linux/net/ipv4/ip_fragment.c

748 lines
17 KiB
C
Raw Normal View History

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* The IP fragmentation functionality.
*
* Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
*
* Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
* Alan Cox <Alan.Cox@linux.org>
*
* Fixes:
* Alan Cox : Split from ip.c , see ip_input.c for history.
* David S. Miller : Begin massive cleanup...
* Andi Kleen : Add sysctls.
* xxxx : Overlapfrag bug.
* Ultima : ip_expire() kernel panic.
* Bill Hawes : Frag accounting and evictor fixes.
* John McDonald : 0 length frag bug.
* Alexey Kuznetsov: SMP races, threading, cleanup.
* Patrick McHardy : LRU queue of frag heads for evictor.
*/
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/jiffies.h>
#include <linux/skbuff.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/icmp.h>
#include <linux/netdevice.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <net/sock.h>
#include <net/ip.h>
#include <net/icmp.h>
#include <net/checksum.h>
#include <net/inetpeer.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/inet.h>
#include <linux/netfilter_ipv4.h>
/* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
* code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
* as well. Or notify me, at least. --ANK
*/
/* Fragment cache limits. We will commit 256K at one time. Should we
* cross that limit we will prune down to 192K. This should cope with
* even the most extreme cases without allowing an attacker to measurably
* harm machine performance.
*/
int sysctl_ipfrag_high_thresh __read_mostly = 256*1024;
int sysctl_ipfrag_low_thresh __read_mostly = 192*1024;
int sysctl_ipfrag_max_dist __read_mostly = 64;
/* Important NOTE! Fragment queue must be destroyed before MSL expires.
* RFC791 is wrong proposing to prolongate timer each fragment arrival by TTL.
*/
int sysctl_ipfrag_time __read_mostly = IP_FRAG_TIME;
struct ipfrag_skb_cb
{
struct inet_skb_parm h;
int offset;
};
#define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
/* Describe an entry in the "incomplete datagrams" queue. */
struct ipq {
struct hlist_node list;
struct list_head lru_list; /* lru list member */
u32 user;
__be32 saddr;
__be32 daddr;
__be16 id;
u8 protocol;
u8 last_in;
#define COMPLETE 4
#define FIRST_IN 2
#define LAST_IN 1
struct sk_buff *fragments; /* linked list of received fragments */
int len; /* total length of original datagram */
int meat;
spinlock_t lock;
atomic_t refcnt;
struct timer_list timer; /* when will this queue expire? */
ktime_t stamp;
int iif;
unsigned int rid;
struct inet_peer *peer;
};
/* Hash table. */
#define IPQ_HASHSZ 64
/* Per-bucket lock is easy to add now. */
static struct hlist_head ipq_hash[IPQ_HASHSZ];
static DEFINE_RWLOCK(ipfrag_lock);
static u32 ipfrag_hash_rnd;
static LIST_HEAD(ipq_lru_list);
int ip_frag_nqueues = 0;
static __inline__ void __ipq_unlink(struct ipq *qp)
{
hlist_del(&qp->list);
list_del(&qp->lru_list);
ip_frag_nqueues--;
}
static __inline__ void ipq_unlink(struct ipq *ipq)
{
write_lock(&ipfrag_lock);
__ipq_unlink(ipq);
write_unlock(&ipfrag_lock);
}
static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
{
return jhash_3words((__force u32)id << 16 | prot,
(__force u32)saddr, (__force u32)daddr,
ipfrag_hash_rnd) & (IPQ_HASHSZ - 1);
}
static struct timer_list ipfrag_secret_timer;
int sysctl_ipfrag_secret_interval __read_mostly = 10 * 60 * HZ;
static void ipfrag_secret_rebuild(unsigned long dummy)
{
unsigned long now = jiffies;
int i;
write_lock(&ipfrag_lock);
get_random_bytes(&ipfrag_hash_rnd, sizeof(u32));
for (i = 0; i < IPQ_HASHSZ; i++) {
struct ipq *q;
struct hlist_node *p, *n;
hlist_for_each_entry_safe(q, p, n, &ipq_hash[i], list) {
unsigned int hval = ipqhashfn(q->id, q->saddr,
q->daddr, q->protocol);
if (hval != i) {
hlist_del(&q->list);
/* Relink to new hash chain. */
hlist_add_head(&q->list, &ipq_hash[hval]);
}
}
}
write_unlock(&ipfrag_lock);
mod_timer(&ipfrag_secret_timer, now + sysctl_ipfrag_secret_interval);
}
atomic_t ip_frag_mem = ATOMIC_INIT(0); /* Memory used for fragments */
/* Memory Tracking Functions. */
static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
{
if (work)
*work -= skb->truesize;
atomic_sub(skb->truesize, &ip_frag_mem);
kfree_skb(skb);
}
static __inline__ void frag_free_queue(struct ipq *qp, int *work)
{
if (work)
*work -= sizeof(struct ipq);
atomic_sub(sizeof(struct ipq), &ip_frag_mem);
kfree(qp);
}
static __inline__ struct ipq *frag_alloc_queue(void)
{
struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC);
if (!qp)
return NULL;
atomic_add(sizeof(struct ipq), &ip_frag_mem);
return qp;
}
/* Destruction primitives. */
/* Complete destruction of ipq. */
static void ip_frag_destroy(struct ipq *qp, int *work)
{
struct sk_buff *fp;
BUG_TRAP(qp->last_in&COMPLETE);
BUG_TRAP(del_timer(&qp->timer) == 0);
if (qp->peer)
inet_putpeer(qp->peer);
/* Release all fragment data. */
fp = qp->fragments;
while (fp) {
struct sk_buff *xp = fp->next;
frag_kfree_skb(fp, work);
fp = xp;
}
/* Finally, release the queue descriptor itself. */
frag_free_queue(qp, work);
}
static __inline__ void ipq_put(struct ipq *ipq, int *work)
{
if (atomic_dec_and_test(&ipq->refcnt))
ip_frag_destroy(ipq, work);
}
/* Kill ipq entry. It is not destroyed immediately,
* because caller (and someone more) holds reference count.
*/
static void ipq_kill(struct ipq *ipq)
{
if (del_timer(&ipq->timer))
atomic_dec(&ipq->refcnt);
if (!(ipq->last_in & COMPLETE)) {
ipq_unlink(ipq);
atomic_dec(&ipq->refcnt);
ipq->last_in |= COMPLETE;
}
}
/* Memory limiting on fragments. Evictor trashes the oldest
* fragment queue until we are back under the threshold.
*/
static void ip_evictor(void)
{
struct ipq *qp;
struct list_head *tmp;
int work;
work = atomic_read(&ip_frag_mem) - sysctl_ipfrag_low_thresh;
if (work <= 0)
return;
while (work > 0) {
read_lock(&ipfrag_lock);
if (list_empty(&ipq_lru_list)) {
read_unlock(&ipfrag_lock);
return;
}
tmp = ipq_lru_list.next;
qp = list_entry(tmp, struct ipq, lru_list);
atomic_inc(&qp->refcnt);
read_unlock(&ipfrag_lock);
spin_lock(&qp->lock);
if (!(qp->last_in&COMPLETE))
ipq_kill(qp);
spin_unlock(&qp->lock);
ipq_put(qp, &work);
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
}
}
/*
* Oops, a fragment queue timed out. Kill it and send an ICMP reply.
*/
static void ip_expire(unsigned long arg)
{
struct ipq *qp = (struct ipq *) arg;
spin_lock(&qp->lock);
if (qp->last_in & COMPLETE)
goto out;
ipq_kill(qp);
IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
if ((qp->last_in&FIRST_IN) && qp->fragments != NULL) {
struct sk_buff *head = qp->fragments;
/* Send an ICMP "Fragment Reassembly Timeout" message. */
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 20:56:21 +02:00
if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
dev_put(head->dev);
}
}
out:
spin_unlock(&qp->lock);
ipq_put(qp, NULL);
}
/* Creation primitives. */
static struct ipq *ip_frag_intern(struct ipq *qp_in)
{
struct ipq *qp;
#ifdef CONFIG_SMP
struct hlist_node *n;
#endif
unsigned int hash;
write_lock(&ipfrag_lock);
hash = ipqhashfn(qp_in->id, qp_in->saddr, qp_in->daddr,
qp_in->protocol);
#ifdef CONFIG_SMP
/* With SMP race we have to recheck hash table, because
* such entry could be created on other cpu, while we
* promoted read lock to write lock.
*/
hlist_for_each_entry(qp, n, &ipq_hash[hash], list) {
if (qp->id == qp_in->id &&
qp->saddr == qp_in->saddr &&
qp->daddr == qp_in->daddr &&
qp->protocol == qp_in->protocol &&
qp->user == qp_in->user) {
atomic_inc(&qp->refcnt);
write_unlock(&ipfrag_lock);
qp_in->last_in |= COMPLETE;
ipq_put(qp_in, NULL);
return qp;
}
}
#endif
qp = qp_in;
if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time))
atomic_inc(&qp->refcnt);
atomic_inc(&qp->refcnt);
hlist_add_head(&qp->list, &ipq_hash[hash]);
INIT_LIST_HEAD(&qp->lru_list);
list_add_tail(&qp->lru_list, &ipq_lru_list);
ip_frag_nqueues++;
write_unlock(&ipfrag_lock);
return qp;
}
/* Add an entry to the 'ipq' queue for a newly received IP datagram. */
static struct ipq *ip_frag_create(struct iphdr *iph, u32 user)
{
struct ipq *qp;
if ((qp = frag_alloc_queue()) == NULL)
goto out_nomem;
qp->protocol = iph->protocol;
qp->last_in = 0;
qp->id = iph->id;
qp->saddr = iph->saddr;
qp->daddr = iph->daddr;
qp->user = user;
qp->len = 0;
qp->meat = 0;
qp->fragments = NULL;
qp->iif = 0;
qp->peer = sysctl_ipfrag_max_dist ? inet_getpeer(iph->saddr, 1) : NULL;
/* Initialize a timer for this entry. */
init_timer(&qp->timer);
qp->timer.data = (unsigned long) qp; /* pointer to queue */
qp->timer.function = ip_expire; /* expire function */
spin_lock_init(&qp->lock);
atomic_set(&qp->refcnt, 1);
return ip_frag_intern(qp);
out_nomem:
LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
return NULL;
}
/* Find the correct entry in the "incomplete datagrams" queue for
* this IP datagram, and create new one, if nothing is found.
*/
static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
{
__be16 id = iph->id;
__be32 saddr = iph->saddr;
__be32 daddr = iph->daddr;
__u8 protocol = iph->protocol;
unsigned int hash;
struct ipq *qp;
struct hlist_node *n;
read_lock(&ipfrag_lock);
hash = ipqhashfn(id, saddr, daddr, protocol);
hlist_for_each_entry(qp, n, &ipq_hash[hash], list) {
if (qp->id == id &&
qp->saddr == saddr &&
qp->daddr == daddr &&
qp->protocol == protocol &&
qp->user == user) {
atomic_inc(&qp->refcnt);
read_unlock(&ipfrag_lock);
return qp;
}
}
read_unlock(&ipfrag_lock);
return ip_frag_create(iph, user);
}
/* Is the fragment too far ahead to be part of ipq? */
static inline int ip_frag_too_far(struct ipq *qp)
{
struct inet_peer *peer = qp->peer;
unsigned int max = sysctl_ipfrag_max_dist;
unsigned int start, end;
int rc;
if (!peer || !max)
return 0;
start = qp->rid;
end = atomic_inc_return(&peer->rid);
qp->rid = end;
rc = qp->fragments && (end - start) > max;
if (rc) {
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
}
return rc;
}
static int ip_frag_reinit(struct ipq *qp)
{
struct sk_buff *fp;
if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time)) {
atomic_inc(&qp->refcnt);
return -ETIMEDOUT;
}
fp = qp->fragments;
do {
struct sk_buff *xp = fp->next;
frag_kfree_skb(fp, NULL);
fp = xp;
} while (fp);
qp->last_in = 0;
qp->len = 0;
qp->meat = 0;
qp->fragments = NULL;
qp->iif = 0;
return 0;
}
/* Add new segment to existing queue. */
static void ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
{
struct sk_buff *prev, *next;
int flags, offset;
int ihl, end;
if (qp->last_in & COMPLETE)
goto err;
if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
unlikely(ip_frag_too_far(qp)) && unlikely(ip_frag_reinit(qp))) {
ipq_kill(qp);
goto err;
}
offset = ntohs(ip_hdr(skb)->frag_off);
flags = offset & ~IP_OFFSET;
offset &= IP_OFFSET;
offset <<= 3; /* offset is in 8-byte chunks */
ihl = ip_hdrlen(skb);
/* Determine the position of this fragment. */
end = offset + skb->len - ihl;
/* Is this the final fragment? */
if ((flags & IP_MF) == 0) {
/* If we already have some bits beyond end
* or have different end, the segment is corrrupted.
*/
if (end < qp->len ||
((qp->last_in & LAST_IN) && end != qp->len))
goto err;
qp->last_in |= LAST_IN;
qp->len = end;
} else {
if (end&7) {
end &= ~7;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
if (end > qp->len) {
/* Some bits beyond end -> corruption. */
if (qp->last_in & LAST_IN)
goto err;
qp->len = end;
}
}
if (end == offset)
goto err;
if (pskb_pull(skb, ihl) == NULL)
goto err;
if (pskb_trim_rcsum(skb, end-offset))
goto err;
/* Find out which fragments are in front and at the back of us
* in the chain of fragments so far. We must know where to put
* this fragment, right?
*/
prev = NULL;
for (next = qp->fragments; next != NULL; next = next->next) {
if (FRAG_CB(next)->offset >= offset)
break; /* bingo! */
prev = next;
}
/* We found where to put this one. Check for overlap with
* preceding fragment, and, if needed, align things so that
* any overlaps are eliminated.
*/
if (prev) {
int i = (FRAG_CB(prev)->offset + prev->len) - offset;
if (i > 0) {
offset += i;
if (end <= offset)
goto err;
if (!pskb_pull(skb, i))
goto err;
if (skb->ip_summed != CHECKSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_NONE;
}
}
while (next && FRAG_CB(next)->offset < end) {
int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
if (i < next->len) {
/* Eat head of the next overlapped fragment
* and leave the loop. The next ones cannot overlap.
*/
if (!pskb_pull(next, i))
goto err;
FRAG_CB(next)->offset += i;
qp->meat -= i;
if (next->ip_summed != CHECKSUM_UNNECESSARY)
next->ip_summed = CHECKSUM_NONE;
break;
} else {
struct sk_buff *free_it = next;
/* Old fragment is completely overridden with
* new one drop it.
*/
next = next->next;
if (prev)
prev->next = next;
else
qp->fragments = next;
qp->meat -= free_it->len;
frag_kfree_skb(free_it, NULL);
}
}
FRAG_CB(skb)->offset = offset;
/* Insert this fragment in the chain of fragments. */
skb->next = next;
if (prev)
prev->next = skb;
else
qp->fragments = skb;
if (skb->dev)
qp->iif = skb->dev->ifindex;
skb->dev = NULL;
qp->stamp = skb->tstamp;
qp->meat += skb->len;
atomic_add(skb->truesize, &ip_frag_mem);
if (offset == 0)
qp->last_in |= FIRST_IN;
write_lock(&ipfrag_lock);
list_move_tail(&qp->lru_list, &ipq_lru_list);
write_unlock(&ipfrag_lock);
return;
err:
kfree_skb(skb);
}
/* Build a new IP datagram from all its fragments. */
static struct sk_buff *ip_frag_reasm(struct ipq *qp, struct net_device *dev)
{
struct iphdr *iph;
struct sk_buff *fp, *head = qp->fragments;
int len;
int ihlen;
ipq_kill(qp);
BUG_TRAP(head != NULL);
BUG_TRAP(FRAG_CB(head)->offset == 0);
/* Allocate a new buffer for the datagram. */
ihlen = ip_hdrlen(head);
len = ihlen + qp->len;
if (len > 65535)
goto out_oversize;
/* Head of list must not be cloned. */
if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
goto out_nomem;
/* If the first fragment is fragmented itself, we split
* it to two chunks: the first with data and paged part
* and the second, holding only fragments. */
if (skb_shinfo(head)->frag_list) {
struct sk_buff *clone;
int i, plen = 0;
if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
goto out_nomem;
clone->next = head->next;
head->next = clone;
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
skb_shinfo(head)->frag_list = NULL;
for (i=0; i<skb_shinfo(head)->nr_frags; i++)
plen += skb_shinfo(head)->frags[i].size;
clone->len = clone->data_len = head->data_len - plen;
head->data_len -= clone->len;
head->len -= clone->len;
clone->csum = 0;
clone->ip_summed = head->ip_summed;
atomic_add(clone->truesize, &ip_frag_mem);
}
skb_shinfo(head)->frag_list = head->next;
skb_push(head, head->data - skb_network_header(head));
atomic_sub(head->truesize, &ip_frag_mem);
for (fp=head->next; fp; fp = fp->next) {
head->data_len += fp->len;
head->len += fp->len;
if (head->ip_summed != fp->ip_summed)
head->ip_summed = CHECKSUM_NONE;
else if (head->ip_summed == CHECKSUM_COMPLETE)
head->csum = csum_add(head->csum, fp->csum);
head->truesize += fp->truesize;
atomic_sub(fp->truesize, &ip_frag_mem);
}
head->next = NULL;
head->dev = dev;
head->tstamp = qp->stamp;
iph = ip_hdr(head);
iph->frag_off = 0;
iph->tot_len = htons(len);
IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
qp->fragments = NULL;
return head;
out_nomem:
LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
"queue %p\n", qp);
goto out_fail;
out_oversize:
if (net_ratelimit())
printk(KERN_INFO
"Oversized IP packet from %d.%d.%d.%d.\n",
NIPQUAD(qp->saddr));
out_fail:
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
return NULL;
}
/* Process an incoming IP datagram fragment. */
struct sk_buff *ip_defrag(struct sk_buff *skb, u32 user)
{
struct ipq *qp;
struct net_device *dev;
IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
/* Start by cleaning up the memory. */
if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh)
ip_evictor();
dev = skb->dev;
/* Lookup (or create) queue header */
if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
struct sk_buff *ret = NULL;
spin_lock(&qp->lock);
ip_frag_queue(qp, skb);
if (qp->last_in == (FIRST_IN|LAST_IN) &&
qp->meat == qp->len)
ret = ip_frag_reasm(qp, dev);
spin_unlock(&qp->lock);
ipq_put(qp, NULL);
return ret;
}
IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
kfree_skb(skb);
return NULL;
}
void __init ipfrag_init(void)
{
ipfrag_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^
(jiffies ^ (jiffies >> 6)));
init_timer(&ipfrag_secret_timer);
ipfrag_secret_timer.function = ipfrag_secret_rebuild;
ipfrag_secret_timer.expires = jiffies + sysctl_ipfrag_secret_interval;
add_timer(&ipfrag_secret_timer);
}
EXPORT_SYMBOL(ip_defrag);