linux/arch/arm/mm/mmu.c

1065 lines
28 KiB
C
Raw Normal View History

/*
* linux/arch/arm/mm/mmu.c
*
* Copyright (C) 1995-2005 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <asm/cputype.h>
#include <asm/mach-types.h>
#include <asm/sections.h>
#include <asm/cachetype.h>
#include <asm/setup.h>
#include <asm/sizes.h>
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-27 21:55:43 +02:00
#include <asm/smp_plat.h>
#include <asm/tlb.h>
#include <asm/highmem.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
#include "mm.h"
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
/*
* empty_zero_page is a special page that is used for
* zero-initialized data and COW.
*/
struct page *empty_zero_page;
EXPORT_SYMBOL(empty_zero_page);
/*
* The pmd table for the upper-most set of pages.
*/
pmd_t *top_pmd;
#define CPOLICY_UNCACHED 0
#define CPOLICY_BUFFERED 1
#define CPOLICY_WRITETHROUGH 2
#define CPOLICY_WRITEBACK 3
#define CPOLICY_WRITEALLOC 4
static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
pgprot_t pgprot_user;
pgprot_t pgprot_kernel;
EXPORT_SYMBOL(pgprot_user);
EXPORT_SYMBOL(pgprot_kernel);
struct cachepolicy {
const char policy[16];
unsigned int cr_mask;
unsigned int pmd;
unsigned int pte;
};
static struct cachepolicy cache_policies[] __initdata = {
{
.policy = "uncached",
.cr_mask = CR_W|CR_C,
.pmd = PMD_SECT_UNCACHED,
.pte = L_PTE_MT_UNCACHED,
}, {
.policy = "buffered",
.cr_mask = CR_C,
.pmd = PMD_SECT_BUFFERED,
.pte = L_PTE_MT_BUFFERABLE,
}, {
.policy = "writethrough",
.cr_mask = 0,
.pmd = PMD_SECT_WT,
.pte = L_PTE_MT_WRITETHROUGH,
}, {
.policy = "writeback",
.cr_mask = 0,
.pmd = PMD_SECT_WB,
.pte = L_PTE_MT_WRITEBACK,
}, {
.policy = "writealloc",
.cr_mask = 0,
.pmd = PMD_SECT_WBWA,
.pte = L_PTE_MT_WRITEALLOC,
}
};
/*
* These are useful for identifying cache coherency
* problems by allowing the cache or the cache and
* writebuffer to be turned off. (Note: the write
* buffer should not be on and the cache off).
*/
static void __init early_cachepolicy(char **p)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
int len = strlen(cache_policies[i].policy);
if (memcmp(*p, cache_policies[i].policy, len) == 0) {
cachepolicy = i;
cr_alignment &= ~cache_policies[i].cr_mask;
cr_no_alignment &= ~cache_policies[i].cr_mask;
*p += len;
break;
}
}
if (i == ARRAY_SIZE(cache_policies))
printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
if (cpu_architecture() >= CPU_ARCH_ARMv6) {
printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
cachepolicy = CPOLICY_WRITEBACK;
}
flush_cache_all();
set_cr(cr_alignment);
}
__early_param("cachepolicy=", early_cachepolicy);
static void __init early_nocache(char **__unused)
{
char *p = "buffered";
printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
early_cachepolicy(&p);
}
__early_param("nocache", early_nocache);
static void __init early_nowrite(char **__unused)
{
char *p = "uncached";
printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
early_cachepolicy(&p);
}
__early_param("nowb", early_nowrite);
static void __init early_ecc(char **p)
{
if (memcmp(*p, "on", 2) == 0) {
ecc_mask = PMD_PROTECTION;
*p += 2;
} else if (memcmp(*p, "off", 3) == 0) {
ecc_mask = 0;
*p += 3;
}
}
__early_param("ecc=", early_ecc);
static int __init noalign_setup(char *__unused)
{
cr_alignment &= ~CR_A;
cr_no_alignment &= ~CR_A;
set_cr(cr_alignment);
return 1;
}
__setup("noalign", noalign_setup);
#ifndef CONFIG_SMP
void adjust_cr(unsigned long mask, unsigned long set)
{
unsigned long flags;
mask &= ~CR_A;
set &= mask;
local_irq_save(flags);
cr_no_alignment = (cr_no_alignment & ~mask) | set;
cr_alignment = (cr_alignment & ~mask) | set;
set_cr((get_cr() & ~mask) | set);
local_irq_restore(flags);
}
#endif
#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
static struct mem_type mem_types[] = {
[MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
L_PTE_SHARED,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
.domain = DOMAIN_IO,
},
[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE,
.domain = DOMAIN_IO,
},
[MT_DEVICE_CACHED] = { /* ioremap_cached */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
.domain = DOMAIN_IO,
},
[ARM] 5241/1: provide ioremap_wc() This patch provides an ARM implementation of ioremap_wc(). We use different page table attributes depending on which CPU we are running on: - Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four possible mapping types (CB=00/01/10/11). We can't use any of the cached memory types (CB=10/11), since that breaks coherency with peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and CB=01 (Uncached/Buffered) allows the hardware more freedom than CB=00, so we'll use that. (The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores but isn't allowed to merge them, but there is no other mapping type we can use that allows the hardware to delay and merge stores, so we'll go with CB=01.) - XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight difference that on these platforms, CB=01 actually _does_ allow merging stores. (If you want noncoalescing bufferable behavior on Xscale v1/v2, you need to use XCB=101.) - Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100 mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal in ARMv6 parlance). The ARMv6 ARM explicitly says that any accesses to Normal memory can be merged, which makes Normal memory more suitable for _wc mappings than Device or Strongly Ordered memory, as the latter two mapping types are guaranteed to maintain transaction number, size and order. We use the Uncached variety of Normal mappings for the same reason that we can't use C=1 mappings on ARMv5. The xsc3 Architecture Specification documents TEXCB=00100 as being Uncacheable and allowing coalescing of writes, which is also just what we need. Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 14:17:11 +02:00
[MT_DEVICE_WC] = { /* ioremap_wc */
.prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PROT_SECT_DEVICE,
.domain = DOMAIN_IO,
},
[MT_UNCACHED] = {
.prot_pte = PROT_PTE_DEVICE,
.prot_l1 = PMD_TYPE_TABLE,
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
.domain = DOMAIN_IO,
},
[MT_CACHECLEAN] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
.domain = DOMAIN_KERNEL,
},
[MT_MINICLEAN] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
.domain = DOMAIN_KERNEL,
},
[MT_LOW_VECTORS] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_EXEC,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_USER,
},
[MT_HIGH_VECTORS] = {
.prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
L_PTE_USER | L_PTE_EXEC,
.prot_l1 = PMD_TYPE_TABLE,
.domain = DOMAIN_USER,
},
[MT_MEMORY] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
.domain = DOMAIN_KERNEL,
},
[MT_ROM] = {
.prot_sect = PMD_TYPE_SECT,
.domain = DOMAIN_KERNEL,
},
2009-03-12 20:11:43 +01:00
[MT_MEMORY_NONCACHED] = {
.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
.domain = DOMAIN_KERNEL,
},
};
const struct mem_type *get_mem_type(unsigned int type)
{
return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
EXPORT_SYMBOL(get_mem_type);
/*
* Adjust the PMD section entries according to the CPU in use.
*/
static void __init build_mem_type_table(void)
{
struct cachepolicy *cp;
unsigned int cr = get_cr();
unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
int cpu_arch = cpu_architecture();
int i;
if (cpu_arch < CPU_ARCH_ARMv6) {
#if defined(CONFIG_CPU_DCACHE_DISABLE)
if (cachepolicy > CPOLICY_BUFFERED)
cachepolicy = CPOLICY_BUFFERED;
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
if (cachepolicy > CPOLICY_WRITETHROUGH)
cachepolicy = CPOLICY_WRITETHROUGH;
#endif
}
if (cpu_arch < CPU_ARCH_ARMv5) {
if (cachepolicy >= CPOLICY_WRITEALLOC)
cachepolicy = CPOLICY_WRITEBACK;
ecc_mask = 0;
}
#ifdef CONFIG_SMP
cachepolicy = CPOLICY_WRITEALLOC;
#endif
[ARM] 5241/1: provide ioremap_wc() This patch provides an ARM implementation of ioremap_wc(). We use different page table attributes depending on which CPU we are running on: - Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four possible mapping types (CB=00/01/10/11). We can't use any of the cached memory types (CB=10/11), since that breaks coherency with peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and CB=01 (Uncached/Buffered) allows the hardware more freedom than CB=00, so we'll use that. (The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores but isn't allowed to merge them, but there is no other mapping type we can use that allows the hardware to delay and merge stores, so we'll go with CB=01.) - XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight difference that on these platforms, CB=01 actually _does_ allow merging stores. (If you want noncoalescing bufferable behavior on Xscale v1/v2, you need to use XCB=101.) - Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100 mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal in ARMv6 parlance). The ARMv6 ARM explicitly says that any accesses to Normal memory can be merged, which makes Normal memory more suitable for _wc mappings than Device or Strongly Ordered memory, as the latter two mapping types are guaranteed to maintain transaction number, size and order. We use the Uncached variety of Normal mappings for the same reason that we can't use C=1 mappings on ARMv5. The xsc3 Architecture Specification documents TEXCB=00100 as being Uncacheable and allowing coalescing of writes, which is also just what we need. Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 14:17:11 +02:00
/*
* Strip out features not present on earlier architectures.
* Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
* without extended page tables don't have the 'Shared' bit.
[ARM] 5241/1: provide ioremap_wc() This patch provides an ARM implementation of ioremap_wc(). We use different page table attributes depending on which CPU we are running on: - Non-XScale ARMv5 and earlier systems: The ARMv5 ARM documents four possible mapping types (CB=00/01/10/11). We can't use any of the cached memory types (CB=10/11), since that breaks coherency with peripheral devices. Both CB=00 and CB=01 are suitable for _wc, and CB=01 (Uncached/Buffered) allows the hardware more freedom than CB=00, so we'll use that. (The ARMv5 ARM seems to suggest that CB=01 is allowed to delay stores but isn't allowed to merge them, but there is no other mapping type we can use that allows the hardware to delay and merge stores, so we'll go with CB=01.) - XScale v1/v2 (ARMv5): same as the ARMv5 case above, with the slight difference that on these platforms, CB=01 actually _does_ allow merging stores. (If you want noncoalescing bufferable behavior on Xscale v1/v2, you need to use XCB=101.) - Xscale v3 (ARMv5) and ARMv6+: on these systems, we use TEXCB=00100 mappings (Inner/Outer Uncacheable in xsc3 parlance, Uncached Normal in ARMv6 parlance). The ARMv6 ARM explicitly says that any accesses to Normal memory can be merged, which makes Normal memory more suitable for _wc mappings than Device or Strongly Ordered memory, as the latter two mapping types are guaranteed to maintain transaction number, size and order. We use the Uncached variety of Normal mappings for the same reason that we can't use C=1 mappings on ARMv5. The xsc3 Architecture Specification documents TEXCB=00100 as being Uncacheable and allowing coalescing of writes, which is also just what we need. Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05 14:17:11 +02:00
*/
if (cpu_arch < CPU_ARCH_ARMv5)
for (i = 0; i < ARRAY_SIZE(mem_types); i++)
mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
for (i = 0; i < ARRAY_SIZE(mem_types); i++)
mem_types[i].prot_sect &= ~PMD_SECT_S;
/*
* ARMv5 and lower, bit 4 must be set for page tables (was: cache
* "update-able on write" bit on ARM610). However, Xscale and
* Xscale3 require this bit to be cleared.
*/
if (cpu_is_xscale() || cpu_is_xsc3()) {
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
mem_types[i].prot_sect &= ~PMD_BIT4;
mem_types[i].prot_l1 &= ~PMD_BIT4;
}
} else if (cpu_arch < CPU_ARCH_ARMv6) {
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
if (mem_types[i].prot_l1)
mem_types[i].prot_l1 |= PMD_BIT4;
if (mem_types[i].prot_sect)
mem_types[i].prot_sect |= PMD_BIT4;
}
}
/*
* Mark the device areas according to the CPU/architecture.
*/
if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
if (!cpu_is_xsc3()) {
/*
* Mark device regions on ARMv6+ as execute-never
* to prevent speculative instruction fetches.
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
}
if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
/*
* For ARMv7 with TEX remapping,
* - shared device is SXCB=1100
* - nonshared device is SXCB=0100
* - write combine device mem is SXCB=0001
* (Uncached Normal memory)
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
} else if (cpu_is_xsc3()) {
/*
* For Xscale3,
* - shared device is TEXCB=00101
* - nonshared device is TEXCB=01000
* - write combine device mem is TEXCB=00100
* (Inner/Outer Uncacheable in xsc3 parlance)
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
} else {
/*
* For ARMv6 and ARMv7 without TEX remapping,
* - shared device is TEXCB=00001
* - nonshared device is TEXCB=01000
* - write combine device mem is TEXCB=00100
* (Uncached Normal in ARMv6 parlance).
*/
mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
}
} else {
/*
* On others, write combining is "Uncached/Buffered"
*/
mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
}
/*
* Now deal with the memory-type mappings
*/
cp = &cache_policies[cachepolicy];
vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
#ifndef CONFIG_SMP
/*
* Only use write-through for non-SMP systems
*/
if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
#endif
/*
* Enable CPU-specific coherency if supported.
* (Only available on XSC3 at the moment.)
*/
if (arch_is_coherent() && cpu_is_xsc3())
mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
/*
* ARMv6 and above have extended page tables.
*/
if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
/*
* Mark cache clean areas and XIP ROM read only
* from SVC mode and no access from userspace.
*/
mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
#ifdef CONFIG_SMP
/*
* Mark memory with the "shared" attribute for SMP systems
*/
user_pgprot |= L_PTE_SHARED;
kern_pgprot |= L_PTE_SHARED;
vecs_pgprot |= L_PTE_SHARED;
mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
2009-03-12 20:11:43 +01:00
mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
#endif
}
2009-03-12 20:11:43 +01:00
/*
* Non-cacheable Normal - intended for memory areas that must
* not cause dirty cache line writebacks when used
*/
if (cpu_arch >= CPU_ARCH_ARMv6) {
if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
/* Non-cacheable Normal is XCB = 001 */
mem_types[MT_MEMORY_NONCACHED].prot_sect |=
PMD_SECT_BUFFERED;
} else {
/* For both ARMv6 and non-TEX-remapping ARMv7 */
mem_types[MT_MEMORY_NONCACHED].prot_sect |=
PMD_SECT_TEX(1);
}
} else {
mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
}
for (i = 0; i < 16; i++) {
unsigned long v = pgprot_val(protection_map[i]);
protection_map[i] = __pgprot(v | user_pgprot);
}
mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
L_PTE_DIRTY | L_PTE_WRITE |
L_PTE_EXEC | kern_pgprot);
mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
mem_types[MT_ROM].prot_sect |= cp->pmd;
switch (cp->pmd) {
case PMD_SECT_WT:
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
break;
case PMD_SECT_WB:
case PMD_SECT_WBWA:
mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
break;
}
printk("Memory policy: ECC %sabled, Data cache %s\n",
ecc_mask ? "en" : "dis", cp->policy);
for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
struct mem_type *t = &mem_types[i];
if (t->prot_l1)
t->prot_l1 |= PMD_DOMAIN(t->domain);
if (t->prot_sect)
t->prot_sect |= PMD_DOMAIN(t->domain);
}
}
#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
unsigned long end, unsigned long pfn,
const struct mem_type *type)
{
pte_t *pte;
if (pmd_none(*pmd)) {
pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
__pmd_populate(pmd, __pa(pte) | type->prot_l1);
}
pte = pte_offset_kernel(pmd, addr);
do {
set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
}
static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
unsigned long end, unsigned long phys,
const struct mem_type *type)
{
pmd_t *pmd = pmd_offset(pgd, addr);
/*
* Try a section mapping - end, addr and phys must all be aligned
* to a section boundary. Note that PMDs refer to the individual
* L1 entries, whereas PGDs refer to a group of L1 entries making
* up one logical pointer to an L2 table.
*/
if (((addr | end | phys) & ~SECTION_MASK) == 0) {
pmd_t *p = pmd;
if (addr & SECTION_SIZE)
pmd++;
do {
*pmd = __pmd(phys | type->prot_sect);
phys += SECTION_SIZE;
} while (pmd++, addr += SECTION_SIZE, addr != end);
flush_pmd_entry(p);
} else {
/*
* No need to loop; pte's aren't interested in the
* individual L1 entries.
*/
alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
}
}
static void __init create_36bit_mapping(struct map_desc *md,
const struct mem_type *type)
{
unsigned long phys, addr, length, end;
pgd_t *pgd;
addr = md->virtual;
phys = (unsigned long)__pfn_to_phys(md->pfn);
length = PAGE_ALIGN(md->length);
if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
printk(KERN_ERR "MM: CPU does not support supersection "
"mapping for 0x%08llx at 0x%08lx\n",
__pfn_to_phys((u64)md->pfn), addr);
return;
}
/* N.B. ARMv6 supersections are only defined to work with domain 0.
* Since domain assignments can in fact be arbitrary, the
* 'domain == 0' check below is required to insure that ARMv6
* supersections are only allocated for domain 0 regardless
* of the actual domain assignments in use.
*/
if (type->domain) {
printk(KERN_ERR "MM: invalid domain in supersection "
"mapping for 0x%08llx at 0x%08lx\n",
__pfn_to_phys((u64)md->pfn), addr);
return;
}
if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
printk(KERN_ERR "MM: cannot create mapping for "
"0x%08llx at 0x%08lx invalid alignment\n",
__pfn_to_phys((u64)md->pfn), addr);
return;
}
/*
* Shift bits [35:32] of address into bits [23:20] of PMD
* (See ARMv6 spec).
*/
phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
pgd = pgd_offset_k(addr);
end = addr + length;
do {
pmd_t *pmd = pmd_offset(pgd, addr);
int i;
for (i = 0; i < 16; i++)
*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
addr += SUPERSECTION_SIZE;
phys += SUPERSECTION_SIZE;
pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
} while (addr != end);
}
/*
* Create the page directory entries and any necessary
* page tables for the mapping specified by `md'. We
* are able to cope here with varying sizes and address
* offsets, and we take full advantage of sections and
* supersections.
*/
void __init create_mapping(struct map_desc *md)
{
unsigned long phys, addr, length, end;
const struct mem_type *type;
pgd_t *pgd;
if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
printk(KERN_WARNING "BUG: not creating mapping for "
"0x%08llx at 0x%08lx in user region\n",
__pfn_to_phys((u64)md->pfn), md->virtual);
return;
}
if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
"overlaps vmalloc space\n",
__pfn_to_phys((u64)md->pfn), md->virtual);
}
type = &mem_types[md->type];
/*
* Catch 36-bit addresses
*/
if (md->pfn >= 0x100000) {
create_36bit_mapping(md, type);
return;
}
addr = md->virtual & PAGE_MASK;
phys = (unsigned long)__pfn_to_phys(md->pfn);
length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
"be mapped using pages, ignoring.\n",
__pfn_to_phys(md->pfn), addr);
return;
}
pgd = pgd_offset_k(addr);
end = addr + length;
do {
unsigned long next = pgd_addr_end(addr, end);
alloc_init_section(pgd, addr, next, phys, type);
phys += next - addr;
addr = next;
} while (pgd++, addr != end);
}
/*
* Create the architecture specific mappings
*/
void __init iotable_init(struct map_desc *io_desc, int nr)
{
int i;
for (i = 0; i < nr; i++)
create_mapping(io_desc + i);
}
static unsigned long __initdata vmalloc_reserve = SZ_128M;
/*
* vmalloc=size forces the vmalloc area to be exactly 'size'
* bytes. This can be used to increase (or decrease) the vmalloc
* area - the default is 128m.
*/
static void __init early_vmalloc(char **arg)
{
vmalloc_reserve = memparse(*arg, arg);
if (vmalloc_reserve < SZ_16M) {
vmalloc_reserve = SZ_16M;
printk(KERN_WARNING
"vmalloc area too small, limiting to %luMB\n",
vmalloc_reserve >> 20);
}
if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
printk(KERN_WARNING
"vmalloc area is too big, limiting to %luMB\n",
vmalloc_reserve >> 20);
}
}
__early_param("vmalloc=", early_vmalloc);
#define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
static void __init sanity_check_meminfo(void)
{
int i, j, highmem = 0;
for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
struct membank *bank = &meminfo.bank[j];
*bank = meminfo.bank[i];
#ifdef CONFIG_HIGHMEM
if (__va(bank->start) > VMALLOC_MIN ||
__va(bank->start) < (void *)PAGE_OFFSET)
highmem = 1;
bank->highmem = highmem;
/*
* Split those memory banks which are partially overlapping
* the vmalloc area greatly simplifying things later.
*/
if (__va(bank->start) < VMALLOC_MIN &&
bank->size > VMALLOC_MIN - __va(bank->start)) {
if (meminfo.nr_banks >= NR_BANKS) {
printk(KERN_CRIT "NR_BANKS too low, "
"ignoring high memory\n");
} else {
memmove(bank + 1, bank,
(meminfo.nr_banks - i) * sizeof(*bank));
meminfo.nr_banks++;
i++;
bank[1].size -= VMALLOC_MIN - __va(bank->start);
bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
bank[1].highmem = highmem = 1;
j++;
}
bank->size = VMALLOC_MIN - __va(bank->start);
}
#else
bank->highmem = highmem;
/*
* Check whether this memory bank would entirely overlap
* the vmalloc area.
*/
if (__va(bank->start) >= VMALLOC_MIN ||
__va(bank->start) < (void *)PAGE_OFFSET) {
printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
"(vmalloc region overlap).\n",
bank->start, bank->start + bank->size - 1);
continue;
}
/*
* Check whether this memory bank would partially overlap
* the vmalloc area.
*/
if (__va(bank->start + bank->size) > VMALLOC_MIN ||
__va(bank->start + bank->size) < __va(bank->start)) {
unsigned long newsize = VMALLOC_MIN - __va(bank->start);
printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
"to -%.8lx (vmalloc region overlap).\n",
bank->start, bank->start + bank->size - 1,
bank->start + newsize - 1);
bank->size = newsize;
}
#endif
j++;
}
ARM: Don't allow highmem on SMP platforms without h/w TLB ops broadcast We suffer an unfortunate combination of "features" which makes highmem support on platforms without hardware TLB maintainence broadcast difficult: - we need kmap_high_get() support for DMA cache coherence - this requires kmap_high() to take a spinlock with IRQs disabled - kmap_high() occasionally calls flush_all_zero_pkmaps() to clear out old mappings - flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which on s/w IPI'd systems eventually calls smp_call_function_many() - smp_call_function_many() must not be called with IRQs disabled: WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240() Modules linked in: Backtrace: [<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c) r6:c007cd18 r5:c02ff228 r4:0000017c [<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80) [<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c) r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34 [<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240) [<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38) [<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38) [<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58) r6:00000001 r5:00000800 r4:c05f3590 [<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8) [<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0) [<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c) [<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194) [<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290) [<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38) [<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438) r4:c1819988 [<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c) [<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318) [<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4) [<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84) [<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4) r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0 [<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60) ... So we disable highmem support on these systems. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-09-27 21:55:43 +02:00
#ifdef CONFIG_HIGHMEM
if (highmem) {
const char *reason = NULL;
if (cache_is_vipt_aliasing()) {
/*
* Interactions between kmap and other mappings
* make highmem support with aliasing VIPT caches
* rather difficult.
*/
reason = "with VIPT aliasing cache";
#ifdef CONFIG_SMP
} else if (tlb_ops_need_broadcast()) {
/*
* kmap_high needs to occasionally flush TLB entries,
* however, if the TLB entries need to be broadcast
* we may deadlock:
* kmap_high(irqs off)->flush_all_zero_pkmaps->
* flush_tlb_kernel_range->smp_call_function_many
* (must not be called with irqs off)
*/
reason = "without hardware TLB ops broadcasting";
#endif
}
if (reason) {
printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
reason);
while (j > 0 && meminfo.bank[j - 1].highmem)
j--;
}
}
#endif
meminfo.nr_banks = j;
}
static inline void prepare_page_table(void)
{
unsigned long addr;
/*
* Clear out all the mappings below the kernel image.
*/
for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
pmd_clear(pmd_off_k(addr));
#ifdef CONFIG_XIP_KERNEL
/* The XIP kernel is mapped in the module area -- skip over it */
addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
#endif
for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
pmd_clear(pmd_off_k(addr));
/*
* Clear out all the kernel space mappings, except for the first
* memory bank, up to the end of the vmalloc region.
*/
for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
addr < VMALLOC_END; addr += PGDIR_SIZE)
pmd_clear(pmd_off_k(addr));
}
/*
* Reserve the various regions of node 0
*/
void __init reserve_node_zero(pg_data_t *pgdat)
{
unsigned long res_size = 0;
/*
* Register the kernel text and data with bootmem.
* Note that this can only be in node 0.
*/
#ifdef CONFIG_XIP_KERNEL
reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
BOOTMEM_DEFAULT);
#else
reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
BOOTMEM_DEFAULT);
#endif
/*
* Reserve the page tables. These are already in use,
* and can only be in node 0.
*/
reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
/*
* Hmm... This should go elsewhere, but we really really need to
* stop things allocating the low memory; ideally we need a better
* implementation of GFP_DMA which does not assume that DMA-able
* memory starts at zero.
*/
if (machine_is_integrator() || machine_is_cintegrator())
res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
/*
* These should likewise go elsewhere. They pre-reserve the
* screen memory region at the start of main system memory.
*/
if (machine_is_edb7211())
res_size = 0x00020000;
if (machine_is_p720t())
res_size = 0x00014000;
/* H1940 and RX3715 need to reserve this for suspend */
if (machine_is_h1940() || machine_is_rx3715()) {
reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
BOOTMEM_DEFAULT);
reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
BOOTMEM_DEFAULT);
}
if (machine_is_palmld() || machine_is_palmtx()) {
reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
BOOTMEM_EXCLUSIVE);
reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
BOOTMEM_EXCLUSIVE);
}
if (machine_is_treo680()) {
reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
BOOTMEM_EXCLUSIVE);
reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
BOOTMEM_EXCLUSIVE);
}
if (machine_is_palmt5())
reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
BOOTMEM_EXCLUSIVE);
/*
* U300 - This platform family can share physical memory
* between two ARM cpus, one running Linux and the other
* running another OS.
*/
if (machine_is_u300()) {
#ifdef CONFIG_MACH_U300_SINGLE_RAM
#if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
res_size = 0x00100000;
#endif
#endif
}
#ifdef CONFIG_SA1111
/*
* Because of the SA1111 DMA bug, we want to preserve our
* precious DMA-able memory...
*/
res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
#endif
if (res_size)
reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
BOOTMEM_DEFAULT);
}
/*
* Set up device the mappings. Since we clear out the page tables for all
* mappings above VMALLOC_END, we will remove any debug device mappings.
* This means you have to be careful how you debug this function, or any
* called function. This means you can't use any function or debugging
* method which may touch any device, otherwise the kernel _will_ crash.
*/
static void __init devicemaps_init(struct machine_desc *mdesc)
{
struct map_desc map;
unsigned long addr;
void *vectors;
/*
* Allocate the vector page early.
*/
vectors = alloc_bootmem_low_pages(PAGE_SIZE);
for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
pmd_clear(pmd_off_k(addr));
/*
* Map the kernel if it is XIP.
* It is always first in the modulearea.
*/
#ifdef CONFIG_XIP_KERNEL
map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
map.virtual = MODULES_VADDR;
map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
map.type = MT_ROM;
create_mapping(&map);
#endif
/*
* Map the cache flushing regions.
*/
#ifdef FLUSH_BASE
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
map.virtual = FLUSH_BASE;
map.length = SZ_1M;
map.type = MT_CACHECLEAN;
create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
map.virtual = FLUSH_BASE_MINICACHE;
map.length = SZ_1M;
map.type = MT_MINICLEAN;
create_mapping(&map);
#endif
/*
* Create a mapping for the machine vectors at the high-vectors
* location (0xffff0000). If we aren't using high-vectors, also
* create a mapping at the low-vectors virtual address.
*/
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
map.virtual = 0xffff0000;
map.length = PAGE_SIZE;
map.type = MT_HIGH_VECTORS;
create_mapping(&map);
if (!vectors_high()) {
map.virtual = 0;
map.type = MT_LOW_VECTORS;
create_mapping(&map);
}
/*
* Ask the machine support to map in the statically mapped devices.
*/
if (mdesc->map_io)
mdesc->map_io();
/*
* Finally flush the caches and tlb to ensure that we're in a
* consistent state wrt the writebuffer. This also ensures that
* any write-allocated cache lines in the vector page are written
* back. After this point, we can start to touch devices again.
*/
local_flush_tlb_all();
flush_cache_all();
}
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
pmd_t *pmd = pmd_off_k(PKMAP_BASE);
pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
BUG_ON(!pmd_none(*pmd) || !pte);
__pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
pkmap_page_table = pte + PTRS_PER_PTE;
#endif
}
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps, and sets up the zero page, bad page and bad page tables.
*/
void __init paging_init(struct machine_desc *mdesc)
{
void *zero_page;
build_mem_type_table();
sanity_check_meminfo();
prepare_page_table();
bootmem_init();
devicemaps_init(mdesc);
kmap_init();
top_pmd = pmd_off_k(0xffff0000);
/*
* allocate the zero page. Note that this always succeeds and
* returns a zeroed result.
*/
zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
empty_zero_page = virt_to_page(zero_page);
flush_dcache_page(empty_zero_page);
}
/*
* In order to soft-boot, we need to insert a 1:1 mapping in place of
* the user-mode pages. This will then ensure that we have predictable
* results when turning the mmu off
*/
void setup_mm_for_reboot(char mode)
{
unsigned long base_pmdval;
pgd_t *pgd;
int i;
if (current->mm && current->mm->pgd)
pgd = current->mm->pgd;
else
pgd = init_mm.pgd;
base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
base_pmdval |= PMD_BIT4;
for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
pmd_t *pmd;
pmd = pmd_off(pgd, i << PGDIR_SHIFT);
pmd[0] = __pmd(pmdval);
pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
flush_pmd_entry(pmd);
}
}