linux/arch/arm/mach-integrator/core.c

375 lines
8.2 KiB
C
Raw Normal View History

/*
* linux/arch/arm/mach-integrator/core.c
*
* Copyright (C) 2000-2003 Deep Blue Solutions Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/termios.h>
#include <linux/amba/bus.h>
#include <linux/amba/serial.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/io.h>
#include <asm/clkdev.h>
#include <mach/clkdev.h>
#include <mach/hardware.h>
#include <mach/platform.h>
#include <asm/irq.h>
#include <asm/hardware/arm_timer.h>
#include <mach/cm.h>
#include <asm/system.h>
#include <asm/leds.h>
#include <asm/mach/time.h>
#include "common.h"
static struct amba_pl010_data integrator_uart_data;
static struct amba_device rtc_device = {
.dev = {
.init_name = "mb:15",
},
.res = {
.start = INTEGRATOR_RTC_BASE,
.end = INTEGRATOR_RTC_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_RTCINT, NO_IRQ },
.periphid = 0x00041030,
};
static struct amba_device uart0_device = {
.dev = {
.init_name = "mb:16",
.platform_data = &integrator_uart_data,
},
.res = {
.start = INTEGRATOR_UART0_BASE,
.end = INTEGRATOR_UART0_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_UARTINT0, NO_IRQ },
.periphid = 0x0041010,
};
static struct amba_device uart1_device = {
.dev = {
.init_name = "mb:17",
.platform_data = &integrator_uart_data,
},
.res = {
.start = INTEGRATOR_UART1_BASE,
.end = INTEGRATOR_UART1_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_UARTINT1, NO_IRQ },
.periphid = 0x0041010,
};
static struct amba_device kmi0_device = {
.dev = {
.init_name = "mb:18",
},
.res = {
.start = KMI0_BASE,
.end = KMI0_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_KMIINT0, NO_IRQ },
.periphid = 0x00041050,
};
static struct amba_device kmi1_device = {
.dev = {
.init_name = "mb:19",
},
.res = {
.start = KMI1_BASE,
.end = KMI1_BASE + SZ_4K - 1,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_KMIINT1, NO_IRQ },
.periphid = 0x00041050,
};
static struct amba_device *amba_devs[] __initdata = {
&rtc_device,
&uart0_device,
&uart1_device,
&kmi0_device,
&kmi1_device,
};
/*
* These are fixed clocks.
*/
static struct clk clk24mhz = {
.rate = 24000000,
};
static struct clk uartclk = {
.rate = 14745600,
};
static struct clk_lookup lookups[] = {
{ /* UART0 */
.dev_id = "mb:16",
.clk = &uartclk,
}, { /* UART1 */
.dev_id = "mb:17",
.clk = &uartclk,
}, { /* KMI0 */
.dev_id = "mb:18",
.clk = &clk24mhz,
}, { /* KMI1 */
.dev_id = "mb:19",
.clk = &clk24mhz,
}, { /* MMCI - IntegratorCP */
.dev_id = "mb:1c",
.clk = &uartclk,
}
};
static int __init integrator_init(void)
{
int i;
clkdev_add_table(lookups, ARRAY_SIZE(lookups));
for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
struct amba_device *d = amba_devs[i];
amba_device_register(d, &iomem_resource);
}
return 0;
}
arch_initcall(integrator_init);
/*
* On the Integrator platform, the port RTS and DTR are provided by
* bits in the following SC_CTRLS register bits:
* RTS DTR
* UART0 7 6
* UART1 5 4
*/
#define SC_CTRLC IO_ADDRESS(INTEGRATOR_SC_CTRLC)
#define SC_CTRLS IO_ADDRESS(INTEGRATOR_SC_CTRLS)
static void integrator_uart_set_mctrl(struct amba_device *dev, void __iomem *base, unsigned int mctrl)
{
unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask;
if (dev == &uart0_device) {
rts_mask = 1 << 4;
dtr_mask = 1 << 5;
} else {
rts_mask = 1 << 6;
dtr_mask = 1 << 7;
}
if (mctrl & TIOCM_RTS)
ctrlc |= rts_mask;
else
ctrls |= rts_mask;
if (mctrl & TIOCM_DTR)
ctrlc |= dtr_mask;
else
ctrls |= dtr_mask;
__raw_writel(ctrls, SC_CTRLS);
__raw_writel(ctrlc, SC_CTRLC);
}
static struct amba_pl010_data integrator_uart_data = {
.set_mctrl = integrator_uart_set_mctrl,
};
#define CM_CTRL IO_ADDRESS(INTEGRATOR_HDR_CTRL)
static DEFINE_SPINLOCK(cm_lock);
/**
* cm_control - update the CM_CTRL register.
* @mask: bits to change
* @set: bits to set
*/
void cm_control(u32 mask, u32 set)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&cm_lock, flags);
val = readl(CM_CTRL) & ~mask;
writel(val | set, CM_CTRL);
spin_unlock_irqrestore(&cm_lock, flags);
}
EXPORT_SYMBOL(cm_control);
/*
* Where is the timer (VA)?
*/
#define TIMER0_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER0_BASE)
#define TIMER1_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER1_BASE)
#define TIMER2_VA_BASE IO_ADDRESS(INTEGRATOR_TIMER2_BASE)
/*
* How long is the timer interval?
*/
#define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
#if TIMER_INTERVAL >= 0x100000
#define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
#elif TIMER_INTERVAL >= 0x10000
#define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
#else
#define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
#endif
static unsigned long timer_reload;
static void __iomem * const clksrc_base = (void __iomem *)TIMER2_VA_BASE;
static cycle_t timersp_read(struct clocksource *cs)
{
return ~(readl(clksrc_base + TIMER_VALUE) & 0xffff);
}
static struct clocksource clocksource_timersp = {
.name = "timer2",
.rating = 200,
.read = timersp_read,
.mask = CLOCKSOURCE_MASK(16),
.shift = 16,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static void integrator_clocksource_init(u32 khz)
{
struct clocksource *cs = &clocksource_timersp;
void __iomem *base = clksrc_base;
u32 ctrl = TIMER_CTRL_ENABLE;
if (khz >= 1500) {
khz /= 16;
ctrl = TIMER_CTRL_DIV16;
}
writel(ctrl, base + TIMER_CTRL);
writel(0xffff, base + TIMER_LOAD);
cs->mult = clocksource_khz2mult(khz, cs->shift);
clocksource_register(cs);
}
static void __iomem * const clkevt_base = (void __iomem *)TIMER1_VA_BASE;
/*
* IRQ handler for the timer
*/
static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
/* clear the interrupt */
writel(1, clkevt_base + TIMER_INTCLR);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt)
{
u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE;
BUG_ON(mode == CLOCK_EVT_MODE_ONESHOT);
if (mode == CLOCK_EVT_MODE_PERIODIC) {
writel(ctrl, clkevt_base + TIMER_CTRL);
writel(timer_reload, clkevt_base + TIMER_LOAD);
ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE;
}
writel(ctrl, clkevt_base + TIMER_CTRL);
}
static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt)
{
unsigned long ctrl = readl(clkevt_base + TIMER_CTRL);
writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
writel(next, clkevt_base + TIMER_LOAD);
writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL);
return 0;
}
static struct clock_event_device integrator_clockevent = {
.name = "timer1",
.shift = 34,
.features = CLOCK_EVT_FEAT_PERIODIC,
.set_mode = clkevt_set_mode,
.set_next_event = clkevt_set_next_event,
.rating = 300,
.cpumask = cpu_all_mask,
};
static struct irqaction integrator_timer_irq = {
.name = "timer",
.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
.handler = integrator_timer_interrupt,
.dev_id = &integrator_clockevent,
};
static void integrator_clockevent_init(u32 khz, unsigned int ctrl)
{
struct clock_event_device *evt = &integrator_clockevent;
if (khz * 1000 > 0x100000 * HZ) {
khz /= 256;
ctrl |= TIMER_CTRL_DIV256;
} else if (khz * 1000 > 0x10000 * HZ) {
khz /= 16;
ctrl |= TIMER_CTRL_DIV16;
}
timer_reload = khz * 1000 / HZ;
writel(ctrl, clkevt_base + TIMER_CTRL);
evt->irq = IRQ_TIMERINT1;
evt->mult = div_sc(khz, NSEC_PER_MSEC, evt->shift);
evt->max_delta_ns = clockevent_delta2ns(0xffff, evt);
evt->min_delta_ns = clockevent_delta2ns(0xf, evt);
setup_irq(IRQ_TIMERINT1, &integrator_timer_irq);
clockevents_register_device(evt);
}
/*
* Set up timer(s).
*/
void __init integrator_time_init(u32 khz, unsigned int ctrl)
{
writel(0, TIMER0_VA_BASE + TIMER_CTRL);
writel(0, TIMER1_VA_BASE + TIMER_CTRL);
writel(0, TIMER2_VA_BASE + TIMER_CTRL);
integrator_clocksource_init(khz);
integrator_clockevent_init(khz, ctrl);
}