2011-09-30 21:06:19 +02:00
|
|
|
/*
|
|
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
|
2011-09-30 21:06:21 +02:00
|
|
|
* Copyright (C) 2011 Don Zickus Red Hat, Inc.
|
2011-09-30 21:06:19 +02:00
|
|
|
*
|
|
|
|
* Pentium III FXSR, SSE support
|
|
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle hardware traps and faults.
|
|
|
|
*/
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/kprobes.h>
|
|
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <linux/nmi.h>
|
2011-09-30 21:06:20 +02:00
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/hardirq.h>
|
|
|
|
#include <linux/slab.h>
|
2011-05-26 18:22:53 +02:00
|
|
|
#include <linux/export.h>
|
2011-09-30 21:06:19 +02:00
|
|
|
|
2011-10-06 14:20:27 +02:00
|
|
|
#include <linux/mca.h>
|
|
|
|
|
2011-09-30 21:06:19 +02:00
|
|
|
#if defined(CONFIG_EDAC)
|
|
|
|
#include <linux/edac.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <asm/traps.h>
|
|
|
|
#include <asm/mach_traps.h>
|
2011-09-30 21:06:20 +02:00
|
|
|
#include <asm/nmi.h>
|
2011-11-10 14:45:24 +01:00
|
|
|
#include <asm/x86_init.h>
|
2011-09-30 21:06:20 +02:00
|
|
|
|
|
|
|
#define NMI_MAX_NAMELEN 16
|
|
|
|
struct nmiaction {
|
|
|
|
struct list_head list;
|
|
|
|
nmi_handler_t handler;
|
|
|
|
unsigned int flags;
|
|
|
|
char *name;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct nmi_desc {
|
|
|
|
spinlock_t lock;
|
|
|
|
struct list_head head;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct nmi_desc nmi_desc[NMI_MAX] =
|
|
|
|
{
|
|
|
|
{
|
|
|
|
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
|
|
|
|
.head = LIST_HEAD_INIT(nmi_desc[0].head),
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
|
|
|
|
.head = LIST_HEAD_INIT(nmi_desc[1].head),
|
|
|
|
},
|
|
|
|
|
|
|
|
};
|
2011-09-30 21:06:19 +02:00
|
|
|
|
2011-09-30 21:06:23 +02:00
|
|
|
struct nmi_stats {
|
|
|
|
unsigned int normal;
|
|
|
|
unsigned int unknown;
|
|
|
|
unsigned int external;
|
|
|
|
unsigned int swallow;
|
|
|
|
};
|
|
|
|
|
|
|
|
static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
|
|
|
|
|
2011-09-30 21:06:19 +02:00
|
|
|
static int ignore_nmis;
|
|
|
|
|
|
|
|
int unknown_nmi_panic;
|
|
|
|
/*
|
|
|
|
* Prevent NMI reason port (0x61) being accessed simultaneously, can
|
|
|
|
* only be used in NMI handler.
|
|
|
|
*/
|
|
|
|
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
|
|
|
|
|
|
|
|
static int __init setup_unknown_nmi_panic(char *str)
|
|
|
|
{
|
|
|
|
unknown_nmi_panic = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
|
|
|
|
|
2011-09-30 21:06:20 +02:00
|
|
|
#define nmi_to_desc(type) (&nmi_desc[type])
|
|
|
|
|
2011-09-30 21:06:22 +02:00
|
|
|
static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
|
2011-09-30 21:06:20 +02:00
|
|
|
{
|
|
|
|
struct nmi_desc *desc = nmi_to_desc(type);
|
|
|
|
struct nmiaction *a;
|
|
|
|
int handled=0;
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NMIs are edge-triggered, which means if you have enough
|
|
|
|
* of them concurrently, you can lose some because only one
|
|
|
|
* can be latched at any given time. Walk the whole list
|
|
|
|
* to handle those situations.
|
|
|
|
*/
|
2011-09-30 21:06:22 +02:00
|
|
|
list_for_each_entry_rcu(a, &desc->head, list)
|
2011-09-30 21:06:20 +02:00
|
|
|
handled += a->handler(type, regs);
|
|
|
|
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
/* return total number of NMI events handled */
|
|
|
|
return handled;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __setup_nmi(unsigned int type, struct nmiaction *action)
|
|
|
|
{
|
|
|
|
struct nmi_desc *desc = nmi_to_desc(type);
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&desc->lock, flags);
|
|
|
|
|
2011-09-30 21:06:22 +02:00
|
|
|
/*
|
|
|
|
* most handlers of type NMI_UNKNOWN never return because
|
|
|
|
* they just assume the NMI is theirs. Just a sanity check
|
|
|
|
* to manage expectations
|
|
|
|
*/
|
|
|
|
WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
|
|
|
|
|
2011-09-30 21:06:20 +02:00
|
|
|
/*
|
|
|
|
* some handlers need to be executed first otherwise a fake
|
|
|
|
* event confuses some handlers (kdump uses this flag)
|
|
|
|
*/
|
|
|
|
if (action->flags & NMI_FLAG_FIRST)
|
|
|
|
list_add_rcu(&action->list, &desc->head);
|
|
|
|
else
|
|
|
|
list_add_tail_rcu(&action->list, &desc->head);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct nmiaction *__free_nmi(unsigned int type, const char *name)
|
|
|
|
{
|
|
|
|
struct nmi_desc *desc = nmi_to_desc(type);
|
|
|
|
struct nmiaction *n;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&desc->lock, flags);
|
|
|
|
|
|
|
|
list_for_each_entry_rcu(n, &desc->head, list) {
|
|
|
|
/*
|
|
|
|
* the name passed in to describe the nmi handler
|
|
|
|
* is used as the lookup key
|
|
|
|
*/
|
|
|
|
if (!strcmp(n->name, name)) {
|
|
|
|
WARN(in_nmi(),
|
|
|
|
"Trying to free NMI (%s) from NMI context!\n", n->name);
|
|
|
|
list_del_rcu(&n->list);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
synchronize_rcu();
|
|
|
|
return (n);
|
|
|
|
}
|
|
|
|
|
|
|
|
int register_nmi_handler(unsigned int type, nmi_handler_t handler,
|
|
|
|
unsigned long nmiflags, const char *devname)
|
|
|
|
{
|
|
|
|
struct nmiaction *action;
|
|
|
|
int retval = -ENOMEM;
|
|
|
|
|
|
|
|
if (!handler)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL);
|
|
|
|
if (!action)
|
|
|
|
goto fail_action;
|
|
|
|
|
|
|
|
action->handler = handler;
|
|
|
|
action->flags = nmiflags;
|
|
|
|
action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL);
|
|
|
|
if (!action->name)
|
|
|
|
goto fail_action_name;
|
|
|
|
|
|
|
|
retval = __setup_nmi(type, action);
|
|
|
|
|
|
|
|
if (retval)
|
|
|
|
goto fail_setup_nmi;
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
|
|
|
|
fail_setup_nmi:
|
|
|
|
kfree(action->name);
|
|
|
|
fail_action_name:
|
|
|
|
kfree(action);
|
|
|
|
fail_action:
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(register_nmi_handler);
|
|
|
|
|
|
|
|
void unregister_nmi_handler(unsigned int type, const char *name)
|
|
|
|
{
|
|
|
|
struct nmiaction *a;
|
|
|
|
|
|
|
|
a = __free_nmi(type, name);
|
|
|
|
if (a) {
|
|
|
|
kfree(a->name);
|
|
|
|
kfree(a);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL_GPL(unregister_nmi_handler);
|
|
|
|
|
2011-09-30 21:06:19 +02:00
|
|
|
static notrace __kprobes void
|
|
|
|
pci_serr_error(unsigned char reason, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
|
|
|
|
reason, smp_processor_id());
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On some machines, PCI SERR line is used to report memory
|
|
|
|
* errors. EDAC makes use of it.
|
|
|
|
*/
|
|
|
|
#if defined(CONFIG_EDAC)
|
|
|
|
if (edac_handler_set()) {
|
|
|
|
edac_atomic_assert_error();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (panic_on_unrecovered_nmi)
|
|
|
|
panic("NMI: Not continuing");
|
|
|
|
|
|
|
|
pr_emerg("Dazed and confused, but trying to continue\n");
|
|
|
|
|
|
|
|
/* Clear and disable the PCI SERR error line. */
|
|
|
|
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
|
|
|
|
outb(reason, NMI_REASON_PORT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static notrace __kprobes void
|
|
|
|
io_check_error(unsigned char reason, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
unsigned long i;
|
|
|
|
|
|
|
|
pr_emerg(
|
|
|
|
"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
|
|
|
|
reason, smp_processor_id());
|
|
|
|
show_registers(regs);
|
|
|
|
|
|
|
|
if (panic_on_io_nmi)
|
|
|
|
panic("NMI IOCK error: Not continuing");
|
|
|
|
|
|
|
|
/* Re-enable the IOCK line, wait for a few seconds */
|
|
|
|
reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
|
|
|
|
outb(reason, NMI_REASON_PORT);
|
|
|
|
|
|
|
|
i = 20000;
|
|
|
|
while (--i) {
|
|
|
|
touch_nmi_watchdog();
|
|
|
|
udelay(100);
|
|
|
|
}
|
|
|
|
|
|
|
|
reason &= ~NMI_REASON_CLEAR_IOCHK;
|
|
|
|
outb(reason, NMI_REASON_PORT);
|
|
|
|
}
|
|
|
|
|
|
|
|
static notrace __kprobes void
|
|
|
|
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
|
|
|
|
{
|
2011-09-30 21:06:21 +02:00
|
|
|
int handled;
|
|
|
|
|
2011-09-30 21:06:22 +02:00
|
|
|
/*
|
|
|
|
* Use 'false' as back-to-back NMIs are dealt with one level up.
|
|
|
|
* Of course this makes having multiple 'unknown' handlers useless
|
|
|
|
* as only the first one is ever run (unless it can actually determine
|
|
|
|
* if it caused the NMI)
|
|
|
|
*/
|
|
|
|
handled = nmi_handle(NMI_UNKNOWN, regs, false);
|
2011-09-30 21:06:23 +02:00
|
|
|
if (handled) {
|
|
|
|
__this_cpu_add(nmi_stats.unknown, handled);
|
2011-09-30 21:06:19 +02:00
|
|
|
return;
|
2011-09-30 21:06:23 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
__this_cpu_add(nmi_stats.unknown, 1);
|
|
|
|
|
2011-09-30 21:06:19 +02:00
|
|
|
#ifdef CONFIG_MCA
|
|
|
|
/*
|
|
|
|
* Might actually be able to figure out what the guilty party
|
|
|
|
* is:
|
|
|
|
*/
|
|
|
|
if (MCA_bus) {
|
|
|
|
mca_handle_nmi();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
|
|
|
|
reason, smp_processor_id());
|
|
|
|
|
|
|
|
pr_emerg("Do you have a strange power saving mode enabled?\n");
|
|
|
|
if (unknown_nmi_panic || panic_on_unrecovered_nmi)
|
|
|
|
panic("NMI: Not continuing");
|
|
|
|
|
|
|
|
pr_emerg("Dazed and confused, but trying to continue\n");
|
|
|
|
}
|
|
|
|
|
2011-09-30 21:06:22 +02:00
|
|
|
static DEFINE_PER_CPU(bool, swallow_nmi);
|
|
|
|
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
|
|
|
|
|
2011-09-30 21:06:19 +02:00
|
|
|
static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
unsigned char reason = 0;
|
2011-09-30 21:06:21 +02:00
|
|
|
int handled;
|
2011-09-30 21:06:22 +02:00
|
|
|
bool b2b = false;
|
2011-09-30 21:06:19 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* CPU-specific NMI must be processed before non-CPU-specific
|
|
|
|
* NMI, otherwise we may lose it, because the CPU-specific
|
|
|
|
* NMI can not be detected/processed on other CPUs.
|
|
|
|
*/
|
2011-09-30 21:06:22 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Back-to-back NMIs are interesting because they can either
|
|
|
|
* be two NMI or more than two NMIs (any thing over two is dropped
|
|
|
|
* due to NMI being edge-triggered). If this is the second half
|
|
|
|
* of the back-to-back NMI, assume we dropped things and process
|
|
|
|
* more handlers. Otherwise reset the 'swallow' NMI behaviour
|
|
|
|
*/
|
|
|
|
if (regs->ip == __this_cpu_read(last_nmi_rip))
|
|
|
|
b2b = true;
|
|
|
|
else
|
|
|
|
__this_cpu_write(swallow_nmi, false);
|
|
|
|
|
|
|
|
__this_cpu_write(last_nmi_rip, regs->ip);
|
|
|
|
|
|
|
|
handled = nmi_handle(NMI_LOCAL, regs, b2b);
|
2011-09-30 21:06:23 +02:00
|
|
|
__this_cpu_add(nmi_stats.normal, handled);
|
2011-09-30 21:06:22 +02:00
|
|
|
if (handled) {
|
|
|
|
/*
|
|
|
|
* There are cases when a NMI handler handles multiple
|
|
|
|
* events in the current NMI. One of these events may
|
|
|
|
* be queued for in the next NMI. Because the event is
|
|
|
|
* already handled, the next NMI will result in an unknown
|
|
|
|
* NMI. Instead lets flag this for a potential NMI to
|
|
|
|
* swallow.
|
|
|
|
*/
|
|
|
|
if (handled > 1)
|
|
|
|
__this_cpu_write(swallow_nmi, true);
|
2011-09-30 21:06:19 +02:00
|
|
|
return;
|
2011-09-30 21:06:22 +02:00
|
|
|
}
|
2011-09-30 21:06:19 +02:00
|
|
|
|
|
|
|
/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
|
|
|
|
raw_spin_lock(&nmi_reason_lock);
|
2011-11-10 14:43:05 +01:00
|
|
|
reason = x86_platform.get_nmi_reason();
|
2011-09-30 21:06:19 +02:00
|
|
|
|
|
|
|
if (reason & NMI_REASON_MASK) {
|
|
|
|
if (reason & NMI_REASON_SERR)
|
|
|
|
pci_serr_error(reason, regs);
|
|
|
|
else if (reason & NMI_REASON_IOCHK)
|
|
|
|
io_check_error(reason, regs);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
|
|
/*
|
|
|
|
* Reassert NMI in case it became active
|
|
|
|
* meanwhile as it's edge-triggered:
|
|
|
|
*/
|
|
|
|
reassert_nmi();
|
|
|
|
#endif
|
2011-09-30 21:06:23 +02:00
|
|
|
__this_cpu_add(nmi_stats.external, 1);
|
2011-09-30 21:06:19 +02:00
|
|
|
raw_spin_unlock(&nmi_reason_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
raw_spin_unlock(&nmi_reason_lock);
|
|
|
|
|
2011-09-30 21:06:22 +02:00
|
|
|
/*
|
|
|
|
* Only one NMI can be latched at a time. To handle
|
|
|
|
* this we may process multiple nmi handlers at once to
|
|
|
|
* cover the case where an NMI is dropped. The downside
|
|
|
|
* to this approach is we may process an NMI prematurely,
|
|
|
|
* while its real NMI is sitting latched. This will cause
|
|
|
|
* an unknown NMI on the next run of the NMI processing.
|
|
|
|
*
|
|
|
|
* We tried to flag that condition above, by setting the
|
|
|
|
* swallow_nmi flag when we process more than one event.
|
|
|
|
* This condition is also only present on the second half
|
|
|
|
* of a back-to-back NMI, so we flag that condition too.
|
|
|
|
*
|
|
|
|
* If both are true, we assume we already processed this
|
|
|
|
* NMI previously and we swallow it. Otherwise we reset
|
|
|
|
* the logic.
|
|
|
|
*
|
|
|
|
* There are scenarios where we may accidentally swallow
|
|
|
|
* a 'real' unknown NMI. For example, while processing
|
|
|
|
* a perf NMI another perf NMI comes in along with a
|
|
|
|
* 'real' unknown NMI. These two NMIs get combined into
|
|
|
|
* one (as descibed above). When the next NMI gets
|
|
|
|
* processed, it will be flagged by perf as handled, but
|
|
|
|
* noone will know that there was a 'real' unknown NMI sent
|
|
|
|
* also. As a result it gets swallowed. Or if the first
|
|
|
|
* perf NMI returns two events handled then the second
|
|
|
|
* NMI will get eaten by the logic below, again losing a
|
|
|
|
* 'real' unknown NMI. But this is the best we can do
|
|
|
|
* for now.
|
|
|
|
*/
|
|
|
|
if (b2b && __this_cpu_read(swallow_nmi))
|
2011-09-30 21:06:23 +02:00
|
|
|
__this_cpu_add(nmi_stats.swallow, 1);
|
2011-09-30 21:06:22 +02:00
|
|
|
else
|
|
|
|
unknown_nmi_error(reason, regs);
|
2011-09-30 21:06:19 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
dotraplinkage notrace __kprobes void
|
|
|
|
do_nmi(struct pt_regs *regs, long error_code)
|
|
|
|
{
|
|
|
|
nmi_enter();
|
|
|
|
|
|
|
|
inc_irq_stat(__nmi_count);
|
|
|
|
|
|
|
|
if (!ignore_nmis)
|
|
|
|
default_do_nmi(regs);
|
|
|
|
|
|
|
|
nmi_exit();
|
|
|
|
}
|
|
|
|
|
|
|
|
void stop_nmi(void)
|
|
|
|
{
|
|
|
|
ignore_nmis++;
|
|
|
|
}
|
|
|
|
|
|
|
|
void restart_nmi(void)
|
|
|
|
{
|
|
|
|
ignore_nmis--;
|
|
|
|
}
|
2011-09-30 21:06:22 +02:00
|
|
|
|
|
|
|
/* reset the back-to-back NMI logic */
|
|
|
|
void local_touch_nmi(void)
|
|
|
|
{
|
|
|
|
__this_cpu_write(last_nmi_rip, 0);
|
|
|
|
}
|