00>] (pm_generic_runtime_suspend+0x2c/0x40) [<c016cb00>] (pm_generic_runtime_suspend+0x2c/0x40) from [<c0170090>] (__rpm_callback+0x70/0x98) [<c0170090>] (__rpm_callback+0x70/0x98) from [<c01703f0>] (rpm_suspend+0xf0/0x534) [<c01703f0>] (rpm_suspend+0xf0/0x534) from [<c0171670>] (__pm_runtime_suspend+0x5c/0x74) [<c0171670>] (__pm_runtime_suspend+0x5c/0x74) from [<c016d018>] (pm_generic_runtime_idle+0x44/0x4c) [<c016d018>] (pm_generic_runtime_idle+0x44/0x4c) from [<c0170090>] (__rpm_callback+0x70/0x98) [<c0170090>] (__rpm_callback+0x70/0x98) from [<c0170984>] (rpm_idle+0xdc/0x18c) [<c0170984>] (rpm_idle+0xdc/0x18c) from [<c0171608>] (pm_runtime_set_autosuspend_delay+0x30/0x3c) [<c0171608>] (pm_runtime_set_autosuspend_delay+0x30/0x3c) from [<bf0069c4>] (sdhci_s3c_probe+0x35c/0x52c [sdhci_s3c]) [<bf0069c4>] (sdhci_s3c_probe+0x35c/0x52c [sdhci_s3c]) from [<c016a014>] (platform_drv_probe+0x18/0x1c) Signed-off-by: Chander Kashyap <chander.kashyap@linaro.org> Acked-by: Jaehoon Chung <jh80.chung@samsung.com> Signed-off-by: Chris Ball <cjb@laptop.org>
2012-09-14 11:08:50 +02:00
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
#ifndef CONFIG_PM_RUNTIME
clk_disable(sc->clk_bus[sc->cur_clk]);
#endif
for (ptr = 0; ptr < MAX_BUS_CLK; ptr++) {
if (sc->clk_bus[ptr]) {
clk_put(sc->clk_bus[ptr]);
}
}
clk_disable(sc->clk_io);
clk_put(sc->clk_io);
if (pdev->dev.of_node) {
for (ptr = 0; ptr < NUM_GPIOS(sc->pdata->max_width); ptr++)
gpio_free(sc->gpios[ptr]);
}
sdhci_free_host(host);
platform_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sdhci_s3c_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
return sdhci_suspend_host(host);
}
static int sdhci_s3c_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
return sdhci_resume_host(host);
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int sdhci_s3c_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_s3c *ourhost = to_s3c(host);
struct clk *busclk = ourhost->clk_io;
int ret;
ret = sdhci_runtime_suspend_host(host);
clk_disable(ourhost->clk_bus[ourhost->cur_clk]);
clk_disable(busclk);
return ret;
}
static int sdhci_s3c_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_s3c *ourhost = to_s3c(host);
struct clk *busclk = ourhost->clk_io;
int ret;
clk_enable(busclk);
clk_enable(ourhost->clk_bus[ourhost->cur_clk]);
ret = sdhci_runtime_resume_host(host);
return ret;
}
#endif
#ifdef CONFIG_PM
static const struct dev_pm_ops sdhci_s3c_pmops = {
SET_SYSTEM_SLEEP_PM_OPS(sdhci_s3c_suspend, sdhci_s3c_resume)
SET_RUNTIME_PM_OPS(sdhci_s3c_runtime_suspend, sdhci_s3c_runtime_resume,
NULL)
};
#define SDHCI_S3C_PMOPS (&sdhci_s3c_pmops)
#else
#define SDHCI_S3C_PMOPS NULL
#endif
#if defined(CONFIG_CPU_EXYNOS4210) || defined(CONFIG_SOC_EXYNOS4212)
static struct sdhci_s3c_drv_data exynos4_sdhci_drv_data = {
.sdhci_quirks = SDHCI_QUIRK_NONSTANDARD_CLOCK,
};
#define EXYNOS4_SDHCI_DRV_DATA ((kernel_ulong_t)&exynos4_sdhci_drv_data)
#else
#define EXYNOS4_SDHCI_DRV_DATA ((kernel_ulong_t)NULL)
#endif
static struct platform_device_id sdhci_s3c_driver_ids[] = {
{
.name = "s3c-sdhci",
.driver_data = (kernel_ulong_t)NULL,
}, {
.name = "exynos4-sdhci",
.driver_data = EXYNOS4_SDHCI_DRV_DATA,
},
{ }
};
MODULE_DEVICE_TABLE(platform, sdhci_s3c_driver_ids);
#ifdef CONFIG_OF
static const struct of_device_id sdhci_s3c_dt_match[] = {
{ .compatible = "samsung,s3c6410-sdhci", },
{ .compatible = "samsung,exynos4210-sdhci",
.data = (void *)EXYNOS4_SDHCI_DRV_DATA },
{},
};
MODULE_DEVICE_TABLE(of, sdhci_s3c_dt_match);
#endif
static struct platform_driver sdhci_s3c_driver = {
.probe = sdhci_s3c_probe,
.remove = __devexit_p(sdhci_s3c_remove),
.id_table = sdhci_s3c_driver_ids,
.driver = {
.owner = THIS_MODULE,
.name = "s3c-sdhci",
.of_match_table = of_match_ptr(sdhci_s3c_dt_match),
.pm = SDHCI_S3C_PMOPS,
},
};
module_platform_driver(sdhci_s3c_driver);
MODULE_DESCRIPTION("Samsung SDHCI (HSMMC) glue");
MODULE_AUTHOR("Ben Dooks, <ben@simtec.co.uk>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:s3c-sdhci");