linux/drivers/mmc/host/omap.c

1631 lines
39 KiB
C
Raw Normal View History

/*
* linux/drivers/mmc/host/omap.c
*
* Copyright (C) 2004 Nokia Corporation
* Written by Tuukka Tikkanen and Juha Yrj<EFBFBD>l<EFBFBD><juha.yrjola@nokia.com>
* Misc hacks here and there by Tony Lindgren <tony@atomide.com>
* Other hacks (DMA, SD, etc) by David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/i2c/tps65010.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <mach/board.h>
#include <mach/mmc.h>
#include <mach/gpio.h>
#include <mach/dma.h>
#include <mach/mux.h>
#include <mach/fpga.h>
#define OMAP_MMC_REG_CMD 0x00
#define OMAP_MMC_REG_ARGL 0x04
#define OMAP_MMC_REG_ARGH 0x08
#define OMAP_MMC_REG_CON 0x0c
#define OMAP_MMC_REG_STAT 0x10
#define OMAP_MMC_REG_IE 0x14
#define OMAP_MMC_REG_CTO 0x18
#define OMAP_MMC_REG_DTO 0x1c
#define OMAP_MMC_REG_DATA 0x20
#define OMAP_MMC_REG_BLEN 0x24
#define OMAP_MMC_REG_NBLK 0x28
#define OMAP_MMC_REG_BUF 0x2c
#define OMAP_MMC_REG_SDIO 0x34
#define OMAP_MMC_REG_REV 0x3c
#define OMAP_MMC_REG_RSP0 0x40
#define OMAP_MMC_REG_RSP1 0x44
#define OMAP_MMC_REG_RSP2 0x48
#define OMAP_MMC_REG_RSP3 0x4c
#define OMAP_MMC_REG_RSP4 0x50
#define OMAP_MMC_REG_RSP5 0x54
#define OMAP_MMC_REG_RSP6 0x58
#define OMAP_MMC_REG_RSP7 0x5c
#define OMAP_MMC_REG_IOSR 0x60
#define OMAP_MMC_REG_SYSC 0x64
#define OMAP_MMC_REG_SYSS 0x68
#define OMAP_MMC_STAT_CARD_ERR (1 << 14)
#define OMAP_MMC_STAT_CARD_IRQ (1 << 13)
#define OMAP_MMC_STAT_OCR_BUSY (1 << 12)
#define OMAP_MMC_STAT_A_EMPTY (1 << 11)
#define OMAP_MMC_STAT_A_FULL (1 << 10)
#define OMAP_MMC_STAT_CMD_CRC (1 << 8)
#define OMAP_MMC_STAT_CMD_TOUT (1 << 7)
#define OMAP_MMC_STAT_DATA_CRC (1 << 6)
#define OMAP_MMC_STAT_DATA_TOUT (1 << 5)
#define OMAP_MMC_STAT_END_BUSY (1 << 4)
#define OMAP_MMC_STAT_END_OF_DATA (1 << 3)
#define OMAP_MMC_STAT_CARD_BUSY (1 << 2)
#define OMAP_MMC_STAT_END_OF_CMD (1 << 0)
#define OMAP_MMC_READ(host, reg) __raw_readw((host)->virt_base + OMAP_MMC_REG_##reg)
#define OMAP_MMC_WRITE(host, reg, val) __raw_writew((val), (host)->virt_base + OMAP_MMC_REG_##reg)
/*
* Command types
*/
#define OMAP_MMC_CMDTYPE_BC 0
#define OMAP_MMC_CMDTYPE_BCR 1
#define OMAP_MMC_CMDTYPE_AC 2
#define OMAP_MMC_CMDTYPE_ADTC 3
#define DRIVER_NAME "mmci-omap"
/* Specifies how often in millisecs to poll for card status changes
* when the cover switch is open */
#define OMAP_MMC_COVER_POLL_DELAY 500
struct mmc_omap_host;
struct mmc_omap_slot {
int id;
unsigned int vdd;
u16 saved_con;
u16 bus_mode;
unsigned int fclk_freq;
unsigned powered:1;
struct tasklet_struct cover_tasklet;
struct timer_list cover_timer;
unsigned cover_open;
struct mmc_request *mrq;
struct mmc_omap_host *host;
struct mmc_host *mmc;
struct omap_mmc_slot_data *pdata;
};
struct mmc_omap_host {
int initialized;
int suspended;
struct mmc_request * mrq;
struct mmc_command * cmd;
struct mmc_data * data;
struct mmc_host * mmc;
struct device * dev;
unsigned char id; /* 16xx chips have 2 MMC blocks */
struct clk * iclk;
struct clk * fclk;
struct resource *mem_res;
void __iomem *virt_base;
unsigned int phys_base;
int irq;
unsigned char bus_mode;
unsigned char hw_bus_mode;
struct work_struct cmd_abort_work;
unsigned abort:1;
struct timer_list cmd_abort_timer;
struct work_struct slot_release_work;
struct mmc_omap_slot *next_slot;
struct work_struct send_stop_work;
struct mmc_data *stop_data;
unsigned int sg_len;
int sg_idx;
u16 * buffer;
u32 buffer_bytes_left;
u32 total_bytes_left;
unsigned use_dma:1;
unsigned brs_received:1, dma_done:1;
unsigned dma_is_read:1;
unsigned dma_in_use:1;
int dma_ch;
spinlock_t dma_lock;
struct timer_list dma_timer;
unsigned dma_len;
short power_pin;
struct mmc_omap_slot *slots[OMAP_MMC_MAX_SLOTS];
struct mmc_omap_slot *current_slot;
spinlock_t slot_lock;
wait_queue_head_t slot_wq;
int nr_slots;
struct timer_list clk_timer;
spinlock_t clk_lock; /* for changing enabled state */
unsigned int fclk_enabled:1;
struct omap_mmc_platform_data *pdata;
};
static void mmc_omap_fclk_offdelay(struct mmc_omap_slot *slot)
{
unsigned long tick_ns;
if (slot != NULL && slot->host->fclk_enabled && slot->fclk_freq > 0) {
tick_ns = (1000000000 + slot->fclk_freq - 1) / slot->fclk_freq;
ndelay(8 * tick_ns);
}
}
static void mmc_omap_fclk_enable(struct mmc_omap_host *host, unsigned int enable)
{
unsigned long flags;
spin_lock_irqsave(&host->clk_lock, flags);
if (host->fclk_enabled != enable) {
host->fclk_enabled = enable;
if (enable)
clk_enable(host->fclk);
else
clk_disable(host->fclk);
}
spin_unlock_irqrestore(&host->clk_lock, flags);
}
static void mmc_omap_select_slot(struct mmc_omap_slot *slot, int claimed)
{
struct mmc_omap_host *host = slot->host;
unsigned long flags;
if (claimed)
goto no_claim;
spin_lock_irqsave(&host->slot_lock, flags);
while (host->mmc != NULL) {
spin_unlock_irqrestore(&host->slot_lock, flags);
wait_event(host->slot_wq, host->mmc == NULL);
spin_lock_irqsave(&host->slot_lock, flags);
}
host->mmc = slot->mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
no_claim:
del_timer(&host->clk_timer);
if (host->current_slot != slot || !claimed)
mmc_omap_fclk_offdelay(host->current_slot);
if (host->current_slot != slot) {
OMAP_MMC_WRITE(host, CON, slot->saved_con & 0xFC00);
if (host->pdata->switch_slot != NULL)
host->pdata->switch_slot(mmc_dev(slot->mmc), slot->id);
host->current_slot = slot;
}
if (claimed) {
mmc_omap_fclk_enable(host, 1);
/* Doing the dummy read here seems to work around some bug
* at least in OMAP24xx silicon where the command would not
* start after writing the CMD register. Sigh. */
OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, slot->saved_con);
} else
mmc_omap_fclk_enable(host, 0);
}
static void mmc_omap_start_request(struct mmc_omap_host *host,
struct mmc_request *req);
static void mmc_omap_slot_release_work(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
slot_release_work);
struct mmc_omap_slot *next_slot = host->next_slot;
struct mmc_request *rq;
host->next_slot = NULL;
mmc_omap_select_slot(next_slot, 1);
rq = next_slot->mrq;
next_slot->mrq = NULL;
mmc_omap_start_request(host, rq);
}
static void mmc_omap_release_slot(struct mmc_omap_slot *slot, int clk_enabled)
{
struct mmc_omap_host *host = slot->host;
unsigned long flags;
int i;
BUG_ON(slot == NULL || host->mmc == NULL);
if (clk_enabled)
/* Keeps clock running for at least 8 cycles on valid freq */
mod_timer(&host->clk_timer, jiffies + HZ/10);
else {
del_timer(&host->clk_timer);
mmc_omap_fclk_offdelay(slot);
mmc_omap_fclk_enable(host, 0);
}
spin_lock_irqsave(&host->slot_lock, flags);
/* Check for any pending requests */
for (i = 0; i < host->nr_slots; i++) {
struct mmc_omap_slot *new_slot;
if (host->slots[i] == NULL || host->slots[i]->mrq == NULL)
continue;
BUG_ON(host->next_slot != NULL);
new_slot = host->slots[i];
/* The current slot should not have a request in queue */
BUG_ON(new_slot == host->current_slot);
host->next_slot = new_slot;
host->mmc = new_slot->mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
schedule_work(&host->slot_release_work);
return;
}
host->mmc = NULL;
wake_up(&host->slot_wq);
spin_unlock_irqrestore(&host->slot_lock, flags);
}
static inline
int mmc_omap_cover_is_open(struct mmc_omap_slot *slot)
{
if (slot->pdata->get_cover_state)
return slot->pdata->get_cover_state(mmc_dev(slot->mmc),
slot->id);
return 0;
}
static ssize_t
mmc_omap_show_cover_switch(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_slot *slot = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_omap_cover_is_open(slot) ? "open" :
"closed");
}
static DEVICE_ATTR(cover_switch, S_IRUGO, mmc_omap_show_cover_switch, NULL);
static ssize_t
mmc_omap_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct mmc_omap_slot *slot = mmc_priv(mmc);
return sprintf(buf, "%s\n", slot->pdata->name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, mmc_omap_show_slot_name, NULL);
static void
mmc_omap_start_command(struct mmc_omap_host *host, struct mmc_command *cmd)
{
u32 cmdreg;
u32 resptype;
u32 cmdtype;
host->cmd = cmd;
resptype = 0;
cmdtype = 0;
/* Our hardware needs to know exact type */
switch (mmc_resp_type(cmd)) {
case MMC_RSP_NONE:
break;
case MMC_RSP_R1:
case MMC_RSP_R1B:
/* resp 1, 1b, 6, 7 */
resptype = 1;
break;
case MMC_RSP_R2:
resptype = 2;
break;
case MMC_RSP_R3:
resptype = 3;
break;
default:
dev_err(mmc_dev(host->mmc), "Invalid response type: %04x\n", mmc_resp_type(cmd));
break;
}
if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) {
cmdtype = OMAP_MMC_CMDTYPE_ADTC;
} else if (mmc_cmd_type(cmd) == MMC_CMD_BC) {
cmdtype = OMAP_MMC_CMDTYPE_BC;
} else if (mmc_cmd_type(cmd) == MMC_CMD_BCR) {
cmdtype = OMAP_MMC_CMDTYPE_BCR;
} else {
cmdtype = OMAP_MMC_CMDTYPE_AC;
}
cmdreg = cmd->opcode | (resptype << 8) | (cmdtype << 12);
if (host->current_slot->bus_mode == MMC_BUSMODE_OPENDRAIN)
cmdreg |= 1 << 6;
if (cmd->flags & MMC_RSP_BUSY)
cmdreg |= 1 << 11;
if (host->data && !(host->data->flags & MMC_DATA_WRITE))
cmdreg |= 1 << 15;
mod_timer(&host->cmd_abort_timer, jiffies + HZ/2);
OMAP_MMC_WRITE(host, CTO, 200);
OMAP_MMC_WRITE(host, ARGL, cmd->arg & 0xffff);
OMAP_MMC_WRITE(host, ARGH, cmd->arg >> 16);
OMAP_MMC_WRITE(host, IE,
OMAP_MMC_STAT_A_EMPTY | OMAP_MMC_STAT_A_FULL |
OMAP_MMC_STAT_CMD_CRC | OMAP_MMC_STAT_CMD_TOUT |
OMAP_MMC_STAT_DATA_CRC | OMAP_MMC_STAT_DATA_TOUT |
OMAP_MMC_STAT_END_OF_CMD | OMAP_MMC_STAT_CARD_ERR |
OMAP_MMC_STAT_END_OF_DATA);
OMAP_MMC_WRITE(host, CMD, cmdreg);
}
static void
mmc_omap_release_dma(struct mmc_omap_host *host, struct mmc_data *data,
int abort)
{
enum dma_data_direction dma_data_dir;
BUG_ON(host->dma_ch < 0);
if (data->error)
omap_stop_dma(host->dma_ch);
/* Release DMA channel lazily */
mod_timer(&host->dma_timer, jiffies + HZ);
if (data->flags & MMC_DATA_WRITE)
dma_data_dir = DMA_TO_DEVICE;
else
dma_data_dir = DMA_FROM_DEVICE;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->sg_len,
dma_data_dir);
}
static void mmc_omap_send_stop_work(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
send_stop_work);
struct mmc_omap_slot *slot = host->current_slot;
struct mmc_data *data = host->stop_data;
unsigned long tick_ns;
tick_ns = (1000000000 + slot->fclk_freq - 1)/slot->fclk_freq;
ndelay(8*tick_ns);
mmc_omap_start_command(host, data->stop);
}
static void
mmc_omap_xfer_done(struct mmc_omap_host *host, struct mmc_data *data)
{
if (host->dma_in_use)
mmc_omap_release_dma(host, data, data->error);
host->data = NULL;
host->sg_len = 0;
/* NOTE: MMC layer will sometimes poll-wait CMD13 next, issuing
* dozens of requests until the card finishes writing data.
* It'd be cheaper to just wait till an EOFB interrupt arrives...
*/
if (!data->stop) {
struct mmc_host *mmc;
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, data->mrq);
return;
}
host->stop_data = data;
schedule_work(&host->send_stop_work);
}
static void
mmc_omap_send_abort(struct mmc_omap_host *host, int maxloops)
{
struct mmc_omap_slot *slot = host->current_slot;
unsigned int restarts, passes, timeout;
u16 stat = 0;
/* Sending abort takes 80 clocks. Have some extra and round up */
timeout = (120*1000000 + slot->fclk_freq - 1)/slot->fclk_freq;
restarts = 0;
while (restarts < maxloops) {
OMAP_MMC_WRITE(host, STAT, 0xFFFF);
OMAP_MMC_WRITE(host, CMD, (3 << 12) | (1 << 7));
passes = 0;
while (passes < timeout) {
stat = OMAP_MMC_READ(host, STAT);
if (stat & OMAP_MMC_STAT_END_OF_CMD)
goto out;
udelay(1);
passes++;
}
restarts++;
}
out:
OMAP_MMC_WRITE(host, STAT, stat);
}
static void
mmc_omap_abort_xfer(struct mmc_omap_host *host, struct mmc_data *data)
{
if (host->dma_in_use)
mmc_omap_release_dma(host, data, 1);
host->data = NULL;
host->sg_len = 0;
mmc_omap_send_abort(host, 10000);
}
static void
mmc_omap_end_of_data(struct mmc_omap_host *host, struct mmc_data *data)
{
unsigned long flags;
int done;
if (!host->dma_in_use) {
mmc_omap_xfer_done(host, data);
return;
}
done = 0;
spin_lock_irqsave(&host->dma_lock, flags);
if (host->dma_done)
done = 1;
else
host->brs_received = 1;
spin_unlock_irqrestore(&host->dma_lock, flags);
if (done)
mmc_omap_xfer_done(host, data);
}
static void
mmc_omap_dma_timer(unsigned long data)
{
struct mmc_omap_host *host = (struct mmc_omap_host *) data;
BUG_ON(host->dma_ch < 0);
omap_free_dma(host->dma_ch);
host->dma_ch = -1;
}
static void
mmc_omap_dma_done(struct mmc_omap_host *host, struct mmc_data *data)
{
unsigned long flags;
int done;
done = 0;
spin_lock_irqsave(&host->dma_lock, flags);
if (host->brs_received)
done = 1;
else
host->dma_done = 1;
spin_unlock_irqrestore(&host->dma_lock, flags);
if (done)
mmc_omap_xfer_done(host, data);
}
static void
mmc_omap_cmd_done(struct mmc_omap_host *host, struct mmc_command *cmd)
{
host->cmd = NULL;
del_timer(&host->cmd_abort_timer);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] =
OMAP_MMC_READ(host, RSP0) |
(OMAP_MMC_READ(host, RSP1) << 16);
cmd->resp[2] =
OMAP_MMC_READ(host, RSP2) |
(OMAP_MMC_READ(host, RSP3) << 16);
cmd->resp[1] =
OMAP_MMC_READ(host, RSP4) |
(OMAP_MMC_READ(host, RSP5) << 16);
cmd->resp[0] =
OMAP_MMC_READ(host, RSP6) |
(OMAP_MMC_READ(host, RSP7) << 16);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] =
OMAP_MMC_READ(host, RSP6) |
(OMAP_MMC_READ(host, RSP7) << 16);
}
}
if (host->data == NULL || cmd->error) {
struct mmc_host *mmc;
if (host->data != NULL)
mmc_omap_abort_xfer(host, host->data);
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, cmd->mrq);
}
}
/*
* Abort stuck command. Can occur when card is removed while it is being
* read.
*/
static void mmc_omap_abort_command(struct work_struct *work)
{
struct mmc_omap_host *host = container_of(work, struct mmc_omap_host,
cmd_abort_work);
BUG_ON(!host->cmd);
dev_dbg(mmc_dev(host->mmc), "Aborting stuck command CMD%d\n",
host->cmd->opcode);
if (host->cmd->error == 0)
host->cmd->error = -ETIMEDOUT;
if (host->data == NULL) {
struct mmc_command *cmd;
struct mmc_host *mmc;
cmd = host->cmd;
host->cmd = NULL;
mmc_omap_send_abort(host, 10000);
host->mrq = NULL;
mmc = host->mmc;
mmc_omap_release_slot(host->current_slot, 1);
mmc_request_done(mmc, cmd->mrq);
} else
mmc_omap_cmd_done(host, host->cmd);
host->abort = 0;
enable_irq(host->irq);
}
static void
mmc_omap_cmd_timer(unsigned long data)
{
struct mmc_omap_host *host = (struct mmc_omap_host *) data;
unsigned long flags;
spin_lock_irqsave(&host->slot_lock, flags);
if (host->cmd != NULL && !host->abort) {
OMAP_MMC_WRITE(host, IE, 0);
disable_irq(host->irq);
host->abort = 1;
schedule_work(&host->cmd_abort_work);
}
spin_unlock_irqrestore(&host->slot_lock, flags);
}
/* PIO only */
static void
mmc_omap_sg_to_buf(struct mmc_omap_host *host)
{
struct scatterlist *sg;
sg = host->data->sg + host->sg_idx;
host->buffer_bytes_left = sg->length;
host->buffer = sg_virt(sg);
if (host->buffer_bytes_left > host->total_bytes_left)
host->buffer_bytes_left = host->total_bytes_left;
}
static void
mmc_omap_clk_timer(unsigned long data)
{
struct mmc_omap_host *host = (struct mmc_omap_host *) data;
mmc_omap_fclk_enable(host, 0);
}
/* PIO only */
static void
mmc_omap_xfer_data(struct mmc_omap_host *host, int write)
{
int n;
if (host->buffer_bytes_left == 0) {
host->sg_idx++;
BUG_ON(host->sg_idx == host->sg_len);
mmc_omap_sg_to_buf(host);
}
n = 64;
if (n > host->buffer_bytes_left)
n = host->buffer_bytes_left;
host->buffer_bytes_left -= n;
host->total_bytes_left -= n;
host->data->bytes_xfered += n;
if (write) {
__raw_writesw(host->virt_base + OMAP_MMC_REG_DATA, host->buffer, n);
} else {
__raw_readsw(host->virt_base + OMAP_MMC_REG_DATA, host->buffer, n);
}
}
static inline void mmc_omap_report_irq(u16 status)
{
static const char *mmc_omap_status_bits[] = {
"EOC", "CD", "CB", "BRS", "EOFB", "DTO", "DCRC", "CTO",
"CCRC", "CRW", "AF", "AE", "OCRB", "CIRQ", "CERR"
};
int i, c = 0;
for (i = 0; i < ARRAY_SIZE(mmc_omap_status_bits); i++)
if (status & (1 << i)) {
if (c)
printk(" ");
printk("%s", mmc_omap_status_bits[i]);
c++;
}
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static irqreturn_t mmc_omap_irq(int irq, void *dev_id)
{
struct mmc_omap_host * host = (struct mmc_omap_host *)dev_id;
u16 status;
int end_command;
int end_transfer;
int transfer_error, cmd_error;
if (host->cmd == NULL && host->data == NULL) {
status = OMAP_MMC_READ(host, STAT);
dev_info(mmc_dev(host->slots[0]->mmc),
"Spurious IRQ 0x%04x\n", status);
if (status != 0) {
OMAP_MMC_WRITE(host, STAT, status);
OMAP_MMC_WRITE(host, IE, 0);
}
return IRQ_HANDLED;
}
end_command = 0;
end_transfer = 0;
transfer_error = 0;
cmd_error = 0;
while ((status = OMAP_MMC_READ(host, STAT)) != 0) {
int cmd;
OMAP_MMC_WRITE(host, STAT, status);
if (host->cmd != NULL)
cmd = host->cmd->opcode;
else
cmd = -1;
#ifdef CONFIG_MMC_DEBUG
dev_dbg(mmc_dev(host->mmc), "MMC IRQ %04x (CMD %d): ",
status, cmd);
mmc_omap_report_irq(status);
printk("\n");
#endif
if (host->total_bytes_left) {
if ((status & OMAP_MMC_STAT_A_FULL) ||
(status & OMAP_MMC_STAT_END_OF_DATA))
mmc_omap_xfer_data(host, 0);
if (status & OMAP_MMC_STAT_A_EMPTY)
mmc_omap_xfer_data(host, 1);
}
if (status & OMAP_MMC_STAT_END_OF_DATA)
end_transfer = 1;
if (status & OMAP_MMC_STAT_DATA_TOUT) {
dev_dbg(mmc_dev(host->mmc), "data timeout (CMD%d)\n",
cmd);
if (host->data) {
host->data->error = -ETIMEDOUT;
transfer_error = 1;
}
}
if (status & OMAP_MMC_STAT_DATA_CRC) {
if (host->data) {
host->data->error = -EILSEQ;
dev_dbg(mmc_dev(host->mmc),
"data CRC error, bytes left %d\n",
host->total_bytes_left);
transfer_error = 1;
} else {
dev_dbg(mmc_dev(host->mmc), "data CRC error\n");
}
}
if (status & OMAP_MMC_STAT_CMD_TOUT) {
/* Timeouts are routine with some commands */
if (host->cmd) {
struct mmc_omap_slot *slot =
host->current_slot;
if (slot == NULL ||
!mmc_omap_cover_is_open(slot))
dev_err(mmc_dev(host->mmc),
"command timeout (CMD%d)\n",
cmd);
host->cmd->error = -ETIMEDOUT;
end_command = 1;
cmd_error = 1;
}
}
if (status & OMAP_MMC_STAT_CMD_CRC) {
if (host->cmd) {
dev_err(mmc_dev(host->mmc),
"command CRC error (CMD%d, arg 0x%08x)\n",
cmd, host->cmd->arg);
host->cmd->error = -EILSEQ;
end_command = 1;
cmd_error = 1;
} else
dev_err(mmc_dev(host->mmc),
"command CRC error without cmd?\n");
}
if (status & OMAP_MMC_STAT_CARD_ERR) {
dev_dbg(mmc_dev(host->mmc),
"ignoring card status error (CMD%d)\n",
cmd);
end_command = 1;
}
/*
* NOTE: On 1610 the END_OF_CMD may come too early when
* starting a write
*/
if ((status & OMAP_MMC_STAT_END_OF_CMD) &&
(!(status & OMAP_MMC_STAT_A_EMPTY))) {
end_command = 1;
}
}
if (cmd_error && host->data) {
del_timer(&host->cmd_abort_timer);
host->abort = 1;
OMAP_MMC_WRITE(host, IE, 0);
disable_irq(host->irq);
schedule_work(&host->cmd_abort_work);
return IRQ_HANDLED;
}
if (end_command)
mmc_omap_cmd_done(host, host->cmd);
if (host->data != NULL) {
if (transfer_error)
mmc_omap_xfer_done(host, host->data);
else if (end_transfer)
mmc_omap_end_of_data(host, host->data);
}
return IRQ_HANDLED;
}
void omap_mmc_notify_cover_event(struct device *dev, int num, int is_closed)
{
int cover_open;
struct mmc_omap_host *host = dev_get_drvdata(dev);
struct mmc_omap_slot *slot = host->slots[num];
BUG_ON(num >= host->nr_slots);
/* Other subsystems can call in here before we're initialised. */
if (host->nr_slots == 0 || !host->slots[num])
return;
cover_open = mmc_omap_cover_is_open(slot);
if (cover_open != slot->cover_open) {
slot->cover_open = cover_open;
sysfs_notify(&slot->mmc->class_dev.kobj, NULL, "cover_switch");
}
tasklet_hi_schedule(&slot->cover_tasklet);
}
static void mmc_omap_cover_timer(unsigned long arg)
{
struct mmc_omap_slot *slot = (struct mmc_omap_slot *) arg;
tasklet_schedule(&slot->cover_tasklet);
}
static void mmc_omap_cover_handler(unsigned long param)
{
struct mmc_omap_slot *slot = (struct mmc_omap_slot *)param;
int cover_open = mmc_omap_cover_is_open(slot);
mmc_detect_change(slot->mmc, 0);
if (!cover_open)
return;
/*
* If no card is inserted, we postpone polling until
* the cover has been closed.
*/
if (slot->mmc->card == NULL || !mmc_card_present(slot->mmc->card))
return;
mod_timer(&slot->cover_timer,
jiffies + msecs_to_jiffies(OMAP_MMC_COVER_POLL_DELAY));
}
/* Prepare to transfer the next segment of a scatterlist */
static void
mmc_omap_prepare_dma(struct mmc_omap_host *host, struct mmc_data *data)
{
int dma_ch = host->dma_ch;
unsigned long data_addr;
u16 buf, frame;
u32 count;
struct scatterlist *sg = &data->sg[host->sg_idx];
int src_port = 0;
int dst_port = 0;
int sync_dev = 0;
data_addr = host->phys_base + OMAP_MMC_REG_DATA;
frame = data->blksz;
count = sg_dma_len(sg);
if ((data->blocks == 1) && (count > data->blksz))
count = frame;
host->dma_len = count;
/* FIFO is 16x2 bytes on 15xx, and 32x2 bytes on 16xx and 24xx.
* Use 16 or 32 word frames when the blocksize is at least that large.
* Blocksize is usually 512 bytes; but not for some SD reads.
*/
if (cpu_is_omap15xx() && frame > 32)
frame = 32;
else if (frame > 64)
frame = 64;
count /= frame;
frame >>= 1;
if (!(data->flags & MMC_DATA_WRITE)) {
buf = 0x800f | ((frame - 1) << 8);
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_TIPB;
dst_port = OMAP_DMA_PORT_EMIFF;
}
if (cpu_is_omap24xx())
sync_dev = OMAP24XX_DMA_MMC1_RX;
omap_set_dma_src_params(dma_ch, src_port,
OMAP_DMA_AMODE_CONSTANT,
data_addr, 0, 0);
omap_set_dma_dest_params(dma_ch, dst_port,
OMAP_DMA_AMODE_POST_INC,
sg_dma_address(sg), 0, 0);
omap_set_dma_dest_data_pack(dma_ch, 1);
omap_set_dma_dest_burst_mode(dma_ch, OMAP_DMA_DATA_BURST_4);
} else {
buf = 0x0f80 | ((frame - 1) << 0);
if (cpu_class_is_omap1()) {
src_port = OMAP_DMA_PORT_EMIFF;
dst_port = OMAP_DMA_PORT_TIPB;
}
if (cpu_is_omap24xx())
sync_dev = OMAP24XX_DMA_MMC1_TX;
omap_set_dma_dest_params(dma_ch, dst_port,
OMAP_DMA_AMODE_CONSTANT,
data_addr, 0, 0);
omap_set_dma_src_params(dma_ch, src_port,
OMAP_DMA_AMODE_POST_INC,
sg_dma_address(sg), 0, 0);
omap_set_dma_src_data_pack(dma_ch, 1);
omap_set_dma_src_burst_mode(dma_ch, OMAP_DMA_DATA_BURST_4);
}
/* Max limit for DMA frame count is 0xffff */
BUG_ON(count > 0xffff);
OMAP_MMC_WRITE(host, BUF, buf);
omap_set_dma_transfer_params(dma_ch, OMAP_DMA_DATA_TYPE_S16,
frame, count, OMAP_DMA_SYNC_FRAME,
sync_dev, 0);
}
/* A scatterlist segment completed */
static void mmc_omap_dma_cb(int lch, u16 ch_status, void *data)
{
struct mmc_omap_host *host = (struct mmc_omap_host *) data;
struct mmc_data *mmcdat = host->data;
if (unlikely(host->dma_ch < 0)) {
dev_err(mmc_dev(host->mmc),
"DMA callback while DMA not enabled\n");
return;
}
/* FIXME: We really should do something to _handle_ the errors */
if (ch_status & OMAP1_DMA_TOUT_IRQ) {
dev_err(mmc_dev(host->mmc),"DMA timeout\n");
return;
}
if (ch_status & OMAP_DMA_DROP_IRQ) {
dev_err(mmc_dev(host->mmc), "DMA sync error\n");
return;
}
if (!(ch_status & OMAP_DMA_BLOCK_IRQ)) {
return;
}
mmcdat->bytes_xfered += host->dma_len;
host->sg_idx++;
if (host->sg_idx < host->sg_len) {
mmc_omap_prepare_dma(host, host->data);
omap_start_dma(host->dma_ch);
} else
mmc_omap_dma_done(host, host->data);
}
static int mmc_omap_get_dma_channel(struct mmc_omap_host *host, struct mmc_data *data)
{
const char *dma_dev_name;
int sync_dev, dma_ch, is_read, r;
is_read = !(data->flags & MMC_DATA_WRITE);
del_timer_sync(&host->dma_timer);
if (host->dma_ch >= 0) {
if (is_read == host->dma_is_read)
return 0;
omap_free_dma(host->dma_ch);
host->dma_ch = -1;
}
if (is_read) {
if (host->id == 0) {
sync_dev = OMAP_DMA_MMC_RX;
dma_dev_name = "MMC1 read";
} else {
sync_dev = OMAP_DMA_MMC2_RX;
dma_dev_name = "MMC2 read";
}
} else {
if (host->id == 0) {
sync_dev = OMAP_DMA_MMC_TX;
dma_dev_name = "MMC1 write";
} else {
sync_dev = OMAP_DMA_MMC2_TX;
dma_dev_name = "MMC2 write";
}
}
r = omap_request_dma(sync_dev, dma_dev_name, mmc_omap_dma_cb,
host, &dma_ch);
if (r != 0) {
dev_dbg(mmc_dev(host->mmc), "omap_request_dma() failed with %d\n", r);
return r;
}
host->dma_ch = dma_ch;
host->dma_is_read = is_read;
return 0;
}
static inline void set_cmd_timeout(struct mmc_omap_host *host, struct mmc_request *req)
{
u16 reg;
reg = OMAP_MMC_READ(host, SDIO);
reg &= ~(1 << 5);
OMAP_MMC_WRITE(host, SDIO, reg);
/* Set maximum timeout */
OMAP_MMC_WRITE(host, CTO, 0xff);
}
static inline void set_data_timeout(struct mmc_omap_host *host, struct mmc_request *req)
{
unsigned int timeout, cycle_ns;
u16 reg;
cycle_ns = 1000000000 / host->current_slot->fclk_freq;
timeout = req->data->timeout_ns / cycle_ns;
timeout += req->data->timeout_clks;
/* Check if we need to use timeout multiplier register */
reg = OMAP_MMC_READ(host, SDIO);
if (timeout > 0xffff) {
reg |= (1 << 5);
timeout /= 1024;
} else
reg &= ~(1 << 5);
OMAP_MMC_WRITE(host, SDIO, reg);
OMAP_MMC_WRITE(host, DTO, timeout);
}
static void
mmc_omap_prepare_data(struct mmc_omap_host *host, struct mmc_request *req)
{
struct mmc_data *data = req->data;
int i, use_dma, block_size;
unsigned sg_len;
host->data = data;
if (data == NULL) {
OMAP_MMC_WRITE(host, BLEN, 0);
OMAP_MMC_WRITE(host, NBLK, 0);
OMAP_MMC_WRITE(host, BUF, 0);
host->dma_in_use = 0;
set_cmd_timeout(host, req);
return;
}
block_size = data->blksz;
OMAP_MMC_WRITE(host, NBLK, data->blocks - 1);
OMAP_MMC_WRITE(host, BLEN, block_size - 1);
set_data_timeout(host, req);
/* cope with calling layer confusion; it issues "single
* block" writes using multi-block scatterlists.
*/
sg_len = (data->blocks == 1) ? 1 : data->sg_len;
/* Only do DMA for entire blocks */
use_dma = host->use_dma;
if (use_dma) {
for (i = 0; i < sg_len; i++) {
if ((data->sg[i].length % block_size) != 0) {
use_dma = 0;
break;
}
}
}
host->sg_idx = 0;
if (use_dma) {
if (mmc_omap_get_dma_channel(host, data) == 0) {
enum dma_data_direction dma_data_dir;
if (data->flags & MMC_DATA_WRITE)
dma_data_dir = DMA_TO_DEVICE;
else
dma_data_dir = DMA_FROM_DEVICE;
host->sg_len = dma_map_sg(mmc_dev(host->mmc), data->sg,
sg_len, dma_data_dir);
host->total_bytes_left = 0;
mmc_omap_prepare_dma(host, req->data);
host->brs_received = 0;
host->dma_done = 0;
host->dma_in_use = 1;
} else
use_dma = 0;
}
/* Revert to PIO? */
if (!use_dma) {
OMAP_MMC_WRITE(host, BUF, 0x1f1f);
host->total_bytes_left = data->blocks * block_size;
host->sg_len = sg_len;
mmc_omap_sg_to_buf(host);
host->dma_in_use = 0;
}
}
static void mmc_omap_start_request(struct mmc_omap_host *host,
struct mmc_request *req)
{
BUG_ON(host->mrq != NULL);
host->mrq = req;
/* only touch fifo AFTER the controller readies it */
mmc_omap_prepare_data(host, req);
mmc_omap_start_command(host, req->cmd);
if (host->dma_in_use)
omap_start_dma(host->dma_ch);
BUG_ON(irqs_disabled());
}
static void mmc_omap_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
unsigned long flags;
spin_lock_irqsave(&host->slot_lock, flags);
if (host->mmc != NULL) {
BUG_ON(slot->mrq != NULL);
slot->mrq = req;
spin_unlock_irqrestore(&host->slot_lock, flags);
return;
} else
host->mmc = mmc;
spin_unlock_irqrestore(&host->slot_lock, flags);
mmc_omap_select_slot(slot, 1);
mmc_omap_start_request(host, req);
}
static void mmc_omap_set_power(struct mmc_omap_slot *slot, int power_on,
int vdd)
{
struct mmc_omap_host *host;
host = slot->host;
if (slot->pdata->set_power != NULL)
slot->pdata->set_power(mmc_dev(slot->mmc), slot->id, power_on,
vdd);
if (cpu_is_omap24xx()) {
u16 w;
if (power_on) {
w = OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, w | (1 << 11));
} else {
w = OMAP_MMC_READ(host, CON);
OMAP_MMC_WRITE(host, CON, w & ~(1 << 11));
}
}
}
static int mmc_omap_calc_divisor(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
int func_clk_rate = clk_get_rate(host->fclk);
int dsor;
if (ios->clock == 0)
return 0;
dsor = func_clk_rate / ios->clock;
if (dsor < 1)
dsor = 1;
if (func_clk_rate / dsor > ios->clock)
dsor++;
if (dsor > 250)
dsor = 250;
slot->fclk_freq = func_clk_rate / dsor;
if (ios->bus_width == MMC_BUS_WIDTH_4)
dsor |= 1 << 15;
return dsor;
}
static void mmc_omap_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmc_omap_slot *slot = mmc_priv(mmc);
struct mmc_omap_host *host = slot->host;
int i, dsor;
int clk_enabled;
mmc_omap_select_slot(slot, 0);
dsor = mmc_omap_calc_divisor(mmc, ios);
if (ios->vdd != slot->vdd)
slot->vdd = ios->vdd;
clk_enabled = 0;
switch (ios->power_mode) {
case MMC_POWER_OFF:
mmc_omap_set_power(slot, 0, ios->vdd);
break;
case MMC_POWER_UP:
/* Cannot touch dsor yet, just power up MMC */
mmc_omap_set_power(slot, 1, ios->vdd);
goto exit;
case MMC_POWER_ON:
mmc_omap_fclk_enable(host, 1);
clk_enabled = 1;
dsor |= 1 << 11;
break;
}
if (slot->bus_mode != ios->bus_mode) {
if (slot->pdata->set_bus_mode != NULL)
slot->pdata->set_bus_mode(mmc_dev(mmc), slot->id,
ios->bus_mode);
slot->bus_mode = ios->bus_mode;
}
/* On insanely high arm_per frequencies something sometimes
* goes somehow out of sync, and the POW bit is not being set,
* which results in the while loop below getting stuck.
* Writing to the CON register twice seems to do the trick. */
for (i = 0; i < 2; i++)
OMAP_MMC_WRITE(host, CON, dsor);
slot->saved_con = dsor;
if (ios->power_mode == MMC_POWER_ON) {
/* worst case at 400kHz, 80 cycles makes 200 microsecs */
int usecs = 250;
/* Send clock cycles, poll completion */
OMAP_MMC_WRITE(host, IE, 0);
OMAP_MMC_WRITE(host, STAT, 0xffff);
OMAP_MMC_WRITE(host, CMD, 1 << 7);
while (usecs > 0 && (OMAP_MMC_READ(host, STAT) & 1) == 0) {
udelay(1);
usecs--;
}
OMAP_MMC_WRITE(host, STAT, 1);
}
exit:
mmc_omap_release_slot(slot, clk_enabled);
}
static const struct mmc_host_ops mmc_omap_ops = {
.request = mmc_omap_request,
.set_ios = mmc_omap_set_ios,
};
static int __init mmc_omap_new_slot(struct mmc_omap_host *host, int id)
{
struct mmc_omap_slot *slot = NULL;
struct mmc_host *mmc;
int r;
mmc = mmc_alloc_host(sizeof(struct mmc_omap_slot), host->dev);
if (mmc == NULL)
return -ENOMEM;
slot = mmc_priv(mmc);
slot->host = host;
slot->mmc = mmc;
slot->id = id;
slot->pdata = &host->pdata->slots[id];
host->slots[id] = slot;
mmc->caps = 0;
if (host->pdata->slots[id].wires >= 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
mmc->ops = &mmc_omap_ops;
mmc->f_min = 400000;
if (cpu_class_is_omap2())
mmc->f_max = 48000000;
else
mmc->f_max = 24000000;
if (host->pdata->max_freq)
mmc->f_max = min(host->pdata->max_freq, mmc->f_max);
mmc->ocr_avail = slot->pdata->ocr_mask;
/* Use scatterlist DMA to reduce per-transfer costs.
* NOTE max_seg_size assumption that small blocks aren't
* normally used (except e.g. for reading SD registers).
*/
mmc->max_phys_segs = 32;
mmc->max_hw_segs = 32;
mmc->max_blk_size = 2048; /* BLEN is 11 bits (+1) */
mmc->max_blk_count = 2048; /* NBLK is 11 bits (+1) */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
r = mmc_add_host(mmc);
if (r < 0)
goto err_remove_host;
if (slot->pdata->name != NULL) {
r = device_create_file(&mmc->class_dev,
&dev_attr_slot_name);
if (r < 0)
goto err_remove_host;
}
if (slot->pdata->get_cover_state != NULL) {
r = device_create_file(&mmc->class_dev,
&dev_attr_cover_switch);
if (r < 0)
goto err_remove_slot_name;
setup_timer(&slot->cover_timer, mmc_omap_cover_timer,
(unsigned long)slot);
tasklet_init(&slot->cover_tasklet, mmc_omap_cover_handler,
(unsigned long)slot);
tasklet_schedule(&slot->cover_tasklet);
}
return 0;
err_remove_slot_name:
if (slot->pdata->name != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_slot_name);
err_remove_host:
mmc_remove_host(mmc);
mmc_free_host(mmc);
return r;
}
static void mmc_omap_remove_slot(struct mmc_omap_slot *slot)
{
struct mmc_host *mmc = slot->mmc;
if (slot->pdata->name != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_slot_name);
if (slot->pdata->get_cover_state != NULL)
device_remove_file(&mmc->class_dev, &dev_attr_cover_switch);
tasklet_kill(&slot->cover_tasklet);
del_timer_sync(&slot->cover_timer);
flush_scheduled_work();
mmc_remove_host(mmc);
mmc_free_host(mmc);
}
static int __init mmc_omap_probe(struct platform_device *pdev)
{
struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_omap_host *host = NULL;
struct resource *res;
int i, ret = 0;
int irq;
if (pdata == NULL) {
dev_err(&pdev->dev, "platform data missing\n");
return -ENXIO;
}
if (pdata->nr_slots == 0) {
dev_err(&pdev->dev, "no slots\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (res == NULL || irq < 0)
return -ENXIO;
res = request_mem_region(res->start, res->end - res->start + 1,
pdev->name);
if (res == NULL)
return -EBUSY;
host = kzalloc(sizeof(struct mmc_omap_host), GFP_KERNEL);
if (host == NULL) {
ret = -ENOMEM;
goto err_free_mem_region;
}
INIT_WORK(&host->slot_release_work, mmc_omap_slot_release_work);
INIT_WORK(&host->send_stop_work, mmc_omap_send_stop_work);
INIT_WORK(&host->cmd_abort_work, mmc_omap_abort_command);
setup_timer(&host->cmd_abort_timer, mmc_omap_cmd_timer,
(unsigned long) host);
spin_lock_init(&host->clk_lock);
setup_timer(&host->clk_timer, mmc_omap_clk_timer, (unsigned long) host);
spin_lock_init(&host->dma_lock);
setup_timer(&host->dma_timer, mmc_omap_dma_timer, (unsigned long) host);
spin_lock_init(&host->slot_lock);
init_waitqueue_head(&host->slot_wq);
host->pdata = pdata;
host->dev = &pdev->dev;
platform_set_drvdata(pdev, host);
host->id = pdev->id;
host->mem_res = res;
host->irq = irq;
host->use_dma = 1;
host->dev->dma_mask = &pdata->dma_mask;
host->dma_ch = -1;
host->irq = irq;
host->phys_base = host->mem_res->start;
host->virt_base = ioremap(res->start, res->end - res->start + 1);
if (!host->virt_base)
goto err_ioremap;
if (cpu_is_omap24xx()) {
host->iclk = clk_get(&pdev->dev, "mmc_ick");
if (IS_ERR(host->iclk))
goto err_free_mmc_host;
clk_enable(host->iclk);
}
if (!cpu_is_omap24xx())
host->fclk = clk_get(&pdev->dev, "mmc_ck");
else
host->fclk = clk_get(&pdev->dev, "mmc_fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
goto err_free_iclk;
}
ret = request_irq(host->irq, mmc_omap_irq, 0, DRIVER_NAME, host);
if (ret)
goto err_free_fclk;
if (pdata->init != NULL) {
ret = pdata->init(&pdev->dev);
if (ret < 0)
goto err_free_irq;
}
host->nr_slots = pdata->nr_slots;
for (i = 0; i < pdata->nr_slots; i++) {
ret = mmc_omap_new_slot(host, i);
if (ret < 0) {
while (--i >= 0)
mmc_omap_remove_slot(host->slots[i]);
goto err_plat_cleanup;
}
}
return 0;
err_plat_cleanup:
if (pdata->cleanup)
pdata->cleanup(&pdev->dev);
err_free_irq:
free_irq(host->irq, host);
err_free_fclk:
clk_put(host->fclk);
err_free_iclk:
if (host->iclk != NULL) {
clk_disable(host->iclk);
clk_put(host->iclk);
}
err_free_mmc_host:
iounmap(host->virt_base);
err_ioremap:
kfree(host);
err_free_mem_region:
release_mem_region(res->start, res->end - res->start + 1);
return ret;
}
static int mmc_omap_remove(struct platform_device *pdev)
{
struct mmc_omap_host *host = platform_get_drvdata(pdev);
int i;
platform_set_drvdata(pdev, NULL);
BUG_ON(host == NULL);
for (i = 0; i < host->nr_slots; i++)
mmc_omap_remove_slot(host->slots[i]);
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
if (host->iclk && !IS_ERR(host->iclk))
clk_put(host->iclk);
if (host->fclk && !IS_ERR(host->fclk))
clk_put(host->fclk);
iounmap(host->virt_base);
release_mem_region(pdev->resource[0].start,
pdev->resource[0].end - pdev->resource[0].start + 1);
kfree(host);
return 0;
}
#ifdef CONFIG_PM
static int mmc_omap_suspend(struct platform_device *pdev, pm_message_t mesg)
{
int i, ret = 0;
struct mmc_omap_host *host = platform_get_drvdata(pdev);
if (host == NULL || host->suspended)
return 0;
for (i = 0; i < host->nr_slots; i++) {
struct mmc_omap_slot *slot;
slot = host->slots[i];
ret = mmc_suspend_host(slot->mmc, mesg);
if (ret < 0) {
while (--i >= 0) {
slot = host->slots[i];
mmc_resume_host(slot->mmc);
}
return ret;
}
}
host->suspended = 1;
return 0;
}
static int mmc_omap_resume(struct platform_device *pdev)
{
int i, ret = 0;
struct mmc_omap_host *host = platform_get_drvdata(pdev);
if (host == NULL || !host->suspended)
return 0;
for (i = 0; i < host->nr_slots; i++) {
struct mmc_omap_slot *slot;
slot = host->slots[i];
ret = mmc_resume_host(slot->mmc);
if (ret < 0)
return ret;
host->suspended = 0;
}
return 0;
}
#else
#define mmc_omap_suspend NULL
#define mmc_omap_resume NULL
#endif
static struct platform_driver mmc_omap_driver = {
.probe = mmc_omap_probe,
.remove = mmc_omap_remove,
.suspend = mmc_omap_suspend,
.resume = mmc_omap_resume,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init mmc_omap_init(void)
{
return platform_driver_register(&mmc_omap_driver);
}
static void __exit mmc_omap_exit(void)
{
platform_driver_unregister(&mmc_omap_driver);
}
module_init(mmc_omap_init);
module_exit(mmc_omap_exit);
MODULE_DESCRIPTION("OMAP Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Juha Yrj<72>l<EFBFBD>");