2005-04-17 00:20:36 +02:00
|
|
|
/*
|
|
|
|
* USB hub driver.
|
|
|
|
*
|
|
|
|
* (C) Copyright 1999 Linus Torvalds
|
|
|
|
* (C) Copyright 1999 Johannes Erdfelt
|
|
|
|
* (C) Copyright 1999 Gregory P. Smith
|
|
|
|
* (C) Copyright 2001 Brad Hards (bhards@bigpond.net.au)
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/moduleparam.h>
|
|
|
|
#include <linux/completion.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/smp_lock.h>
|
|
|
|
#include <linux/ioctl.h>
|
|
|
|
#include <linux/usb.h>
|
|
|
|
#include <linux/usbdevice_fs.h>
|
2005-06-20 23:29:58 +02:00
|
|
|
#include <linux/kthread.h>
|
2006-01-11 15:55:29 +01:00
|
|
|
#include <linux/mutex.h>
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
#include <asm/semaphore.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
|
|
|
|
|
|
#include "usb.h"
|
|
|
|
#include "hcd.h"
|
|
|
|
#include "hub.h"
|
|
|
|
|
|
|
|
/* Protect struct usb_device->state and ->children members
|
2005-11-17 23:10:32 +01:00
|
|
|
* Note: Both are also protected by ->dev.sem, except that ->state can
|
2005-04-17 00:20:36 +02:00
|
|
|
* change to USB_STATE_NOTATTACHED even when the semaphore isn't held. */
|
|
|
|
static DEFINE_SPINLOCK(device_state_lock);
|
|
|
|
|
|
|
|
/* khubd's worklist and its lock */
|
|
|
|
static DEFINE_SPINLOCK(hub_event_lock);
|
|
|
|
static LIST_HEAD(hub_event_list); /* List of hubs needing servicing */
|
|
|
|
|
|
|
|
/* Wakes up khubd */
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(khubd_wait);
|
|
|
|
|
2005-06-20 23:29:58 +02:00
|
|
|
static struct task_struct *khubd_task;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* cycle leds on hubs that aren't blinking for attention */
|
|
|
|
static int blinkenlights = 0;
|
|
|
|
module_param (blinkenlights, bool, S_IRUGO);
|
|
|
|
MODULE_PARM_DESC (blinkenlights, "true to cycle leds on hubs");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* As of 2.6.10 we introduce a new USB device initialization scheme which
|
|
|
|
* closely resembles the way Windows works. Hopefully it will be compatible
|
|
|
|
* with a wider range of devices than the old scheme. However some previously
|
|
|
|
* working devices may start giving rise to "device not accepting address"
|
|
|
|
* errors; if that happens the user can try the old scheme by adjusting the
|
|
|
|
* following module parameters.
|
|
|
|
*
|
|
|
|
* For maximum flexibility there are two boolean parameters to control the
|
|
|
|
* hub driver's behavior. On the first initialization attempt, if the
|
|
|
|
* "old_scheme_first" parameter is set then the old scheme will be used,
|
|
|
|
* otherwise the new scheme is used. If that fails and "use_both_schemes"
|
|
|
|
* is set, then the driver will make another attempt, using the other scheme.
|
|
|
|
*/
|
|
|
|
static int old_scheme_first = 0;
|
|
|
|
module_param(old_scheme_first, bool, S_IRUGO | S_IWUSR);
|
|
|
|
MODULE_PARM_DESC(old_scheme_first,
|
|
|
|
"start with the old device initialization scheme");
|
|
|
|
|
|
|
|
static int use_both_schemes = 1;
|
|
|
|
module_param(use_both_schemes, bool, S_IRUGO | S_IWUSR);
|
|
|
|
MODULE_PARM_DESC(use_both_schemes,
|
|
|
|
"try the other device initialization scheme if the "
|
|
|
|
"first one fails");
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
static inline char *portspeed (int portstatus)
|
|
|
|
{
|
|
|
|
if (portstatus & (1 << USB_PORT_FEAT_HIGHSPEED))
|
|
|
|
return "480 Mb/s";
|
|
|
|
else if (portstatus & (1 << USB_PORT_FEAT_LOWSPEED))
|
|
|
|
return "1.5 Mb/s";
|
|
|
|
else
|
|
|
|
return "12 Mb/s";
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Note that hdev or one of its children must be locked! */
|
|
|
|
static inline struct usb_hub *hdev_to_hub(struct usb_device *hdev)
|
|
|
|
{
|
|
|
|
return usb_get_intfdata(hdev->actconfig->interface[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* USB 2.0 spec Section 11.24.4.5 */
|
|
|
|
static int get_hub_descriptor(struct usb_device *hdev, void *data, int size)
|
|
|
|
{
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
ret = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0),
|
|
|
|
USB_REQ_GET_DESCRIPTOR, USB_DIR_IN | USB_RT_HUB,
|
|
|
|
USB_DT_HUB << 8, 0, data, size,
|
|
|
|
USB_CTRL_GET_TIMEOUT);
|
|
|
|
if (ret >= (USB_DT_HUB_NONVAR_SIZE + 2))
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* USB 2.0 spec Section 11.24.2.1
|
|
|
|
*/
|
|
|
|
static int clear_hub_feature(struct usb_device *hdev, int feature)
|
|
|
|
{
|
|
|
|
return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
|
|
|
|
USB_REQ_CLEAR_FEATURE, USB_RT_HUB, feature, 0, NULL, 0, 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* USB 2.0 spec Section 11.24.2.2
|
|
|
|
*/
|
|
|
|
static int clear_port_feature(struct usb_device *hdev, int port1, int feature)
|
|
|
|
{
|
|
|
|
return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
|
|
|
|
USB_REQ_CLEAR_FEATURE, USB_RT_PORT, feature, port1,
|
|
|
|
NULL, 0, 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* USB 2.0 spec Section 11.24.2.13
|
|
|
|
*/
|
|
|
|
static int set_port_feature(struct usb_device *hdev, int port1, int feature)
|
|
|
|
{
|
|
|
|
return usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
|
|
|
|
USB_REQ_SET_FEATURE, USB_RT_PORT, feature, port1,
|
|
|
|
NULL, 0, 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* USB 2.0 spec Section 11.24.2.7.1.10 and table 11-7
|
|
|
|
* for info about using port indicators
|
|
|
|
*/
|
|
|
|
static void set_port_led(
|
|
|
|
struct usb_hub *hub,
|
|
|
|
int port1,
|
|
|
|
int selector
|
|
|
|
)
|
|
|
|
{
|
|
|
|
int status = set_port_feature(hub->hdev, (selector << 8) | port1,
|
|
|
|
USB_PORT_FEAT_INDICATOR);
|
|
|
|
if (status < 0)
|
|
|
|
dev_dbg (hub->intfdev,
|
|
|
|
"port %d indicator %s status %d\n",
|
|
|
|
port1,
|
|
|
|
({ char *s; switch (selector) {
|
|
|
|
case HUB_LED_AMBER: s = "amber"; break;
|
|
|
|
case HUB_LED_GREEN: s = "green"; break;
|
|
|
|
case HUB_LED_OFF: s = "off"; break;
|
|
|
|
case HUB_LED_AUTO: s = "auto"; break;
|
|
|
|
default: s = "??"; break;
|
|
|
|
}; s; }),
|
|
|
|
status);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define LED_CYCLE_PERIOD ((2*HZ)/3)
|
|
|
|
|
|
|
|
static void led_work (void *__hub)
|
|
|
|
{
|
|
|
|
struct usb_hub *hub = __hub;
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
unsigned i;
|
|
|
|
unsigned changed = 0;
|
|
|
|
int cursor = -1;
|
|
|
|
|
|
|
|
if (hdev->state != USB_STATE_CONFIGURED || hub->quiescing)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < hub->descriptor->bNbrPorts; i++) {
|
|
|
|
unsigned selector, mode;
|
|
|
|
|
|
|
|
/* 30%-50% duty cycle */
|
|
|
|
|
|
|
|
switch (hub->indicator[i]) {
|
|
|
|
/* cycle marker */
|
|
|
|
case INDICATOR_CYCLE:
|
|
|
|
cursor = i;
|
|
|
|
selector = HUB_LED_AUTO;
|
|
|
|
mode = INDICATOR_AUTO;
|
|
|
|
break;
|
|
|
|
/* blinking green = sw attention */
|
|
|
|
case INDICATOR_GREEN_BLINK:
|
|
|
|
selector = HUB_LED_GREEN;
|
|
|
|
mode = INDICATOR_GREEN_BLINK_OFF;
|
|
|
|
break;
|
|
|
|
case INDICATOR_GREEN_BLINK_OFF:
|
|
|
|
selector = HUB_LED_OFF;
|
|
|
|
mode = INDICATOR_GREEN_BLINK;
|
|
|
|
break;
|
|
|
|
/* blinking amber = hw attention */
|
|
|
|
case INDICATOR_AMBER_BLINK:
|
|
|
|
selector = HUB_LED_AMBER;
|
|
|
|
mode = INDICATOR_AMBER_BLINK_OFF;
|
|
|
|
break;
|
|
|
|
case INDICATOR_AMBER_BLINK_OFF:
|
|
|
|
selector = HUB_LED_OFF;
|
|
|
|
mode = INDICATOR_AMBER_BLINK;
|
|
|
|
break;
|
|
|
|
/* blink green/amber = reserved */
|
|
|
|
case INDICATOR_ALT_BLINK:
|
|
|
|
selector = HUB_LED_GREEN;
|
|
|
|
mode = INDICATOR_ALT_BLINK_OFF;
|
|
|
|
break;
|
|
|
|
case INDICATOR_ALT_BLINK_OFF:
|
|
|
|
selector = HUB_LED_AMBER;
|
|
|
|
mode = INDICATOR_ALT_BLINK;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (selector != HUB_LED_AUTO)
|
|
|
|
changed = 1;
|
|
|
|
set_port_led(hub, i + 1, selector);
|
|
|
|
hub->indicator[i] = mode;
|
|
|
|
}
|
|
|
|
if (!changed && blinkenlights) {
|
|
|
|
cursor++;
|
|
|
|
cursor %= hub->descriptor->bNbrPorts;
|
|
|
|
set_port_led(hub, cursor + 1, HUB_LED_GREEN);
|
|
|
|
hub->indicator[cursor] = INDICATOR_CYCLE;
|
|
|
|
changed++;
|
|
|
|
}
|
|
|
|
if (changed)
|
|
|
|
schedule_delayed_work(&hub->leds, LED_CYCLE_PERIOD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* use a short timeout for hub/port status fetches */
|
|
|
|
#define USB_STS_TIMEOUT 1000
|
|
|
|
#define USB_STS_RETRIES 5
|
|
|
|
|
|
|
|
/*
|
|
|
|
* USB 2.0 spec Section 11.24.2.6
|
|
|
|
*/
|
|
|
|
static int get_hub_status(struct usb_device *hdev,
|
|
|
|
struct usb_hub_status *data)
|
|
|
|
{
|
|
|
|
int i, status = -ETIMEDOUT;
|
|
|
|
|
|
|
|
for (i = 0; i < USB_STS_RETRIES && status == -ETIMEDOUT; i++) {
|
|
|
|
status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0),
|
|
|
|
USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_HUB, 0, 0,
|
|
|
|
data, sizeof(*data), USB_STS_TIMEOUT);
|
|
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* USB 2.0 spec Section 11.24.2.7
|
|
|
|
*/
|
|
|
|
static int get_port_status(struct usb_device *hdev, int port1,
|
|
|
|
struct usb_port_status *data)
|
|
|
|
{
|
|
|
|
int i, status = -ETIMEDOUT;
|
|
|
|
|
|
|
|
for (i = 0; i < USB_STS_RETRIES && status == -ETIMEDOUT; i++) {
|
|
|
|
status = usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0),
|
|
|
|
USB_REQ_GET_STATUS, USB_DIR_IN | USB_RT_PORT, 0, port1,
|
|
|
|
data, sizeof(*data), USB_STS_TIMEOUT);
|
|
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kick_khubd(struct usb_hub *hub)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&hub_event_lock, flags);
|
|
|
|
if (list_empty(&hub->event_list)) {
|
|
|
|
list_add_tail(&hub->event_list, &hub_event_list);
|
|
|
|
wake_up(&khubd_wait);
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&hub_event_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
void usb_kick_khubd(struct usb_device *hdev)
|
|
|
|
{
|
|
|
|
kick_khubd(hdev_to_hub(hdev));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* completion function, fires on port status changes and various faults */
|
|
|
|
static void hub_irq(struct urb *urb, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
struct usb_hub *hub = (struct usb_hub *)urb->context;
|
|
|
|
int status;
|
|
|
|
int i;
|
|
|
|
unsigned long bits;
|
|
|
|
|
|
|
|
switch (urb->status) {
|
|
|
|
case -ENOENT: /* synchronous unlink */
|
|
|
|
case -ECONNRESET: /* async unlink */
|
|
|
|
case -ESHUTDOWN: /* hardware going away */
|
|
|
|
return;
|
|
|
|
|
|
|
|
default: /* presumably an error */
|
|
|
|
/* Cause a hub reset after 10 consecutive errors */
|
|
|
|
dev_dbg (hub->intfdev, "transfer --> %d\n", urb->status);
|
|
|
|
if ((++hub->nerrors < 10) || hub->error)
|
|
|
|
goto resubmit;
|
|
|
|
hub->error = urb->status;
|
|
|
|
/* FALL THROUGH */
|
|
|
|
|
|
|
|
/* let khubd handle things */
|
|
|
|
case 0: /* we got data: port status changed */
|
|
|
|
bits = 0;
|
|
|
|
for (i = 0; i < urb->actual_length; ++i)
|
|
|
|
bits |= ((unsigned long) ((*hub->buffer)[i]))
|
|
|
|
<< (i*8);
|
|
|
|
hub->event_bits[0] = bits;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
hub->nerrors = 0;
|
|
|
|
|
|
|
|
/* Something happened, let khubd figure it out */
|
|
|
|
kick_khubd(hub);
|
|
|
|
|
|
|
|
resubmit:
|
|
|
|
if (hub->quiescing)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if ((status = usb_submit_urb (hub->urb, GFP_ATOMIC)) != 0
|
|
|
|
&& status != -ENODEV && status != -EPERM)
|
|
|
|
dev_err (hub->intfdev, "resubmit --> %d\n", status);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* USB 2.0 spec Section 11.24.2.3 */
|
|
|
|
static inline int
|
|
|
|
hub_clear_tt_buffer (struct usb_device *hdev, u16 devinfo, u16 tt)
|
|
|
|
{
|
|
|
|
return usb_control_msg(hdev, usb_rcvctrlpipe(hdev, 0),
|
|
|
|
HUB_CLEAR_TT_BUFFER, USB_RT_PORT, devinfo,
|
|
|
|
tt, NULL, 0, 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* enumeration blocks khubd for a long time. we use keventd instead, since
|
|
|
|
* long blocking there is the exception, not the rule. accordingly, HCDs
|
|
|
|
* talking to TTs must queue control transfers (not just bulk and iso), so
|
|
|
|
* both can talk to the same hub concurrently.
|
|
|
|
*/
|
|
|
|
static void hub_tt_kevent (void *arg)
|
|
|
|
{
|
|
|
|
struct usb_hub *hub = arg;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave (&hub->tt.lock, flags);
|
|
|
|
while (!list_empty (&hub->tt.clear_list)) {
|
|
|
|
struct list_head *temp;
|
|
|
|
struct usb_tt_clear *clear;
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
int status;
|
|
|
|
|
|
|
|
temp = hub->tt.clear_list.next;
|
|
|
|
clear = list_entry (temp, struct usb_tt_clear, clear_list);
|
|
|
|
list_del (&clear->clear_list);
|
|
|
|
|
|
|
|
/* drop lock so HCD can concurrently report other TT errors */
|
|
|
|
spin_unlock_irqrestore (&hub->tt.lock, flags);
|
|
|
|
status = hub_clear_tt_buffer (hdev, clear->devinfo, clear->tt);
|
|
|
|
spin_lock_irqsave (&hub->tt.lock, flags);
|
|
|
|
|
|
|
|
if (status)
|
|
|
|
dev_err (&hdev->dev,
|
|
|
|
"clear tt %d (%04x) error %d\n",
|
|
|
|
clear->tt, clear->devinfo, status);
|
2005-04-19 02:39:34 +02:00
|
|
|
kfree(clear);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
spin_unlock_irqrestore (&hub->tt.lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_hub_tt_clear_buffer - clear control/bulk TT state in high speed hub
|
|
|
|
* @udev: the device whose split transaction failed
|
|
|
|
* @pipe: identifies the endpoint of the failed transaction
|
|
|
|
*
|
|
|
|
* High speed HCDs use this to tell the hub driver that some split control or
|
|
|
|
* bulk transaction failed in a way that requires clearing internal state of
|
|
|
|
* a transaction translator. This is normally detected (and reported) from
|
|
|
|
* interrupt context.
|
|
|
|
*
|
|
|
|
* It may not be possible for that hub to handle additional full (or low)
|
|
|
|
* speed transactions until that state is fully cleared out.
|
|
|
|
*/
|
|
|
|
void usb_hub_tt_clear_buffer (struct usb_device *udev, int pipe)
|
|
|
|
{
|
|
|
|
struct usb_tt *tt = udev->tt;
|
|
|
|
unsigned long flags;
|
|
|
|
struct usb_tt_clear *clear;
|
|
|
|
|
|
|
|
/* we've got to cope with an arbitrary number of pending TT clears,
|
|
|
|
* since each TT has "at least two" buffers that can need it (and
|
|
|
|
* there can be many TTs per hub). even if they're uncommon.
|
|
|
|
*/
|
|
|
|
if ((clear = kmalloc (sizeof *clear, SLAB_ATOMIC)) == NULL) {
|
|
|
|
dev_err (&udev->dev, "can't save CLEAR_TT_BUFFER state\n");
|
|
|
|
/* FIXME recover somehow ... RESET_TT? */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* info that CLEAR_TT_BUFFER needs */
|
|
|
|
clear->tt = tt->multi ? udev->ttport : 1;
|
|
|
|
clear->devinfo = usb_pipeendpoint (pipe);
|
|
|
|
clear->devinfo |= udev->devnum << 4;
|
|
|
|
clear->devinfo |= usb_pipecontrol (pipe)
|
|
|
|
? (USB_ENDPOINT_XFER_CONTROL << 11)
|
|
|
|
: (USB_ENDPOINT_XFER_BULK << 11);
|
|
|
|
if (usb_pipein (pipe))
|
|
|
|
clear->devinfo |= 1 << 15;
|
|
|
|
|
|
|
|
/* tell keventd to clear state for this TT */
|
|
|
|
spin_lock_irqsave (&tt->lock, flags);
|
|
|
|
list_add_tail (&clear->clear_list, &tt->clear_list);
|
|
|
|
schedule_work (&tt->kevent);
|
|
|
|
spin_unlock_irqrestore (&tt->lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hub_power_on(struct usb_hub *hub)
|
|
|
|
{
|
|
|
|
int port1;
|
2005-08-31 19:41:44 +02:00
|
|
|
unsigned pgood_delay = hub->descriptor->bPwrOn2PwrGood * 2;
|
2006-04-27 21:54:22 +02:00
|
|
|
u16 wHubCharacteristics =
|
|
|
|
le16_to_cpu(hub->descriptor->wHubCharacteristics);
|
|
|
|
|
|
|
|
/* Enable power on each port. Some hubs have reserved values
|
|
|
|
* of LPSM (> 2) in their descriptors, even though they are
|
|
|
|
* USB 2.0 hubs. Some hubs do not implement port-power switching
|
|
|
|
* but only emulate it. In all cases, the ports won't work
|
|
|
|
* unless we send these messages to the hub.
|
|
|
|
*/
|
|
|
|
if ((wHubCharacteristics & HUB_CHAR_LPSM) < 2)
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_dbg(hub->intfdev, "enabling power on all ports\n");
|
2006-04-27 21:54:22 +02:00
|
|
|
else
|
|
|
|
dev_dbg(hub->intfdev, "trying to enable port power on "
|
|
|
|
"non-switchable hub\n");
|
|
|
|
for (port1 = 1; port1 <= hub->descriptor->bNbrPorts; port1++)
|
|
|
|
set_port_feature(hub->hdev, port1, USB_PORT_FEAT_POWER);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2005-08-31 19:41:44 +02:00
|
|
|
/* Wait at least 100 msec for power to become stable */
|
|
|
|
msleep(max(pgood_delay, (unsigned) 100));
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
2005-09-23 07:32:24 +02:00
|
|
|
static inline void __hub_quiesce(struct usb_hub *hub)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2005-09-23 07:32:24 +02:00
|
|
|
/* (nonblocking) khubd and related activity won't re-trigger */
|
2005-04-17 00:20:36 +02:00
|
|
|
hub->quiescing = 1;
|
2005-09-14 04:57:04 +02:00
|
|
|
hub->activating = 0;
|
2005-09-23 07:32:24 +02:00
|
|
|
hub->resume_root_hub = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hub_quiesce(struct usb_hub *hub)
|
|
|
|
{
|
|
|
|
/* (blocking) stop khubd and related activity */
|
|
|
|
__hub_quiesce(hub);
|
2005-04-17 00:20:36 +02:00
|
|
|
usb_kill_urb(hub->urb);
|
|
|
|
if (hub->has_indicators)
|
|
|
|
cancel_delayed_work(&hub->leds);
|
|
|
|
if (hub->has_indicators || hub->tt.hub)
|
|
|
|
flush_scheduled_work();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hub_activate(struct usb_hub *hub)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
|
|
|
|
hub->quiescing = 0;
|
|
|
|
hub->activating = 1;
|
2005-09-23 07:32:24 +02:00
|
|
|
hub->resume_root_hub = 0;
|
2005-04-17 00:20:36 +02:00
|
|
|
status = usb_submit_urb(hub->urb, GFP_NOIO);
|
|
|
|
if (status < 0)
|
|
|
|
dev_err(hub->intfdev, "activate --> %d\n", status);
|
|
|
|
if (hub->has_indicators && blinkenlights)
|
|
|
|
schedule_delayed_work(&hub->leds, LED_CYCLE_PERIOD);
|
|
|
|
|
|
|
|
/* scan all ports ASAP */
|
|
|
|
kick_khubd(hub);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hub_hub_status(struct usb_hub *hub,
|
|
|
|
u16 *status, u16 *change)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = get_hub_status(hub->hdev, &hub->status->hub);
|
|
|
|
if (ret < 0)
|
|
|
|
dev_err (hub->intfdev,
|
|
|
|
"%s failed (err = %d)\n", __FUNCTION__, ret);
|
|
|
|
else {
|
|
|
|
*status = le16_to_cpu(hub->status->hub.wHubStatus);
|
|
|
|
*change = le16_to_cpu(hub->status->hub.wHubChange);
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2005-08-10 23:04:13 +02:00
|
|
|
static int hub_port_disable(struct usb_hub *hub, int port1, int set_state)
|
|
|
|
{
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (hdev->children[port1-1] && set_state) {
|
|
|
|
usb_set_device_state(hdev->children[port1-1],
|
|
|
|
USB_STATE_NOTATTACHED);
|
|
|
|
}
|
|
|
|
ret = clear_port_feature(hdev, port1, USB_PORT_FEAT_ENABLE);
|
|
|
|
if (ret)
|
|
|
|
dev_err(hub->intfdev, "cannot disable port %d (err = %d)\n",
|
|
|
|
port1, ret);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2005-11-18 18:06:34 +01:00
|
|
|
|
|
|
|
/* caller has locked the hub device */
|
2006-06-01 19:37:24 +02:00
|
|
|
static void hub_pre_reset(struct usb_interface *intf)
|
2005-11-18 18:06:34 +01:00
|
|
|
{
|
2006-06-01 19:37:24 +02:00
|
|
|
struct usb_hub *hub = usb_get_intfdata(intf);
|
2005-11-18 18:06:34 +01:00
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
int port1;
|
|
|
|
|
|
|
|
for (port1 = 1; port1 <= hdev->maxchild; ++port1) {
|
|
|
|
if (hdev->children[port1 - 1]) {
|
|
|
|
usb_disconnect(&hdev->children[port1 - 1]);
|
2006-06-01 19:37:24 +02:00
|
|
|
if (hub->error == 0)
|
2005-11-18 18:06:34 +01:00
|
|
|
hub_port_disable(hub, port1, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
hub_quiesce(hub);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* caller has locked the hub device */
|
2006-06-01 19:37:24 +02:00
|
|
|
static void hub_post_reset(struct usb_interface *intf)
|
2005-11-18 18:06:34 +01:00
|
|
|
{
|
2006-06-01 19:37:24 +02:00
|
|
|
struct usb_hub *hub = usb_get_intfdata(intf);
|
|
|
|
|
2005-11-18 18:06:34 +01:00
|
|
|
hub_activate(hub);
|
|
|
|
hub_power_on(hub);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
static int hub_configure(struct usb_hub *hub,
|
|
|
|
struct usb_endpoint_descriptor *endpoint)
|
|
|
|
{
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
struct device *hub_dev = hub->intfdev;
|
|
|
|
u16 hubstatus, hubchange;
|
2005-06-21 06:15:16 +02:00
|
|
|
u16 wHubCharacteristics;
|
2005-04-17 00:20:36 +02:00
|
|
|
unsigned int pipe;
|
|
|
|
int maxp, ret;
|
|
|
|
char *message;
|
|
|
|
|
|
|
|
hub->buffer = usb_buffer_alloc(hdev, sizeof(*hub->buffer), GFP_KERNEL,
|
|
|
|
&hub->buffer_dma);
|
|
|
|
if (!hub->buffer) {
|
|
|
|
message = "can't allocate hub irq buffer";
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
hub->status = kmalloc(sizeof(*hub->status), GFP_KERNEL);
|
|
|
|
if (!hub->status) {
|
|
|
|
message = "can't kmalloc hub status buffer";
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
hub->descriptor = kmalloc(sizeof(*hub->descriptor), GFP_KERNEL);
|
|
|
|
if (!hub->descriptor) {
|
|
|
|
message = "can't kmalloc hub descriptor";
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Request the entire hub descriptor.
|
|
|
|
* hub->descriptor can handle USB_MAXCHILDREN ports,
|
|
|
|
* but the hub can/will return fewer bytes here.
|
|
|
|
*/
|
|
|
|
ret = get_hub_descriptor(hdev, hub->descriptor,
|
|
|
|
sizeof(*hub->descriptor));
|
|
|
|
if (ret < 0) {
|
|
|
|
message = "can't read hub descriptor";
|
|
|
|
goto fail;
|
|
|
|
} else if (hub->descriptor->bNbrPorts > USB_MAXCHILDREN) {
|
|
|
|
message = "hub has too many ports!";
|
|
|
|
ret = -ENODEV;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
hdev->maxchild = hub->descriptor->bNbrPorts;
|
|
|
|
dev_info (hub_dev, "%d port%s detected\n", hdev->maxchild,
|
|
|
|
(hdev->maxchild == 1) ? "" : "s");
|
|
|
|
|
2005-06-21 06:15:16 +02:00
|
|
|
wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2005-06-21 06:15:16 +02:00
|
|
|
if (wHubCharacteristics & HUB_CHAR_COMPOUND) {
|
2005-04-17 00:20:36 +02:00
|
|
|
int i;
|
|
|
|
char portstr [USB_MAXCHILDREN + 1];
|
|
|
|
|
|
|
|
for (i = 0; i < hdev->maxchild; i++)
|
|
|
|
portstr[i] = hub->descriptor->DeviceRemovable
|
|
|
|
[((i + 1) / 8)] & (1 << ((i + 1) % 8))
|
|
|
|
? 'F' : 'R';
|
|
|
|
portstr[hdev->maxchild] = 0;
|
|
|
|
dev_dbg(hub_dev, "compound device; port removable status: %s\n", portstr);
|
|
|
|
} else
|
|
|
|
dev_dbg(hub_dev, "standalone hub\n");
|
|
|
|
|
2005-06-21 06:15:16 +02:00
|
|
|
switch (wHubCharacteristics & HUB_CHAR_LPSM) {
|
2005-04-17 00:20:36 +02:00
|
|
|
case 0x00:
|
|
|
|
dev_dbg(hub_dev, "ganged power switching\n");
|
|
|
|
break;
|
|
|
|
case 0x01:
|
|
|
|
dev_dbg(hub_dev, "individual port power switching\n");
|
|
|
|
break;
|
|
|
|
case 0x02:
|
|
|
|
case 0x03:
|
|
|
|
dev_dbg(hub_dev, "no power switching (usb 1.0)\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2005-06-21 06:15:16 +02:00
|
|
|
switch (wHubCharacteristics & HUB_CHAR_OCPM) {
|
2005-04-17 00:20:36 +02:00
|
|
|
case 0x00:
|
|
|
|
dev_dbg(hub_dev, "global over-current protection\n");
|
|
|
|
break;
|
|
|
|
case 0x08:
|
|
|
|
dev_dbg(hub_dev, "individual port over-current protection\n");
|
|
|
|
break;
|
|
|
|
case 0x10:
|
|
|
|
case 0x18:
|
|
|
|
dev_dbg(hub_dev, "no over-current protection\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock_init (&hub->tt.lock);
|
|
|
|
INIT_LIST_HEAD (&hub->tt.clear_list);
|
|
|
|
INIT_WORK (&hub->tt.kevent, hub_tt_kevent, hub);
|
|
|
|
switch (hdev->descriptor.bDeviceProtocol) {
|
|
|
|
case 0:
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
dev_dbg(hub_dev, "Single TT\n");
|
|
|
|
hub->tt.hub = hdev;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
ret = usb_set_interface(hdev, 0, 1);
|
|
|
|
if (ret == 0) {
|
|
|
|
dev_dbg(hub_dev, "TT per port\n");
|
|
|
|
hub->tt.multi = 1;
|
|
|
|
} else
|
|
|
|
dev_err(hub_dev, "Using single TT (err %d)\n",
|
|
|
|
ret);
|
|
|
|
hub->tt.hub = hdev;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
dev_dbg(hub_dev, "Unrecognized hub protocol %d\n",
|
|
|
|
hdev->descriptor.bDeviceProtocol);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2005-08-14 03:41:04 +02:00
|
|
|
/* Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns */
|
2005-06-21 06:15:16 +02:00
|
|
|
switch (wHubCharacteristics & HUB_CHAR_TTTT) {
|
2005-08-14 03:41:04 +02:00
|
|
|
case HUB_TTTT_8_BITS:
|
|
|
|
if (hdev->descriptor.bDeviceProtocol != 0) {
|
|
|
|
hub->tt.think_time = 666;
|
|
|
|
dev_dbg(hub_dev, "TT requires at most %d "
|
|
|
|
"FS bit times (%d ns)\n",
|
|
|
|
8, hub->tt.think_time);
|
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
break;
|
2005-08-14 03:41:04 +02:00
|
|
|
case HUB_TTTT_16_BITS:
|
|
|
|
hub->tt.think_time = 666 * 2;
|
|
|
|
dev_dbg(hub_dev, "TT requires at most %d "
|
|
|
|
"FS bit times (%d ns)\n",
|
|
|
|
16, hub->tt.think_time);
|
2005-04-17 00:20:36 +02:00
|
|
|
break;
|
2005-08-14 03:41:04 +02:00
|
|
|
case HUB_TTTT_24_BITS:
|
|
|
|
hub->tt.think_time = 666 * 3;
|
|
|
|
dev_dbg(hub_dev, "TT requires at most %d "
|
|
|
|
"FS bit times (%d ns)\n",
|
|
|
|
24, hub->tt.think_time);
|
2005-04-17 00:20:36 +02:00
|
|
|
break;
|
2005-08-14 03:41:04 +02:00
|
|
|
case HUB_TTTT_32_BITS:
|
|
|
|
hub->tt.think_time = 666 * 4;
|
|
|
|
dev_dbg(hub_dev, "TT requires at most %d "
|
|
|
|
"FS bit times (%d ns)\n",
|
|
|
|
32, hub->tt.think_time);
|
2005-04-17 00:20:36 +02:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* probe() zeroes hub->indicator[] */
|
2005-06-21 06:15:16 +02:00
|
|
|
if (wHubCharacteristics & HUB_CHAR_PORTIND) {
|
2005-04-17 00:20:36 +02:00
|
|
|
hub->has_indicators = 1;
|
|
|
|
dev_dbg(hub_dev, "Port indicators are supported\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_dbg(hub_dev, "power on to power good time: %dms\n",
|
|
|
|
hub->descriptor->bPwrOn2PwrGood * 2);
|
|
|
|
|
|
|
|
/* power budgeting mostly matters with bus-powered hubs,
|
|
|
|
* and battery-powered root hubs (may provide just 8 mA).
|
|
|
|
*/
|
|
|
|
ret = usb_get_status(hdev, USB_RECIP_DEVICE, 0, &hubstatus);
|
2005-11-23 18:03:12 +01:00
|
|
|
if (ret < 2) {
|
2005-04-17 00:20:36 +02:00
|
|
|
message = "can't get hub status";
|
|
|
|
goto fail;
|
|
|
|
}
|
2005-04-25 17:18:32 +02:00
|
|
|
le16_to_cpus(&hubstatus);
|
|
|
|
if (hdev == hdev->bus->root_hub) {
|
2005-11-23 18:03:12 +01:00
|
|
|
if (hdev->bus_mA == 0 || hdev->bus_mA >= 500)
|
|
|
|
hub->mA_per_port = 500;
|
|
|
|
else {
|
|
|
|
hub->mA_per_port = hdev->bus_mA;
|
|
|
|
hub->limited_power = 1;
|
|
|
|
}
|
2005-04-25 17:18:32 +02:00
|
|
|
} else if ((hubstatus & (1 << USB_DEVICE_SELF_POWERED)) == 0) {
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_dbg(hub_dev, "hub controller current requirement: %dmA\n",
|
|
|
|
hub->descriptor->bHubContrCurrent);
|
2005-11-23 18:03:12 +01:00
|
|
|
hub->limited_power = 1;
|
|
|
|
if (hdev->maxchild > 0) {
|
|
|
|
int remaining = hdev->bus_mA -
|
|
|
|
hub->descriptor->bHubContrCurrent;
|
|
|
|
|
|
|
|
if (remaining < hdev->maxchild * 100)
|
|
|
|
dev_warn(hub_dev,
|
|
|
|
"insufficient power available "
|
|
|
|
"to use all downstream ports\n");
|
|
|
|
hub->mA_per_port = 100; /* 7.2.1.1 */
|
|
|
|
}
|
|
|
|
} else { /* Self-powered external hub */
|
|
|
|
/* FIXME: What about battery-powered external hubs that
|
|
|
|
* provide less current per port? */
|
|
|
|
hub->mA_per_port = 500;
|
2005-04-25 17:18:32 +02:00
|
|
|
}
|
2005-11-23 18:03:12 +01:00
|
|
|
if (hub->mA_per_port < 500)
|
|
|
|
dev_dbg(hub_dev, "%umA bus power budget for each child\n",
|
|
|
|
hub->mA_per_port);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
ret = hub_hub_status(hub, &hubstatus, &hubchange);
|
|
|
|
if (ret < 0) {
|
|
|
|
message = "can't get hub status";
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* local power status reports aren't always correct */
|
|
|
|
if (hdev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_SELFPOWER)
|
|
|
|
dev_dbg(hub_dev, "local power source is %s\n",
|
|
|
|
(hubstatus & HUB_STATUS_LOCAL_POWER)
|
|
|
|
? "lost (inactive)" : "good");
|
|
|
|
|
2005-06-21 06:15:16 +02:00
|
|
|
if ((wHubCharacteristics & HUB_CHAR_OCPM) == 0)
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_dbg(hub_dev, "%sover-current condition exists\n",
|
|
|
|
(hubstatus & HUB_STATUS_OVERCURRENT) ? "" : "no ");
|
|
|
|
|
|
|
|
/* set up the interrupt endpoint */
|
|
|
|
pipe = usb_rcvintpipe(hdev, endpoint->bEndpointAddress);
|
|
|
|
maxp = usb_maxpacket(hdev, pipe, usb_pipeout(pipe));
|
|
|
|
|
|
|
|
if (maxp > sizeof(*hub->buffer))
|
|
|
|
maxp = sizeof(*hub->buffer);
|
|
|
|
|
|
|
|
hub->urb = usb_alloc_urb(0, GFP_KERNEL);
|
|
|
|
if (!hub->urb) {
|
|
|
|
message = "couldn't allocate interrupt urb";
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
usb_fill_int_urb(hub->urb, hdev, pipe, *hub->buffer, maxp, hub_irq,
|
|
|
|
hub, endpoint->bInterval);
|
|
|
|
hub->urb->transfer_dma = hub->buffer_dma;
|
|
|
|
hub->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
|
|
|
|
|
|
|
|
/* maybe cycle the hub leds */
|
|
|
|
if (hub->has_indicators && blinkenlights)
|
|
|
|
hub->indicator [0] = INDICATOR_CYCLE;
|
|
|
|
|
|
|
|
hub_power_on(hub);
|
|
|
|
hub_activate(hub);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
dev_err (hub_dev, "config failed, %s (err %d)\n",
|
|
|
|
message, ret);
|
|
|
|
/* hub_disconnect() frees urb and descriptor */
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned highspeed_hubs;
|
|
|
|
|
|
|
|
static void hub_disconnect(struct usb_interface *intf)
|
|
|
|
{
|
|
|
|
struct usb_hub *hub = usb_get_intfdata (intf);
|
|
|
|
struct usb_device *hdev;
|
|
|
|
|
2006-06-01 19:37:24 +02:00
|
|
|
/* Disconnect all children and quiesce the hub */
|
|
|
|
hub->error = 0;
|
|
|
|
hub_pre_reset(intf);
|
|
|
|
|
2005-08-10 23:04:13 +02:00
|
|
|
usb_set_intfdata (intf, NULL);
|
2005-04-17 00:20:36 +02:00
|
|
|
hdev = hub->hdev;
|
|
|
|
|
|
|
|
if (hdev->speed == USB_SPEED_HIGH)
|
|
|
|
highspeed_hubs--;
|
|
|
|
|
|
|
|
usb_free_urb(hub->urb);
|
|
|
|
hub->urb = NULL;
|
|
|
|
|
|
|
|
spin_lock_irq(&hub_event_lock);
|
|
|
|
list_del_init(&hub->event_list);
|
|
|
|
spin_unlock_irq(&hub_event_lock);
|
|
|
|
|
2005-04-19 02:39:34 +02:00
|
|
|
kfree(hub->descriptor);
|
|
|
|
hub->descriptor = NULL;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2005-04-19 02:39:34 +02:00
|
|
|
kfree(hub->status);
|
|
|
|
hub->status = NULL;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
if (hub->buffer) {
|
|
|
|
usb_buffer_free(hdev, sizeof(*hub->buffer), hub->buffer,
|
|
|
|
hub->buffer_dma);
|
|
|
|
hub->buffer = NULL;
|
|
|
|
}
|
|
|
|
|
2005-11-18 18:06:34 +01:00
|
|
|
kfree(hub);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static int hub_probe(struct usb_interface *intf, const struct usb_device_id *id)
|
|
|
|
{
|
|
|
|
struct usb_host_interface *desc;
|
|
|
|
struct usb_endpoint_descriptor *endpoint;
|
|
|
|
struct usb_device *hdev;
|
|
|
|
struct usb_hub *hub;
|
|
|
|
|
|
|
|
desc = intf->cur_altsetting;
|
|
|
|
hdev = interface_to_usbdev(intf);
|
|
|
|
|
2006-04-02 20:18:09 +02:00
|
|
|
#ifdef CONFIG_USB_OTG_BLACKLIST_HUB
|
|
|
|
if (hdev->parent) {
|
|
|
|
dev_warn(&intf->dev, "ignoring external hub\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
/* Some hubs have a subclass of 1, which AFAICT according to the */
|
|
|
|
/* specs is not defined, but it works */
|
|
|
|
if ((desc->desc.bInterfaceSubClass != 0) &&
|
|
|
|
(desc->desc.bInterfaceSubClass != 1)) {
|
|
|
|
descriptor_error:
|
|
|
|
dev_err (&intf->dev, "bad descriptor, ignoring hub\n");
|
|
|
|
return -EIO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Multiple endpoints? What kind of mutant ninja-hub is this? */
|
|
|
|
if (desc->desc.bNumEndpoints != 1)
|
|
|
|
goto descriptor_error;
|
|
|
|
|
|
|
|
endpoint = &desc->endpoint[0].desc;
|
|
|
|
|
2006-09-27 20:58:53 +02:00
|
|
|
/* If it's not an interrupt in endpoint, we'd better punt! */
|
|
|
|
if (!usb_endpoint_is_int_in(endpoint))
|
2005-04-17 00:20:36 +02:00
|
|
|
goto descriptor_error;
|
|
|
|
|
|
|
|
/* We found a hub */
|
|
|
|
dev_info (&intf->dev, "USB hub found\n");
|
|
|
|
|
2005-10-24 21:38:24 +02:00
|
|
|
hub = kzalloc(sizeof(*hub), GFP_KERNEL);
|
2005-04-17 00:20:36 +02:00
|
|
|
if (!hub) {
|
|
|
|
dev_dbg (&intf->dev, "couldn't kmalloc hub struct\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&hub->event_list);
|
|
|
|
hub->intfdev = &intf->dev;
|
|
|
|
hub->hdev = hdev;
|
|
|
|
INIT_WORK(&hub->leds, led_work, hub);
|
|
|
|
|
|
|
|
usb_set_intfdata (intf, hub);
|
|
|
|
|
|
|
|
if (hdev->speed == USB_SPEED_HIGH)
|
|
|
|
highspeed_hubs++;
|
|
|
|
|
|
|
|
if (hub_configure(hub, endpoint) >= 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hub_disconnect (intf);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
hub_ioctl(struct usb_interface *intf, unsigned int code, void *user_data)
|
|
|
|
{
|
|
|
|
struct usb_device *hdev = interface_to_usbdev (intf);
|
|
|
|
|
|
|
|
/* assert ifno == 0 (part of hub spec) */
|
|
|
|
switch (code) {
|
|
|
|
case USBDEVFS_HUB_PORTINFO: {
|
|
|
|
struct usbdevfs_hub_portinfo *info = user_data;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
spin_lock_irq(&device_state_lock);
|
|
|
|
if (hdev->devnum <= 0)
|
|
|
|
info->nports = 0;
|
|
|
|
else {
|
|
|
|
info->nports = hdev->maxchild;
|
|
|
|
for (i = 0; i < info->nports; i++) {
|
|
|
|
if (hdev->children[i] == NULL)
|
|
|
|
info->port[i] = 0;
|
|
|
|
else
|
|
|
|
info->port[i] =
|
|
|
|
hdev->children[i]->devnum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irq(&device_state_lock);
|
|
|
|
|
|
|
|
return info->nports + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
return -ENOSYS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* grab device/port lock, returning index of that port (zero based).
|
|
|
|
* protects the upstream link used by this device from concurrent
|
|
|
|
* tree operations like suspend, resume, reset, and disconnect, which
|
|
|
|
* apply to everything downstream of a given port.
|
|
|
|
*/
|
|
|
|
static int locktree(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int t;
|
|
|
|
struct usb_device *hdev;
|
|
|
|
|
|
|
|
if (!udev)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
/* root hub is always the first lock in the series */
|
|
|
|
hdev = udev->parent;
|
|
|
|
if (!hdev) {
|
|
|
|
usb_lock_device(udev);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* on the path from root to us, lock everything from
|
|
|
|
* top down, dropping parent locks when not needed
|
|
|
|
*/
|
|
|
|
t = locktree(hdev);
|
|
|
|
if (t < 0)
|
|
|
|
return t;
|
|
|
|
|
2005-11-23 18:09:52 +01:00
|
|
|
/* everything is fail-fast once disconnect
|
|
|
|
* processing starts
|
|
|
|
*/
|
|
|
|
if (udev->state == USB_STATE_NOTATTACHED) {
|
|
|
|
usb_unlock_device(hdev);
|
|
|
|
return -ENODEV;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
2005-11-23 18:09:52 +01:00
|
|
|
|
|
|
|
/* when everyone grabs locks top->bottom,
|
|
|
|
* non-overlapping work may be concurrent
|
|
|
|
*/
|
|
|
|
usb_lock_device(udev);
|
2005-04-17 00:20:36 +02:00
|
|
|
usb_unlock_device(hdev);
|
2005-11-23 18:09:52 +01:00
|
|
|
return udev->portnum;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void recursively_mark_NOTATTACHED(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < udev->maxchild; ++i) {
|
|
|
|
if (udev->children[i])
|
|
|
|
recursively_mark_NOTATTACHED(udev->children[i]);
|
|
|
|
}
|
|
|
|
udev->state = USB_STATE_NOTATTACHED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_set_device_state - change a device's current state (usbcore, hcds)
|
|
|
|
* @udev: pointer to device whose state should be changed
|
|
|
|
* @new_state: new state value to be stored
|
|
|
|
*
|
|
|
|
* udev->state is _not_ fully protected by the device lock. Although
|
|
|
|
* most transitions are made only while holding the lock, the state can
|
|
|
|
* can change to USB_STATE_NOTATTACHED at almost any time. This
|
|
|
|
* is so that devices can be marked as disconnected as soon as possible,
|
|
|
|
* without having to wait for any semaphores to be released. As a result,
|
|
|
|
* all changes to any device's state must be protected by the
|
|
|
|
* device_state_lock spinlock.
|
|
|
|
*
|
|
|
|
* Once a device has been added to the device tree, all changes to its state
|
|
|
|
* should be made using this routine. The state should _not_ be set directly.
|
|
|
|
*
|
|
|
|
* If udev->state is already USB_STATE_NOTATTACHED then no change is made.
|
|
|
|
* Otherwise udev->state is set to new_state, and if new_state is
|
|
|
|
* USB_STATE_NOTATTACHED then all of udev's descendants' states are also set
|
|
|
|
* to USB_STATE_NOTATTACHED.
|
|
|
|
*/
|
|
|
|
void usb_set_device_state(struct usb_device *udev,
|
|
|
|
enum usb_device_state new_state)
|
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&device_state_lock, flags);
|
|
|
|
if (udev->state == USB_STATE_NOTATTACHED)
|
|
|
|
; /* do nothing */
|
2005-09-13 04:39:39 +02:00
|
|
|
else if (new_state != USB_STATE_NOTATTACHED) {
|
2005-04-17 00:20:36 +02:00
|
|
|
udev->state = new_state;
|
2006-01-24 17:40:27 +01:00
|
|
|
|
|
|
|
/* root hub wakeup capabilities are managed out-of-band
|
|
|
|
* and may involve silicon errata ... ignore them here.
|
|
|
|
*/
|
|
|
|
if (udev->parent) {
|
|
|
|
if (new_state == USB_STATE_CONFIGURED)
|
|
|
|
device_init_wakeup(&udev->dev,
|
|
|
|
(udev->actconfig->desc.bmAttributes
|
|
|
|
& USB_CONFIG_ATT_WAKEUP));
|
|
|
|
else if (new_state != USB_STATE_SUSPENDED)
|
|
|
|
device_init_wakeup(&udev->dev, 0);
|
|
|
|
}
|
2005-09-13 04:39:39 +02:00
|
|
|
} else
|
2005-04-17 00:20:36 +02:00
|
|
|
recursively_mark_NOTATTACHED(udev);
|
|
|
|
spin_unlock_irqrestore(&device_state_lock, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-07-02 04:14:24 +02:00
|
|
|
#ifdef CONFIG_PM
|
2005-11-14 17:45:38 +01:00
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_root_hub_lost_power - called by HCD if the root hub lost Vbus power
|
|
|
|
* @rhdev: struct usb_device for the root hub
|
|
|
|
*
|
|
|
|
* The USB host controller driver calls this function when its root hub
|
|
|
|
* is resumed and Vbus power has been interrupted or the controller
|
|
|
|
* has been reset. The routine marks all the children of the root hub
|
|
|
|
* as NOTATTACHED and marks logical connect-change events on their ports.
|
|
|
|
*/
|
|
|
|
void usb_root_hub_lost_power(struct usb_device *rhdev)
|
|
|
|
{
|
|
|
|
struct usb_hub *hub;
|
|
|
|
int port1;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
dev_warn(&rhdev->dev, "root hub lost power or was reset\n");
|
|
|
|
spin_lock_irqsave(&device_state_lock, flags);
|
|
|
|
hub = hdev_to_hub(rhdev);
|
|
|
|
for (port1 = 1; port1 <= rhdev->maxchild; ++port1) {
|
|
|
|
if (rhdev->children[port1 - 1]) {
|
|
|
|
recursively_mark_NOTATTACHED(
|
|
|
|
rhdev->children[port1 - 1]);
|
|
|
|
set_bit(port1, hub->change_bits);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&device_state_lock, flags);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(usb_root_hub_lost_power);
|
|
|
|
|
2006-07-02 04:14:24 +02:00
|
|
|
#endif /* CONFIG_PM */
|
2005-11-14 17:45:38 +01:00
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
static void choose_address(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int devnum;
|
|
|
|
struct usb_bus *bus = udev->bus;
|
|
|
|
|
|
|
|
/* If khubd ever becomes multithreaded, this will need a lock */
|
|
|
|
|
|
|
|
/* Try to allocate the next devnum beginning at bus->devnum_next. */
|
|
|
|
devnum = find_next_zero_bit(bus->devmap.devicemap, 128,
|
|
|
|
bus->devnum_next);
|
|
|
|
if (devnum >= 128)
|
|
|
|
devnum = find_next_zero_bit(bus->devmap.devicemap, 128, 1);
|
|
|
|
|
|
|
|
bus->devnum_next = ( devnum >= 127 ? 1 : devnum + 1);
|
|
|
|
|
|
|
|
if (devnum < 128) {
|
|
|
|
set_bit(devnum, bus->devmap.devicemap);
|
|
|
|
udev->devnum = devnum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void release_address(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
if (udev->devnum > 0) {
|
|
|
|
clear_bit(udev->devnum, udev->bus->devmap.devicemap);
|
|
|
|
udev->devnum = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_disconnect - disconnect a device (usbcore-internal)
|
|
|
|
* @pdev: pointer to device being disconnected
|
|
|
|
* Context: !in_interrupt ()
|
|
|
|
*
|
|
|
|
* Something got disconnected. Get rid of it and all of its children.
|
|
|
|
*
|
|
|
|
* If *pdev is a normal device then the parent hub must already be locked.
|
|
|
|
* If *pdev is a root hub then this routine will acquire the
|
|
|
|
* usb_bus_list_lock on behalf of the caller.
|
|
|
|
*
|
|
|
|
* Only hub drivers (including virtual root hub drivers for host
|
|
|
|
* controllers) should ever call this.
|
|
|
|
*
|
|
|
|
* This call is synchronous, and may not be used in an interrupt context.
|
|
|
|
*/
|
|
|
|
void usb_disconnect(struct usb_device **pdev)
|
|
|
|
{
|
|
|
|
struct usb_device *udev = *pdev;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (!udev) {
|
|
|
|
pr_debug ("%s nodev\n", __FUNCTION__);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* mark the device as inactive, so any further urb submissions for
|
|
|
|
* this device (and any of its children) will fail immediately.
|
|
|
|
* this quiesces everyting except pending urbs.
|
|
|
|
*/
|
|
|
|
usb_set_device_state(udev, USB_STATE_NOTATTACHED);
|
|
|
|
dev_info (&udev->dev, "USB disconnect, address %d\n", udev->devnum);
|
|
|
|
|
2005-11-17 23:10:32 +01:00
|
|
|
usb_lock_device(udev);
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
/* Free up all the children before we remove this device */
|
|
|
|
for (i = 0; i < USB_MAXCHILDREN; i++) {
|
|
|
|
if (udev->children[i])
|
|
|
|
usb_disconnect(&udev->children[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* deallocate hcd/hardware state ... nuking all pending urbs and
|
|
|
|
* cleaning up all state associated with the current configuration
|
|
|
|
* so that the hardware is now fully quiesced.
|
|
|
|
*/
|
2006-07-02 04:09:35 +02:00
|
|
|
dev_dbg (&udev->dev, "unregistering device\n");
|
2005-04-17 00:20:36 +02:00
|
|
|
usb_disable_device(udev, 0);
|
|
|
|
|
2006-07-02 04:09:35 +02:00
|
|
|
usb_unlock_device(udev);
|
|
|
|
|
|
|
|
/* Unregister the device. The device driver is responsible
|
|
|
|
* for removing the device files from usbfs and sysfs and for
|
|
|
|
* de-configuring the device.
|
|
|
|
*/
|
|
|
|
device_del(&udev->dev);
|
2005-06-21 06:15:16 +02:00
|
|
|
|
2006-07-02 04:09:35 +02:00
|
|
|
/* Free the device number and delete the parent's children[]
|
2005-04-17 00:20:36 +02:00
|
|
|
* (or root_hub) pointer.
|
|
|
|
*/
|
|
|
|
release_address(udev);
|
|
|
|
|
|
|
|
/* Avoid races with recursively_mark_NOTATTACHED() */
|
|
|
|
spin_lock_irq(&device_state_lock);
|
|
|
|
*pdev = NULL;
|
|
|
|
spin_unlock_irq(&device_state_lock);
|
|
|
|
|
2006-07-02 04:09:35 +02:00
|
|
|
put_device(&udev->dev);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
static void show_string(struct usb_device *udev, char *id, char *string)
|
|
|
|
{
|
|
|
|
if (!string)
|
|
|
|
return;
|
|
|
|
dev_printk(KERN_INFO, &udev->dev, "%s: %s\n", id, string);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
static inline void show_string(struct usb_device *udev, char *id, char *string)
|
|
|
|
{}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_USB_OTG
|
|
|
|
#include "otg_whitelist.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_new_device - perform initial device setup (usbcore-internal)
|
|
|
|
* @udev: newly addressed device (in ADDRESS state)
|
|
|
|
*
|
|
|
|
* This is called with devices which have been enumerated, but not yet
|
|
|
|
* configured. The device descriptor is available, but not descriptors
|
2005-11-17 23:10:32 +01:00
|
|
|
* for any device configuration. The caller must have locked either
|
|
|
|
* the parent hub (if udev is a normal device) or else the
|
2005-04-17 00:20:36 +02:00
|
|
|
* usb_bus_list_lock (if udev is a root hub). The parent's pointer to
|
|
|
|
* udev has already been installed, but udev is not yet visible through
|
|
|
|
* sysfs or other filesystem code.
|
|
|
|
*
|
|
|
|
* Returns 0 for success (device is configured and listed, with its
|
|
|
|
* interfaces, in sysfs); else a negative errno value.
|
|
|
|
*
|
|
|
|
* This call is synchronous, and may not be used in an interrupt context.
|
|
|
|
*
|
2005-11-17 23:10:32 +01:00
|
|
|
* Only the hub driver or root-hub registrar should ever call this.
|
2005-04-17 00:20:36 +02:00
|
|
|
*/
|
|
|
|
int usb_new_device(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = usb_get_configuration(udev);
|
|
|
|
if (err < 0) {
|
|
|
|
dev_err(&udev->dev, "can't read configurations, error %d\n",
|
|
|
|
err);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* read the standard strings and cache them if present */
|
2005-10-24 22:24:14 +02:00
|
|
|
udev->product = usb_cache_string(udev, udev->descriptor.iProduct);
|
|
|
|
udev->manufacturer = usb_cache_string(udev,
|
|
|
|
udev->descriptor.iManufacturer);
|
|
|
|
udev->serial = usb_cache_string(udev, udev->descriptor.iSerialNumber);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* Tell the world! */
|
|
|
|
dev_dbg(&udev->dev, "new device strings: Mfr=%d, Product=%d, "
|
|
|
|
"SerialNumber=%d\n",
|
|
|
|
udev->descriptor.iManufacturer,
|
|
|
|
udev->descriptor.iProduct,
|
|
|
|
udev->descriptor.iSerialNumber);
|
|
|
|
show_string(udev, "Product", udev->product);
|
|
|
|
show_string(udev, "Manufacturer", udev->manufacturer);
|
|
|
|
show_string(udev, "SerialNumber", udev->serial);
|
|
|
|
|
|
|
|
#ifdef CONFIG_USB_OTG
|
|
|
|
/*
|
|
|
|
* OTG-aware devices on OTG-capable root hubs may be able to use SRP,
|
|
|
|
* to wake us after we've powered off VBUS; and HNP, switching roles
|
|
|
|
* "host" to "peripheral". The OTG descriptor helps figure this out.
|
|
|
|
*/
|
|
|
|
if (!udev->bus->is_b_host
|
|
|
|
&& udev->config
|
|
|
|
&& udev->parent == udev->bus->root_hub) {
|
|
|
|
struct usb_otg_descriptor *desc = 0;
|
|
|
|
struct usb_bus *bus = udev->bus;
|
|
|
|
|
|
|
|
/* descriptor may appear anywhere in config */
|
|
|
|
if (__usb_get_extra_descriptor (udev->rawdescriptors[0],
|
|
|
|
le16_to_cpu(udev->config[0].desc.wTotalLength),
|
|
|
|
USB_DT_OTG, (void **) &desc) == 0) {
|
|
|
|
if (desc->bmAttributes & USB_OTG_HNP) {
|
2005-11-23 18:09:52 +01:00
|
|
|
unsigned port1 = udev->portnum;
|
2005-04-17 00:20:36 +02:00
|
|
|
struct usb_device *root = udev->parent;
|
|
|
|
|
|
|
|
dev_info(&udev->dev,
|
|
|
|
"Dual-Role OTG device on %sHNP port\n",
|
|
|
|
(port1 == bus->otg_port)
|
|
|
|
? "" : "non-");
|
|
|
|
|
|
|
|
/* enable HNP before suspend, it's simpler */
|
|
|
|
if (port1 == bus->otg_port)
|
|
|
|
bus->b_hnp_enable = 1;
|
|
|
|
err = usb_control_msg(udev,
|
|
|
|
usb_sndctrlpipe(udev, 0),
|
|
|
|
USB_REQ_SET_FEATURE, 0,
|
|
|
|
bus->b_hnp_enable
|
|
|
|
? USB_DEVICE_B_HNP_ENABLE
|
|
|
|
: USB_DEVICE_A_ALT_HNP_SUPPORT,
|
|
|
|
0, NULL, 0, USB_CTRL_SET_TIMEOUT);
|
|
|
|
if (err < 0) {
|
|
|
|
/* OTG MESSAGE: report errors here,
|
|
|
|
* customize to match your product.
|
|
|
|
*/
|
|
|
|
dev_info(&udev->dev,
|
|
|
|
"can't set HNP mode; %d\n",
|
|
|
|
err);
|
|
|
|
bus->b_hnp_enable = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!is_targeted(udev)) {
|
|
|
|
|
|
|
|
/* Maybe it can talk to us, though we can't talk to it.
|
|
|
|
* (Includes HNP test device.)
|
|
|
|
*/
|
|
|
|
if (udev->bus->b_hnp_enable || udev->bus->is_b_host) {
|
2006-07-02 04:07:21 +02:00
|
|
|
static int __usb_port_suspend(struct usb_device *,
|
2005-09-14 04:57:27 +02:00
|
|
|
int port1);
|
2006-07-02 04:07:21 +02:00
|
|
|
err = __usb_port_suspend(udev, udev->bus->otg_port);
|
2005-04-17 00:20:36 +02:00
|
|
|
if (err < 0)
|
|
|
|
dev_dbg(&udev->dev, "HNP fail, %d\n", err);
|
|
|
|
}
|
|
|
|
err = -ENODEV;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2006-07-02 04:09:35 +02:00
|
|
|
/* Register the device. The device driver is responsible
|
|
|
|
* for adding the device files to usbfs and sysfs and for
|
|
|
|
* configuring the device.
|
|
|
|
*/
|
2005-04-17 00:20:36 +02:00
|
|
|
err = device_add (&udev->dev);
|
|
|
|
if (err) {
|
|
|
|
dev_err(&udev->dev, "can't device_add, error %d\n", err);
|
|
|
|
goto fail;
|
|
|
|
}
|
2005-11-17 23:10:32 +01:00
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
usb_set_device_state(udev, USB_STATE_NOTATTACHED);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int hub_port_status(struct usb_hub *hub, int port1,
|
|
|
|
u16 *status, u16 *change)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = get_port_status(hub->hdev, port1, &hub->status->port);
|
|
|
|
if (ret < 0)
|
|
|
|
dev_err (hub->intfdev,
|
|
|
|
"%s failed (err = %d)\n", __FUNCTION__, ret);
|
|
|
|
else {
|
|
|
|
*status = le16_to_cpu(hub->status->port.wPortStatus);
|
|
|
|
*change = le16_to_cpu(hub->status->port.wPortChange);
|
|
|
|
ret = 0;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2006-08-26 04:35:29 +02:00
|
|
|
|
|
|
|
/* Returns 1 if @hub is a WUSB root hub, 0 otherwise */
|
|
|
|
static unsigned hub_is_wusb(struct usb_hub *hub)
|
|
|
|
{
|
|
|
|
struct usb_hcd *hcd;
|
|
|
|
if (hub->hdev->parent != NULL) /* not a root hub? */
|
|
|
|
return 0;
|
|
|
|
hcd = container_of(hub->hdev->bus, struct usb_hcd, self);
|
|
|
|
return hcd->wireless;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
#define PORT_RESET_TRIES 5
|
|
|
|
#define SET_ADDRESS_TRIES 2
|
|
|
|
#define GET_DESCRIPTOR_TRIES 2
|
|
|
|
#define SET_CONFIG_TRIES (2 * (use_both_schemes + 1))
|
|
|
|
#define USE_NEW_SCHEME(i) ((i) / 2 == old_scheme_first)
|
|
|
|
|
|
|
|
#define HUB_ROOT_RESET_TIME 50 /* times are in msec */
|
|
|
|
#define HUB_SHORT_RESET_TIME 10
|
|
|
|
#define HUB_LONG_RESET_TIME 200
|
|
|
|
#define HUB_RESET_TIMEOUT 500
|
|
|
|
|
|
|
|
static int hub_port_wait_reset(struct usb_hub *hub, int port1,
|
|
|
|
struct usb_device *udev, unsigned int delay)
|
|
|
|
{
|
|
|
|
int delay_time, ret;
|
|
|
|
u16 portstatus;
|
|
|
|
u16 portchange;
|
|
|
|
|
|
|
|
for (delay_time = 0;
|
|
|
|
delay_time < HUB_RESET_TIMEOUT;
|
|
|
|
delay_time += delay) {
|
|
|
|
/* wait to give the device a chance to reset */
|
|
|
|
msleep(delay);
|
|
|
|
|
|
|
|
/* read and decode port status */
|
|
|
|
ret = hub_port_status(hub, port1, &portstatus, &portchange);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* Device went away? */
|
|
|
|
if (!(portstatus & USB_PORT_STAT_CONNECTION))
|
|
|
|
return -ENOTCONN;
|
|
|
|
|
|
|
|
/* bomb out completely if something weird happened */
|
|
|
|
if ((portchange & USB_PORT_STAT_C_CONNECTION))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* if we`ve finished resetting, then break out of the loop */
|
|
|
|
if (!(portstatus & USB_PORT_STAT_RESET) &&
|
|
|
|
(portstatus & USB_PORT_STAT_ENABLE)) {
|
2006-08-26 04:35:29 +02:00
|
|
|
if (hub_is_wusb(hub))
|
|
|
|
udev->speed = USB_SPEED_VARIABLE;
|
|
|
|
else if (portstatus & USB_PORT_STAT_HIGH_SPEED)
|
2005-04-17 00:20:36 +02:00
|
|
|
udev->speed = USB_SPEED_HIGH;
|
|
|
|
else if (portstatus & USB_PORT_STAT_LOW_SPEED)
|
|
|
|
udev->speed = USB_SPEED_LOW;
|
|
|
|
else
|
|
|
|
udev->speed = USB_SPEED_FULL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* switch to the long delay after two short delay failures */
|
|
|
|
if (delay_time >= 2 * HUB_SHORT_RESET_TIME)
|
|
|
|
delay = HUB_LONG_RESET_TIME;
|
|
|
|
|
|
|
|
dev_dbg (hub->intfdev,
|
|
|
|
"port %d not reset yet, waiting %dms\n",
|
|
|
|
port1, delay);
|
|
|
|
}
|
|
|
|
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hub_port_reset(struct usb_hub *hub, int port1,
|
|
|
|
struct usb_device *udev, unsigned int delay)
|
|
|
|
{
|
|
|
|
int i, status;
|
|
|
|
|
|
|
|
/* Reset the port */
|
|
|
|
for (i = 0; i < PORT_RESET_TRIES; i++) {
|
|
|
|
status = set_port_feature(hub->hdev,
|
|
|
|
port1, USB_PORT_FEAT_RESET);
|
|
|
|
if (status)
|
|
|
|
dev_err(hub->intfdev,
|
|
|
|
"cannot reset port %d (err = %d)\n",
|
|
|
|
port1, status);
|
|
|
|
else {
|
|
|
|
status = hub_port_wait_reset(hub, port1, udev, delay);
|
2005-08-31 19:45:25 +02:00
|
|
|
if (status && status != -ENOTCONN)
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_dbg(hub->intfdev,
|
|
|
|
"port_wait_reset: err = %d\n",
|
|
|
|
status);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* return on disconnect or reset */
|
|
|
|
switch (status) {
|
|
|
|
case 0:
|
2005-08-31 19:41:44 +02:00
|
|
|
/* TRSTRCY = 10 ms; plus some extra */
|
|
|
|
msleep(10 + 40);
|
2005-04-17 00:20:36 +02:00
|
|
|
/* FALL THROUGH */
|
|
|
|
case -ENOTCONN:
|
|
|
|
case -ENODEV:
|
|
|
|
clear_port_feature(hub->hdev,
|
|
|
|
port1, USB_PORT_FEAT_C_RESET);
|
|
|
|
/* FIXME need disconnect() for NOTATTACHED device */
|
|
|
|
usb_set_device_state(udev, status
|
|
|
|
? USB_STATE_NOTATTACHED
|
|
|
|
: USB_STATE_DEFAULT);
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_dbg (hub->intfdev,
|
|
|
|
"port %d not enabled, trying reset again...\n",
|
|
|
|
port1);
|
|
|
|
delay = HUB_LONG_RESET_TIME;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_err (hub->intfdev,
|
|
|
|
"Cannot enable port %i. Maybe the USB cable is bad?\n",
|
|
|
|
port1);
|
|
|
|
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Disable a port and mark a logical connnect-change event, so that some
|
|
|
|
* time later khubd will disconnect() any existing usb_device on the port
|
|
|
|
* and will re-enumerate if there actually is a device attached.
|
|
|
|
*/
|
|
|
|
static void hub_port_logical_disconnect(struct usb_hub *hub, int port1)
|
|
|
|
{
|
|
|
|
dev_dbg(hub->intfdev, "logical disconnect on port %d\n", port1);
|
|
|
|
hub_port_disable(hub, port1, 1);
|
|
|
|
|
|
|
|
/* FIXME let caller ask to power down the port:
|
|
|
|
* - some devices won't enumerate without a VBUS power cycle
|
|
|
|
* - SRP saves power that way
|
2005-09-14 04:57:27 +02:00
|
|
|
* - ... new call, TBD ...
|
2005-04-17 00:20:36 +02:00
|
|
|
* That's easy if this hub can switch power per-port, and
|
|
|
|
* khubd reactivates the port later (timer, SRP, etc).
|
|
|
|
* Powerdown must be optional, because of reset/DFU.
|
|
|
|
*/
|
|
|
|
|
|
|
|
set_bit(port1, hub->change_bits);
|
|
|
|
kick_khubd(hub);
|
|
|
|
}
|
|
|
|
|
2006-07-02 04:14:24 +02:00
|
|
|
#ifdef CONFIG_PM
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
#ifdef CONFIG_USB_SUSPEND
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Selective port suspend reduces power; most suspended devices draw
|
|
|
|
* less than 500 uA. It's also used in OTG, along with remote wakeup.
|
|
|
|
* All devices below the suspended port are also suspended.
|
|
|
|
*
|
|
|
|
* Devices leave suspend state when the host wakes them up. Some devices
|
|
|
|
* also support "remote wakeup", where the device can activate the USB
|
|
|
|
* tree above them to deliver data, such as a keypress or packet. In
|
|
|
|
* some cases, this wakes the USB host.
|
|
|
|
*/
|
|
|
|
static int hub_port_suspend(struct usb_hub *hub, int port1,
|
|
|
|
struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
|
|
|
|
// dev_dbg(hub->intfdev, "suspend port %d\n", port1);
|
|
|
|
|
|
|
|
/* enable remote wakeup when appropriate; this lets the device
|
|
|
|
* wake up the upstream hub (including maybe the root hub).
|
|
|
|
*
|
|
|
|
* NOTE: OTG devices may issue remote wakeup (or SRP) even when
|
|
|
|
* we don't explicitly enable it here.
|
|
|
|
*/
|
2005-09-13 04:39:39 +02:00
|
|
|
if (device_may_wakeup(&udev->dev)) {
|
2005-04-17 00:20:36 +02:00
|
|
|
status = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
|
|
|
|
USB_REQ_SET_FEATURE, USB_RECIP_DEVICE,
|
|
|
|
USB_DEVICE_REMOTE_WAKEUP, 0,
|
|
|
|
NULL, 0,
|
|
|
|
USB_CTRL_SET_TIMEOUT);
|
|
|
|
if (status)
|
|
|
|
dev_dbg(&udev->dev,
|
|
|
|
"won't remote wakeup, status %d\n",
|
|
|
|
status);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* see 7.1.7.6 */
|
|
|
|
status = set_port_feature(hub->hdev, port1, USB_PORT_FEAT_SUSPEND);
|
|
|
|
if (status) {
|
|
|
|
dev_dbg(hub->intfdev,
|
|
|
|
"can't suspend port %d, status %d\n",
|
|
|
|
port1, status);
|
|
|
|
/* paranoia: "should not happen" */
|
|
|
|
(void) usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
|
|
|
|
USB_REQ_CLEAR_FEATURE, USB_RECIP_DEVICE,
|
|
|
|
USB_DEVICE_REMOTE_WAKEUP, 0,
|
|
|
|
NULL, 0,
|
|
|
|
USB_CTRL_SET_TIMEOUT);
|
|
|
|
} else {
|
|
|
|
/* device has up to 10 msec to fully suspend */
|
|
|
|
dev_dbg(&udev->dev, "usb suspend\n");
|
|
|
|
usb_set_device_state(udev, USB_STATE_SUSPENDED);
|
|
|
|
msleep(10);
|
|
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Devices on USB hub ports have only one "suspend" state, corresponding
|
2005-04-19 02:39:24 +02:00
|
|
|
* to ACPI D2, "may cause the device to lose some context".
|
2005-04-17 00:20:36 +02:00
|
|
|
* State transitions include:
|
|
|
|
*
|
|
|
|
* - suspend, resume ... when the VBUS power link stays live
|
|
|
|
* - suspend, disconnect ... VBUS lost
|
|
|
|
*
|
|
|
|
* Once VBUS drop breaks the circuit, the port it's using has to go through
|
|
|
|
* normal re-enumeration procedures, starting with enabling VBUS power.
|
|
|
|
* Other than re-initializing the hub (plug/unplug, except for root hubs),
|
|
|
|
* Linux (2.6) currently has NO mechanisms to initiate that: no khubd
|
|
|
|
* timer, no SRP, no requests through sysfs.
|
2005-09-14 04:57:27 +02:00
|
|
|
*
|
|
|
|
* If CONFIG_USB_SUSPEND isn't enabled, devices only really suspend when
|
|
|
|
* the root hub for their bus goes into global suspend ... so we don't
|
|
|
|
* (falsely) update the device power state to say it suspended.
|
2005-04-17 00:20:36 +02:00
|
|
|
*/
|
2006-07-02 04:07:21 +02:00
|
|
|
static int __usb_port_suspend (struct usb_device *udev, int port1)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
int status = 0;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* caller owns the udev device lock */
|
|
|
|
if (port1 < 0)
|
|
|
|
return port1;
|
|
|
|
|
2006-07-02 04:07:21 +02:00
|
|
|
/* we change the device's upstream USB link,
|
|
|
|
* but root hubs have no upstream USB link.
|
2005-04-17 00:20:36 +02:00
|
|
|
*/
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
if (udev->parent)
|
2005-04-17 00:20:36 +02:00
|
|
|
status = hub_port_suspend(hdev_to_hub(udev->parent), port1,
|
|
|
|
udev);
|
2006-07-02 04:12:19 +02:00
|
|
|
else {
|
|
|
|
dev_dbg(&udev->dev, "usb suspend\n");
|
|
|
|
usb_set_device_state(udev, USB_STATE_SUSPENDED);
|
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2005-09-23 07:45:26 +02:00
|
|
|
/*
|
2006-07-02 04:07:21 +02:00
|
|
|
* usb_port_suspend - suspend a usb device's upstream port
|
2005-04-17 00:20:36 +02:00
|
|
|
* @udev: device that's no longer in active use
|
2005-09-23 07:45:26 +02:00
|
|
|
* Context: must be able to sleep; device not locked; pm locks held
|
2005-04-17 00:20:36 +02:00
|
|
|
*
|
|
|
|
* Suspends a USB device that isn't in active use, conserving power.
|
|
|
|
* Devices may wake out of a suspend, if anything important happens,
|
|
|
|
* using the remote wakeup mechanism. They may also be taken out of
|
2006-07-02 04:07:21 +02:00
|
|
|
* suspend by the host, using usb_port_resume(). It's also routine
|
2005-04-17 00:20:36 +02:00
|
|
|
* to disconnect devices while they are suspended.
|
|
|
|
*
|
2005-09-14 04:57:27 +02:00
|
|
|
* This only affects the USB hardware for a device; its interfaces
|
|
|
|
* (and, for hubs, child devices) must already have been suspended.
|
|
|
|
*
|
2005-04-17 00:20:36 +02:00
|
|
|
* Suspending OTG devices may trigger HNP, if that's been enabled
|
|
|
|
* between a pair of dual-role devices. That will change roles, such
|
|
|
|
* as from A-Host to A-Peripheral or from B-Host back to B-Peripheral.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, else negative errno.
|
|
|
|
*/
|
2006-07-02 04:07:21 +02:00
|
|
|
int usb_port_suspend(struct usb_device *udev)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2006-07-02 04:07:21 +02:00
|
|
|
return __usb_port_suspend(udev, udev->portnum);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
/*
|
2005-09-14 04:57:27 +02:00
|
|
|
* If the USB "suspend" state is in use (rather than "global suspend"),
|
|
|
|
* many devices will be individually taken out of suspend state using
|
|
|
|
* special" resume" signaling. These routines kick in shortly after
|
2005-04-17 00:20:36 +02:00
|
|
|
* hardware resume signaling is finished, either because of selective
|
|
|
|
* resume (by host) or remote wakeup (by device) ... now see what changed
|
|
|
|
* in the tree that's rooted at this device.
|
|
|
|
*/
|
2006-07-02 04:07:21 +02:00
|
|
|
static int finish_port_resume(struct usb_device *udev)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
|
|
|
int status;
|
|
|
|
u16 devstatus;
|
|
|
|
|
|
|
|
/* caller owns the udev device lock */
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
dev_dbg(&udev->dev, "finish resume\n");
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* usb ch9 identifies four variants of SUSPENDED, based on what
|
|
|
|
* state the device resumes to. Linux currently won't see the
|
|
|
|
* first two on the host side; they'd be inside hub_port_init()
|
|
|
|
* during many timeouts, but khubd can't suspend until later.
|
|
|
|
*/
|
|
|
|
usb_set_device_state(udev, udev->actconfig
|
|
|
|
? USB_STATE_CONFIGURED
|
|
|
|
: USB_STATE_ADDRESS);
|
|
|
|
|
|
|
|
/* 10.5.4.5 says be sure devices in the tree are still there.
|
|
|
|
* For now let's assume the device didn't go crazy on resume,
|
|
|
|
* and device drivers will know about any resume quirks.
|
|
|
|
*/
|
|
|
|
status = usb_get_status(udev, USB_RECIP_DEVICE, 0, &devstatus);
|
2006-06-19 21:12:38 +02:00
|
|
|
if (status >= 0)
|
|
|
|
status = (status == 2 ? 0 : -ENODEV);
|
|
|
|
|
|
|
|
if (status)
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_dbg(&udev->dev,
|
|
|
|
"gone after usb resume? status %d\n",
|
|
|
|
status);
|
|
|
|
else if (udev->actconfig) {
|
|
|
|
le16_to_cpus(&devstatus);
|
2005-11-23 18:03:12 +01:00
|
|
|
if ((devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP))
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
&& udev->parent) {
|
2005-04-17 00:20:36 +02:00
|
|
|
status = usb_control_msg(udev,
|
|
|
|
usb_sndctrlpipe(udev, 0),
|
|
|
|
USB_REQ_CLEAR_FEATURE,
|
|
|
|
USB_RECIP_DEVICE,
|
|
|
|
USB_DEVICE_REMOTE_WAKEUP, 0,
|
|
|
|
NULL, 0,
|
|
|
|
USB_CTRL_SET_TIMEOUT);
|
2006-07-02 04:11:02 +02:00
|
|
|
if (status)
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_dbg(&udev->dev, "disable remote "
|
|
|
|
"wakeup, status %d\n", status);
|
2005-11-21 17:58:07 +01:00
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
status = 0;
|
|
|
|
|
|
|
|
} else if (udev->devnum <= 0) {
|
|
|
|
dev_dbg(&udev->dev, "bogus resume!\n");
|
|
|
|
status = -EINVAL;
|
|
|
|
}
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
hub_port_resume(struct usb_hub *hub, int port1, struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
|
|
|
|
// dev_dbg(hub->intfdev, "resume port %d\n", port1);
|
|
|
|
|
2006-08-11 22:52:39 +02:00
|
|
|
set_bit(port1, hub->busy_bits);
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
/* see 7.1.7.7; affects power usage, but not budgeting */
|
|
|
|
status = clear_port_feature(hub->hdev,
|
|
|
|
port1, USB_PORT_FEAT_SUSPEND);
|
|
|
|
if (status) {
|
|
|
|
dev_dbg(hub->intfdev,
|
|
|
|
"can't resume port %d, status %d\n",
|
|
|
|
port1, status);
|
|
|
|
} else {
|
|
|
|
u16 devstatus;
|
|
|
|
u16 portchange;
|
|
|
|
|
|
|
|
/* drive resume for at least 20 msec */
|
|
|
|
if (udev)
|
|
|
|
dev_dbg(&udev->dev, "RESUME\n");
|
|
|
|
msleep(25);
|
|
|
|
|
|
|
|
#define LIVE_FLAGS ( USB_PORT_STAT_POWER \
|
|
|
|
| USB_PORT_STAT_ENABLE \
|
|
|
|
| USB_PORT_STAT_CONNECTION)
|
|
|
|
|
|
|
|
/* Virtual root hubs can trigger on GET_PORT_STATUS to
|
|
|
|
* stop resume signaling. Then finish the resume
|
|
|
|
* sequence.
|
|
|
|
*/
|
|
|
|
devstatus = portchange = 0;
|
|
|
|
status = hub_port_status(hub, port1,
|
|
|
|
&devstatus, &portchange);
|
|
|
|
if (status < 0
|
|
|
|
|| (devstatus & LIVE_FLAGS) != LIVE_FLAGS
|
|
|
|
|| (devstatus & USB_PORT_STAT_SUSPEND) != 0
|
|
|
|
) {
|
|
|
|
dev_dbg(hub->intfdev,
|
|
|
|
"port %d status %04x.%04x after resume, %d\n",
|
|
|
|
port1, portchange, devstatus, status);
|
2006-06-28 17:20:41 +02:00
|
|
|
if (status >= 0)
|
|
|
|
status = -ENODEV;
|
2005-04-17 00:20:36 +02:00
|
|
|
} else {
|
2006-06-28 17:20:41 +02:00
|
|
|
if (portchange & USB_PORT_STAT_C_SUSPEND)
|
|
|
|
clear_port_feature(hub->hdev, port1,
|
|
|
|
USB_PORT_FEAT_C_SUSPEND);
|
2005-04-17 00:20:36 +02:00
|
|
|
/* TRSMRCY = 10 msec */
|
|
|
|
msleep(10);
|
|
|
|
if (udev)
|
2006-07-02 04:07:21 +02:00
|
|
|
status = finish_port_resume(udev);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if (status < 0)
|
|
|
|
hub_port_logical_disconnect(hub, port1);
|
|
|
|
|
2006-08-11 22:52:39 +02:00
|
|
|
clear_bit(port1, hub->busy_bits);
|
|
|
|
if (!hub->hdev->parent && !hub->busy_bits[0])
|
|
|
|
usb_enable_root_hub_irq(hub->hdev->bus);
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2005-09-23 07:45:26 +02:00
|
|
|
/*
|
2006-07-02 04:07:21 +02:00
|
|
|
* usb_port_resume - re-activate a suspended usb device's upstream port
|
2005-04-17 00:20:36 +02:00
|
|
|
* @udev: device to re-activate
|
2005-09-23 07:45:26 +02:00
|
|
|
* Context: must be able to sleep; device not locked; pm locks held
|
2005-04-17 00:20:36 +02:00
|
|
|
*
|
|
|
|
* This will re-activate the suspended device, increasing power usage
|
|
|
|
* while letting drivers communicate again with its endpoints.
|
|
|
|
* USB resume explicitly guarantees that the power session between
|
|
|
|
* the host and the device is the same as it was when the device
|
|
|
|
* suspended.
|
|
|
|
*
|
|
|
|
* Returns 0 on success, else negative errno.
|
|
|
|
*/
|
2006-07-02 04:07:21 +02:00
|
|
|
int usb_port_resume(struct usb_device *udev)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2006-07-02 04:14:24 +02:00
|
|
|
int status;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2006-07-02 04:07:21 +02:00
|
|
|
/* we change the device's upstream USB link,
|
|
|
|
* but root hubs have no upstream USB link.
|
|
|
|
*/
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
if (udev->parent) {
|
2006-07-02 04:13:04 +02:00
|
|
|
// NOTE this fails if parent is also suspended...
|
|
|
|
status = hub_port_resume(hdev_to_hub(udev->parent),
|
|
|
|
udev->portnum, udev);
|
2006-01-24 17:40:27 +01:00
|
|
|
} else
|
2006-07-02 04:07:21 +02:00
|
|
|
status = finish_port_resume(udev);
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
if (status < 0)
|
2006-07-02 04:11:02 +02:00
|
|
|
dev_dbg(&udev->dev, "can't resume, status %d\n", status);
|
2005-04-17 00:20:36 +02:00
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int remote_wakeup(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int status = 0;
|
|
|
|
|
|
|
|
/* don't repeat RESUME sequence if this device
|
|
|
|
* was already woken up by some other task
|
|
|
|
*/
|
2005-11-17 23:10:32 +01:00
|
|
|
usb_lock_device(udev);
|
2005-04-17 00:20:36 +02:00
|
|
|
if (udev->state == USB_STATE_SUSPENDED) {
|
|
|
|
dev_dbg(&udev->dev, "RESUME (wakeup)\n");
|
|
|
|
/* TRSMRCY = 10 msec */
|
|
|
|
msleep(10);
|
2006-07-02 04:07:21 +02:00
|
|
|
status = finish_port_resume(udev);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
2006-07-02 04:11:02 +02:00
|
|
|
|
|
|
|
if (status == 0)
|
|
|
|
usb_resume_both(udev);
|
2005-11-17 23:10:32 +01:00
|
|
|
usb_unlock_device(udev);
|
2005-04-17 00:20:36 +02:00
|
|
|
return status;
|
|
|
|
}
|
|
|
|
|
2006-07-02 04:14:24 +02:00
|
|
|
#else /* CONFIG_USB_SUSPEND */
|
|
|
|
|
|
|
|
/* When CONFIG_USB_SUSPEND isn't set, we never suspend or resume any ports. */
|
|
|
|
|
|
|
|
int usb_port_suspend(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
finish_port_resume(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
hub_port_resume(struct usb_hub *hub, int port1, struct usb_device *udev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int usb_port_resume(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int remote_wakeup(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2005-09-14 04:56:33 +02:00
|
|
|
static int hub_suspend(struct usb_interface *intf, pm_message_t msg)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
|
|
|
struct usb_hub *hub = usb_get_intfdata (intf);
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
unsigned port1;
|
|
|
|
|
2005-09-14 04:57:04 +02:00
|
|
|
/* fail if children aren't already suspended */
|
2005-04-17 00:20:36 +02:00
|
|
|
for (port1 = 1; port1 <= hdev->maxchild; port1++) {
|
|
|
|
struct usb_device *udev;
|
|
|
|
|
|
|
|
udev = hdev->children [port1-1];
|
2006-07-02 04:13:04 +02:00
|
|
|
if (udev && msg.event == PM_EVENT_SUSPEND &&
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
#ifdef CONFIG_USB_SUSPEND
|
2006-07-02 04:13:04 +02:00
|
|
|
udev->state != USB_STATE_SUSPENDED
|
|
|
|
#else
|
|
|
|
udev->dev.power.power_state.event
|
|
|
|
== PM_EVENT_ON
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
#endif
|
2006-07-02 04:13:04 +02:00
|
|
|
) {
|
2005-09-14 04:57:04 +02:00
|
|
|
dev_dbg(&intf->dev, "port %d nyet suspended\n", port1);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
/* "global suspend" of the downstream HC-to-USB interface */
|
|
|
|
if (!hdev->parent) {
|
|
|
|
struct usb_bus *bus = hdev->bus;
|
2005-10-13 23:08:02 +02:00
|
|
|
if (bus) {
|
|
|
|
int status = hcd_bus_suspend (bus);
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
|
|
|
|
if (status != 0) {
|
|
|
|
dev_dbg(&hdev->dev, "'global' suspend %d\n",
|
|
|
|
status);
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
2005-09-14 04:57:04 +02:00
|
|
|
/* stop khubd and related activity */
|
|
|
|
hub_quiesce(hub);
|
2005-04-17 00:20:36 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hub_resume(struct usb_interface *intf)
|
|
|
|
{
|
|
|
|
struct usb_device *hdev = interface_to_usbdev(intf);
|
|
|
|
struct usb_hub *hub = usb_get_intfdata (intf);
|
|
|
|
int status;
|
|
|
|
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
/* "global resume" of the downstream HC-to-USB interface */
|
|
|
|
if (!hdev->parent) {
|
|
|
|
struct usb_bus *bus = hdev->bus;
|
2005-10-13 23:08:02 +02:00
|
|
|
if (bus) {
|
|
|
|
status = hcd_bus_resume (bus);
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
if (status) {
|
|
|
|
dev_dbg(&intf->dev, "'global' resume %d\n",
|
|
|
|
status);
|
|
|
|
return status;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
if (status == 0) {
|
|
|
|
/* TRSMRCY = 10 msec */
|
|
|
|
msleep(10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2006-07-02 04:11:02 +02:00
|
|
|
/* tell khubd to look for changes on this hub */
|
[PATCH] root hub updates (greater half)
This patch associates hub suspend and resume logic (including for root hubs)
with CONFIG_PM -- instead of CONFIG_USB_SUSPEND as before -- thereby unifying
two troublesome versions of suspend logic into just one. It'll be easier to
keep things right from now on.
- Now usbcore _always_ calls hcd->hub_suspend as needed, instead of
only when USB_SUSPEND is enabled:
* Those root hub methods are now called from hub suspend/resume;
no more skipping between layers during device suspend/resume;
* It now handles cases allowed by sysfs or autosuspended root hubs,
by forcing the hub interface to resume too.
- All devices, including virtual root hubs, now get the same treatment
on their resume paths ... including re-activating all their interfaces.
Plus it gets rid of those stub copies of usb_{suspend,resume}_device(), and
updates the Kconfig to match the new definition of USB_SUSPEND: it provides
(a) selective suspend, downstream from hubs; and (b) remote wakeup, upstream
from any device configuration which supports it.
This calls for minor followup patches for most HCDs (and their PCI glue).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
drivers/usb/core/Kconfig | 11 ++-
drivers/usb/core/hub.c | 163 +++++++++++++++++++++++++----------------------
2 files changed, 97 insertions(+), 77 deletions(-)
2005-09-23 07:37:29 +02:00
|
|
|
hub_activate(hub);
|
2005-04-17 00:20:36 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2006-07-02 04:14:24 +02:00
|
|
|
#else /* CONFIG_PM */
|
|
|
|
|
|
|
|
static inline int remote_wakeup(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2005-09-23 07:32:24 +02:00
|
|
|
void usb_suspend_root_hub(struct usb_device *hdev)
|
|
|
|
{
|
|
|
|
struct usb_hub *hub = hdev_to_hub(hdev);
|
|
|
|
|
|
|
|
/* This also makes any led blinker stop retriggering. We're called
|
|
|
|
* from irq, so the blinker might still be scheduled. Caller promises
|
|
|
|
* that the root hub status URB will be canceled.
|
|
|
|
*/
|
|
|
|
__hub_quiesce(hub);
|
|
|
|
mark_quiesced(to_usb_interface(hub->intfdev));
|
|
|
|
}
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
void usb_resume_root_hub(struct usb_device *hdev)
|
|
|
|
{
|
|
|
|
struct usb_hub *hub = hdev_to_hub(hdev);
|
|
|
|
|
|
|
|
hub->resume_root_hub = 1;
|
|
|
|
kick_khubd(hub);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* USB 2.0 spec, 7.1.7.3 / fig 7-29:
|
|
|
|
*
|
|
|
|
* Between connect detection and reset signaling there must be a delay
|
|
|
|
* of 100ms at least for debounce and power-settling. The corresponding
|
|
|
|
* timer shall restart whenever the downstream port detects a disconnect.
|
|
|
|
*
|
|
|
|
* Apparently there are some bluetooth and irda-dongles and a number of
|
|
|
|
* low-speed devices for which this debounce period may last over a second.
|
|
|
|
* Not covered by the spec - but easy to deal with.
|
|
|
|
*
|
|
|
|
* This implementation uses a 1500ms total debounce timeout; if the
|
|
|
|
* connection isn't stable by then it returns -ETIMEDOUT. It checks
|
|
|
|
* every 25ms for transient disconnects. When the port status has been
|
|
|
|
* unchanged for 100ms it returns the port status.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define HUB_DEBOUNCE_TIMEOUT 1500
|
|
|
|
#define HUB_DEBOUNCE_STEP 25
|
|
|
|
#define HUB_DEBOUNCE_STABLE 100
|
|
|
|
|
|
|
|
static int hub_port_debounce(struct usb_hub *hub, int port1)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
int total_time, stable_time = 0;
|
|
|
|
u16 portchange, portstatus;
|
|
|
|
unsigned connection = 0xffff;
|
|
|
|
|
|
|
|
for (total_time = 0; ; total_time += HUB_DEBOUNCE_STEP) {
|
|
|
|
ret = hub_port_status(hub, port1, &portstatus, &portchange);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (!(portchange & USB_PORT_STAT_C_CONNECTION) &&
|
|
|
|
(portstatus & USB_PORT_STAT_CONNECTION) == connection) {
|
|
|
|
stable_time += HUB_DEBOUNCE_STEP;
|
|
|
|
if (stable_time >= HUB_DEBOUNCE_STABLE)
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
stable_time = 0;
|
|
|
|
connection = portstatus & USB_PORT_STAT_CONNECTION;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (portchange & USB_PORT_STAT_C_CONNECTION) {
|
|
|
|
clear_port_feature(hub->hdev, port1,
|
|
|
|
USB_PORT_FEAT_C_CONNECTION);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (total_time >= HUB_DEBOUNCE_TIMEOUT)
|
|
|
|
break;
|
|
|
|
msleep(HUB_DEBOUNCE_STEP);
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_dbg (hub->intfdev,
|
|
|
|
"debounce: port %d: total %dms stable %dms status 0x%x\n",
|
|
|
|
port1, total_time, stable_time, portstatus);
|
|
|
|
|
|
|
|
if (stable_time < HUB_DEBOUNCE_STABLE)
|
|
|
|
return -ETIMEDOUT;
|
|
|
|
return portstatus;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ep0_reinit(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
usb_disable_endpoint(udev, 0 + USB_DIR_IN);
|
|
|
|
usb_disable_endpoint(udev, 0 + USB_DIR_OUT);
|
|
|
|
udev->ep_in[0] = udev->ep_out[0] = &udev->ep0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define usb_sndaddr0pipe() (PIPE_CONTROL << 30)
|
|
|
|
#define usb_rcvaddr0pipe() ((PIPE_CONTROL << 30) | USB_DIR_IN)
|
|
|
|
|
|
|
|
static int hub_set_address(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (udev->devnum == 0)
|
|
|
|
return -EINVAL;
|
|
|
|
if (udev->state == USB_STATE_ADDRESS)
|
|
|
|
return 0;
|
|
|
|
if (udev->state != USB_STATE_DEFAULT)
|
|
|
|
return -EINVAL;
|
|
|
|
retval = usb_control_msg(udev, usb_sndaddr0pipe(),
|
|
|
|
USB_REQ_SET_ADDRESS, 0, udev->devnum, 0,
|
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
|
|
|
if (retval == 0) {
|
|
|
|
usb_set_device_state(udev, USB_STATE_ADDRESS);
|
|
|
|
ep0_reinit(udev);
|
|
|
|
}
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Reset device, (re)assign address, get device descriptor.
|
|
|
|
* Device connection must be stable, no more debouncing needed.
|
|
|
|
* Returns device in USB_STATE_ADDRESS, except on error.
|
|
|
|
*
|
|
|
|
* If this is called for an already-existing device (as part of
|
|
|
|
* usb_reset_device), the caller must own the device lock. For a
|
|
|
|
* newly detected device that is not accessible through any global
|
|
|
|
* pointers, it's not necessary to lock the device.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
hub_port_init (struct usb_hub *hub, struct usb_device *udev, int port1,
|
|
|
|
int retry_counter)
|
|
|
|
{
|
2006-01-11 15:55:29 +01:00
|
|
|
static DEFINE_MUTEX(usb_address0_mutex);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
int i, j, retval;
|
|
|
|
unsigned delay = HUB_SHORT_RESET_TIME;
|
|
|
|
enum usb_device_speed oldspeed = udev->speed;
|
2006-08-26 04:35:31 +02:00
|
|
|
char *speed, *type;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* root hub ports have a slightly longer reset period
|
|
|
|
* (from USB 2.0 spec, section 7.1.7.5)
|
|
|
|
*/
|
|
|
|
if (!hdev->parent) {
|
|
|
|
delay = HUB_ROOT_RESET_TIME;
|
|
|
|
if (port1 == hdev->bus->otg_port)
|
|
|
|
hdev->bus->b_hnp_enable = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Some low speed devices have problems with the quick delay, so */
|
|
|
|
/* be a bit pessimistic with those devices. RHbug #23670 */
|
|
|
|
if (oldspeed == USB_SPEED_LOW)
|
|
|
|
delay = HUB_LONG_RESET_TIME;
|
|
|
|
|
2006-01-11 15:55:29 +01:00
|
|
|
mutex_lock(&usb_address0_mutex);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* Reset the device; full speed may morph to high speed */
|
|
|
|
retval = hub_port_reset(hub, port1, udev, delay);
|
|
|
|
if (retval < 0) /* error or disconnect */
|
|
|
|
goto fail;
|
|
|
|
/* success, speed is known */
|
|
|
|
retval = -ENODEV;
|
|
|
|
|
|
|
|
if (oldspeed != USB_SPEED_UNKNOWN && oldspeed != udev->speed) {
|
|
|
|
dev_dbg(&udev->dev, "device reset changed speed!\n");
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
oldspeed = udev->speed;
|
|
|
|
|
|
|
|
/* USB 2.0 section 5.5.3 talks about ep0 maxpacket ...
|
|
|
|
* it's fixed size except for full speed devices.
|
2006-08-26 04:35:30 +02:00
|
|
|
* For Wireless USB devices, ep0 max packet is always 512 (tho
|
|
|
|
* reported as 0xff in the device descriptor). WUSB1.0[4.8.1].
|
2005-04-17 00:20:36 +02:00
|
|
|
*/
|
|
|
|
switch (udev->speed) {
|
2006-08-26 04:35:30 +02:00
|
|
|
case USB_SPEED_VARIABLE: /* fixed at 512 */
|
|
|
|
udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(512);
|
|
|
|
break;
|
2005-04-17 00:20:36 +02:00
|
|
|
case USB_SPEED_HIGH: /* fixed at 64 */
|
|
|
|
udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
|
|
|
|
break;
|
|
|
|
case USB_SPEED_FULL: /* 8, 16, 32, or 64 */
|
|
|
|
/* to determine the ep0 maxpacket size, try to read
|
|
|
|
* the device descriptor to get bMaxPacketSize0 and
|
|
|
|
* then correct our initial guess.
|
|
|
|
*/
|
|
|
|
udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
|
|
|
|
break;
|
|
|
|
case USB_SPEED_LOW: /* fixed at 8 */
|
|
|
|
udev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(8);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
2006-08-26 04:35:31 +02:00
|
|
|
type = "";
|
|
|
|
switch (udev->speed) {
|
|
|
|
case USB_SPEED_LOW: speed = "low"; break;
|
|
|
|
case USB_SPEED_FULL: speed = "full"; break;
|
|
|
|
case USB_SPEED_HIGH: speed = "high"; break;
|
|
|
|
case USB_SPEED_VARIABLE:
|
|
|
|
speed = "variable";
|
|
|
|
type = "Wireless ";
|
|
|
|
break;
|
|
|
|
default: speed = "?"; break;
|
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_info (&udev->dev,
|
2006-08-26 04:35:31 +02:00
|
|
|
"%s %s speed %sUSB device using %s and address %d\n",
|
|
|
|
(udev->config) ? "reset" : "new", speed, type,
|
|
|
|
udev->bus->controller->driver->name, udev->devnum);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/* Set up TT records, if needed */
|
|
|
|
if (hdev->tt) {
|
|
|
|
udev->tt = hdev->tt;
|
|
|
|
udev->ttport = hdev->ttport;
|
|
|
|
} else if (udev->speed != USB_SPEED_HIGH
|
|
|
|
&& hdev->speed == USB_SPEED_HIGH) {
|
|
|
|
udev->tt = &hub->tt;
|
|
|
|
udev->ttport = port1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Why interleave GET_DESCRIPTOR and SET_ADDRESS this way?
|
|
|
|
* Because device hardware and firmware is sometimes buggy in
|
|
|
|
* this area, and this is how Linux has done it for ages.
|
|
|
|
* Change it cautiously.
|
|
|
|
*
|
|
|
|
* NOTE: If USE_NEW_SCHEME() is true we will start by issuing
|
|
|
|
* a 64-byte GET_DESCRIPTOR request. This is what Windows does,
|
|
|
|
* so it may help with some non-standards-compliant devices.
|
|
|
|
* Otherwise we start with SET_ADDRESS and then try to read the
|
|
|
|
* first 8 bytes of the device descriptor to get the ep0 maxpacket
|
|
|
|
* value.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < GET_DESCRIPTOR_TRIES; (++i, msleep(100))) {
|
|
|
|
if (USE_NEW_SCHEME(retry_counter)) {
|
|
|
|
struct usb_device_descriptor *buf;
|
|
|
|
int r = 0;
|
|
|
|
|
|
|
|
#define GET_DESCRIPTOR_BUFSIZE 64
|
|
|
|
buf = kmalloc(GET_DESCRIPTOR_BUFSIZE, GFP_NOIO);
|
|
|
|
if (!buf) {
|
|
|
|
retval = -ENOMEM;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Use a short timeout the first time through,
|
|
|
|
* so that recalcitrant full-speed devices with
|
|
|
|
* 8- or 16-byte ep0-maxpackets won't slow things
|
|
|
|
* down tremendously by NAKing the unexpectedly
|
|
|
|
* early status stage. Also, retry on all errors;
|
|
|
|
* some devices are flakey.
|
2006-08-26 04:35:30 +02:00
|
|
|
* 255 is for WUSB devices, we actually need to use 512.
|
|
|
|
* WUSB1.0[4.8.1].
|
2005-04-17 00:20:36 +02:00
|
|
|
*/
|
|
|
|
for (j = 0; j < 3; ++j) {
|
|
|
|
buf->bMaxPacketSize0 = 0;
|
|
|
|
r = usb_control_msg(udev, usb_rcvaddr0pipe(),
|
|
|
|
USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
|
|
|
|
USB_DT_DEVICE << 8, 0,
|
|
|
|
buf, GET_DESCRIPTOR_BUFSIZE,
|
|
|
|
(i ? USB_CTRL_GET_TIMEOUT : 1000));
|
|
|
|
switch (buf->bMaxPacketSize0) {
|
2006-08-26 04:35:30 +02:00
|
|
|
case 8: case 16: case 32: case 64: case 255:
|
2005-04-17 00:20:36 +02:00
|
|
|
if (buf->bDescriptorType ==
|
|
|
|
USB_DT_DEVICE) {
|
|
|
|
r = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* FALL THROUGH */
|
|
|
|
default:
|
|
|
|
if (r == 0)
|
|
|
|
r = -EPROTO;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (r == 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
udev->descriptor.bMaxPacketSize0 =
|
|
|
|
buf->bMaxPacketSize0;
|
|
|
|
kfree(buf);
|
|
|
|
|
|
|
|
retval = hub_port_reset(hub, port1, udev, delay);
|
|
|
|
if (retval < 0) /* error or disconnect */
|
|
|
|
goto fail;
|
|
|
|
if (oldspeed != udev->speed) {
|
|
|
|
dev_dbg(&udev->dev,
|
|
|
|
"device reset changed speed!\n");
|
|
|
|
retval = -ENODEV;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
if (r) {
|
|
|
|
dev_err(&udev->dev, "device descriptor "
|
|
|
|
"read/%s, error %d\n",
|
|
|
|
"64", r);
|
|
|
|
retval = -EMSGSIZE;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
#undef GET_DESCRIPTOR_BUFSIZE
|
|
|
|
}
|
|
|
|
|
|
|
|
for (j = 0; j < SET_ADDRESS_TRIES; ++j) {
|
|
|
|
retval = hub_set_address(udev);
|
|
|
|
if (retval >= 0)
|
|
|
|
break;
|
|
|
|
msleep(200);
|
|
|
|
}
|
|
|
|
if (retval < 0) {
|
|
|
|
dev_err(&udev->dev,
|
|
|
|
"device not accepting address %d, error %d\n",
|
|
|
|
udev->devnum, retval);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cope with hardware quirkiness:
|
|
|
|
* - let SET_ADDRESS settle, some device hardware wants it
|
|
|
|
* - read ep0 maxpacket even for high and low speed,
|
|
|
|
*/
|
|
|
|
msleep(10);
|
|
|
|
if (USE_NEW_SCHEME(retry_counter))
|
|
|
|
break;
|
|
|
|
|
|
|
|
retval = usb_get_device_descriptor(udev, 8);
|
|
|
|
if (retval < 8) {
|
|
|
|
dev_err(&udev->dev, "device descriptor "
|
|
|
|
"read/%s, error %d\n",
|
|
|
|
"8", retval);
|
|
|
|
if (retval >= 0)
|
|
|
|
retval = -EMSGSIZE;
|
|
|
|
} else {
|
|
|
|
retval = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (retval)
|
|
|
|
goto fail;
|
|
|
|
|
2006-08-26 04:35:30 +02:00
|
|
|
i = udev->descriptor.bMaxPacketSize0 == 0xff?
|
|
|
|
512 : udev->descriptor.bMaxPacketSize0;
|
2005-04-17 00:20:36 +02:00
|
|
|
if (le16_to_cpu(udev->ep0.desc.wMaxPacketSize) != i) {
|
|
|
|
if (udev->speed != USB_SPEED_FULL ||
|
|
|
|
!(i == 8 || i == 16 || i == 32 || i == 64)) {
|
|
|
|
dev_err(&udev->dev, "ep0 maxpacket = %d\n", i);
|
|
|
|
retval = -EMSGSIZE;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
dev_dbg(&udev->dev, "ep0 maxpacket = %d\n", i);
|
|
|
|
udev->ep0.desc.wMaxPacketSize = cpu_to_le16(i);
|
|
|
|
ep0_reinit(udev);
|
|
|
|
}
|
|
|
|
|
|
|
|
retval = usb_get_device_descriptor(udev, USB_DT_DEVICE_SIZE);
|
|
|
|
if (retval < (signed)sizeof(udev->descriptor)) {
|
|
|
|
dev_err(&udev->dev, "device descriptor read/%s, error %d\n",
|
|
|
|
"all", retval);
|
|
|
|
if (retval >= 0)
|
|
|
|
retval = -ENOMSG;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
retval = 0;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
if (retval)
|
|
|
|
hub_port_disable(hub, port1, 0);
|
2006-01-11 15:55:29 +01:00
|
|
|
mutex_unlock(&usb_address0_mutex);
|
2005-04-17 00:20:36 +02:00
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
check_highspeed (struct usb_hub *hub, struct usb_device *udev, int port1)
|
|
|
|
{
|
|
|
|
struct usb_qualifier_descriptor *qual;
|
|
|
|
int status;
|
|
|
|
|
|
|
|
qual = kmalloc (sizeof *qual, SLAB_KERNEL);
|
|
|
|
if (qual == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
status = usb_get_descriptor (udev, USB_DT_DEVICE_QUALIFIER, 0,
|
|
|
|
qual, sizeof *qual);
|
|
|
|
if (status == sizeof *qual) {
|
|
|
|
dev_info(&udev->dev, "not running at top speed; "
|
|
|
|
"connect to a high speed hub\n");
|
|
|
|
/* hub LEDs are probably harder to miss than syslog */
|
|
|
|
if (hub->has_indicators) {
|
|
|
|
hub->indicator[port1-1] = INDICATOR_GREEN_BLINK;
|
|
|
|
schedule_work (&hub->leds);
|
|
|
|
}
|
|
|
|
}
|
2005-04-19 02:39:34 +02:00
|
|
|
kfree(qual);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned
|
|
|
|
hub_power_remaining (struct usb_hub *hub)
|
|
|
|
{
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
int remaining;
|
2005-11-23 18:03:12 +01:00
|
|
|
int port1;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2005-11-23 18:03:12 +01:00
|
|
|
if (!hub->limited_power)
|
2005-04-17 00:20:36 +02:00
|
|
|
return 0;
|
|
|
|
|
2005-11-23 18:03:12 +01:00
|
|
|
remaining = hdev->bus_mA - hub->descriptor->bHubContrCurrent;
|
|
|
|
for (port1 = 1; port1 <= hdev->maxchild; ++port1) {
|
|
|
|
struct usb_device *udev = hdev->children[port1 - 1];
|
|
|
|
int delta;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
if (!udev)
|
|
|
|
continue;
|
|
|
|
|
2005-11-23 18:03:12 +01:00
|
|
|
/* Unconfigured devices may not use more than 100mA,
|
|
|
|
* or 8mA for OTG ports */
|
2005-04-17 00:20:36 +02:00
|
|
|
if (udev->actconfig)
|
2005-11-23 18:03:12 +01:00
|
|
|
delta = udev->actconfig->desc.bMaxPower * 2;
|
|
|
|
else if (port1 != udev->bus->otg_port || hdev->parent)
|
|
|
|
delta = 100;
|
2005-04-17 00:20:36 +02:00
|
|
|
else
|
2005-11-23 18:03:12 +01:00
|
|
|
delta = 8;
|
|
|
|
if (delta > hub->mA_per_port)
|
|
|
|
dev_warn(&udev->dev, "%dmA is over %umA budget "
|
|
|
|
"for port %d!\n",
|
|
|
|
delta, hub->mA_per_port, port1);
|
2005-04-17 00:20:36 +02:00
|
|
|
remaining -= delta;
|
|
|
|
}
|
|
|
|
if (remaining < 0) {
|
2005-11-23 18:03:12 +01:00
|
|
|
dev_warn(hub->intfdev, "%dmA over power budget!\n",
|
|
|
|
- remaining);
|
2005-04-17 00:20:36 +02:00
|
|
|
remaining = 0;
|
|
|
|
}
|
|
|
|
return remaining;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle physical or logical connection change events.
|
|
|
|
* This routine is called when:
|
|
|
|
* a port connection-change occurs;
|
|
|
|
* a port enable-change occurs (often caused by EMI);
|
|
|
|
* usb_reset_device() encounters changed descriptors (as from
|
|
|
|
* a firmware download)
|
|
|
|
* caller already locked the hub
|
|
|
|
*/
|
|
|
|
static void hub_port_connect_change(struct usb_hub *hub, int port1,
|
|
|
|
u16 portstatus, u16 portchange)
|
|
|
|
{
|
|
|
|
struct usb_device *hdev = hub->hdev;
|
|
|
|
struct device *hub_dev = hub->intfdev;
|
2005-06-21 06:15:16 +02:00
|
|
|
u16 wHubCharacteristics = le16_to_cpu(hub->descriptor->wHubCharacteristics);
|
2005-04-17 00:20:36 +02:00
|
|
|
int status, i;
|
|
|
|
|
|
|
|
dev_dbg (hub_dev,
|
|
|
|
"port %d, status %04x, change %04x, %s\n",
|
|
|
|
port1, portstatus, portchange, portspeed (portstatus));
|
|
|
|
|
|
|
|
if (hub->has_indicators) {
|
|
|
|
set_port_led(hub, port1, HUB_LED_AUTO);
|
|
|
|
hub->indicator[port1-1] = INDICATOR_AUTO;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Disconnect any existing devices under this port */
|
|
|
|
if (hdev->children[port1-1])
|
|
|
|
usb_disconnect(&hdev->children[port1-1]);
|
|
|
|
clear_bit(port1, hub->change_bits);
|
|
|
|
|
|
|
|
#ifdef CONFIG_USB_OTG
|
|
|
|
/* during HNP, don't repeat the debounce */
|
|
|
|
if (hdev->bus->is_b_host)
|
|
|
|
portchange &= ~USB_PORT_STAT_C_CONNECTION;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (portchange & USB_PORT_STAT_C_CONNECTION) {
|
|
|
|
status = hub_port_debounce(hub, port1);
|
|
|
|
if (status < 0) {
|
|
|
|
dev_err (hub_dev,
|
|
|
|
"connect-debounce failed, port %d disabled\n",
|
|
|
|
port1);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
portstatus = status;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return now if nothing is connected */
|
|
|
|
if (!(portstatus & USB_PORT_STAT_CONNECTION)) {
|
|
|
|
|
|
|
|
/* maybe switch power back on (e.g. root hub was reset) */
|
2005-06-21 06:15:16 +02:00
|
|
|
if ((wHubCharacteristics & HUB_CHAR_LPSM) < 2
|
2005-04-17 00:20:36 +02:00
|
|
|
&& !(portstatus & (1 << USB_PORT_FEAT_POWER)))
|
|
|
|
set_port_feature(hdev, port1, USB_PORT_FEAT_POWER);
|
|
|
|
|
|
|
|
if (portstatus & USB_PORT_STAT_ENABLE)
|
|
|
|
goto done;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_USB_SUSPEND
|
|
|
|
/* If something is connected, but the port is suspended, wake it up. */
|
|
|
|
if (portstatus & USB_PORT_STAT_SUSPEND) {
|
|
|
|
status = hub_port_resume(hub, port1, NULL);
|
|
|
|
if (status < 0) {
|
|
|
|
dev_dbg(hub_dev,
|
|
|
|
"can't clear suspend on port %d; %d\n",
|
|
|
|
port1, status);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for (i = 0; i < SET_CONFIG_TRIES; i++) {
|
|
|
|
struct usb_device *udev;
|
|
|
|
|
|
|
|
/* reallocate for each attempt, since references
|
|
|
|
* to the previous one can escape in various ways
|
|
|
|
*/
|
|
|
|
udev = usb_alloc_dev(hdev, hdev->bus, port1);
|
|
|
|
if (!udev) {
|
|
|
|
dev_err (hub_dev,
|
|
|
|
"couldn't allocate port %d usb_device\n",
|
|
|
|
port1);
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
usb_set_device_state(udev, USB_STATE_POWERED);
|
|
|
|
udev->speed = USB_SPEED_UNKNOWN;
|
2005-11-23 18:03:12 +01:00
|
|
|
udev->bus_mA = hub->mA_per_port;
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
/* set the address */
|
|
|
|
choose_address(udev);
|
|
|
|
if (udev->devnum <= 0) {
|
|
|
|
status = -ENOTCONN; /* Don't retry */
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reset and get descriptor */
|
|
|
|
status = hub_port_init(hub, udev, port1, i);
|
|
|
|
if (status < 0)
|
|
|
|
goto loop;
|
|
|
|
|
|
|
|
/* consecutive bus-powered hubs aren't reliable; they can
|
|
|
|
* violate the voltage drop budget. if the new child has
|
|
|
|
* a "powered" LED, users should notice we didn't enable it
|
|
|
|
* (without reading syslog), even without per-port LEDs
|
|
|
|
* on the parent.
|
|
|
|
*/
|
|
|
|
if (udev->descriptor.bDeviceClass == USB_CLASS_HUB
|
2005-11-23 18:03:12 +01:00
|
|
|
&& udev->bus_mA <= 100) {
|
2005-04-17 00:20:36 +02:00
|
|
|
u16 devstat;
|
|
|
|
|
|
|
|
status = usb_get_status(udev, USB_RECIP_DEVICE, 0,
|
|
|
|
&devstat);
|
2005-11-23 18:03:12 +01:00
|
|
|
if (status < 2) {
|
2005-04-17 00:20:36 +02:00
|
|
|
dev_dbg(&udev->dev, "get status %d ?\n", status);
|
|
|
|
goto loop_disable;
|
|
|
|
}
|
2005-11-23 18:03:12 +01:00
|
|
|
le16_to_cpus(&devstat);
|
2005-04-17 00:20:36 +02:00
|
|
|
if ((devstat & (1 << USB_DEVICE_SELF_POWERED)) == 0) {
|
|
|
|
dev_err(&udev->dev,
|
|
|
|
"can't connect bus-powered hub "
|
|
|
|
"to this port\n");
|
|
|
|
if (hub->has_indicators) {
|
|
|
|
hub->indicator[port1-1] =
|
|
|
|
INDICATOR_AMBER_BLINK;
|
|
|
|
schedule_work (&hub->leds);
|
|
|
|
}
|
|
|
|
status = -ENOTCONN; /* Don't retry */
|
|
|
|
goto loop_disable;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check for devices running slower than they could */
|
|
|
|
if (le16_to_cpu(udev->descriptor.bcdUSB) >= 0x0200
|
|
|
|
&& udev->speed == USB_SPEED_FULL
|
|
|
|
&& highspeed_hubs != 0)
|
|
|
|
check_highspeed (hub, udev, port1);
|
|
|
|
|
|
|
|
/* Store the parent's children[] pointer. At this point
|
|
|
|
* udev becomes globally accessible, although presumably
|
|
|
|
* no one will look at it until hdev is unlocked.
|
|
|
|
*/
|
|
|
|
status = 0;
|
|
|
|
|
|
|
|
/* We mustn't add new devices if the parent hub has
|
|
|
|
* been disconnected; we would race with the
|
|
|
|
* recursively_mark_NOTATTACHED() routine.
|
|
|
|
*/
|
|
|
|
spin_lock_irq(&device_state_lock);
|
|
|
|
if (hdev->state == USB_STATE_NOTATTACHED)
|
|
|
|
status = -ENOTCONN;
|
|
|
|
else
|
|
|
|
hdev->children[port1-1] = udev;
|
|
|
|
spin_unlock_irq(&device_state_lock);
|
|
|
|
|
|
|
|
/* Run it through the hoops (find a driver, etc) */
|
|
|
|
if (!status) {
|
|
|
|
status = usb_new_device(udev);
|
|
|
|
if (status) {
|
|
|
|
spin_lock_irq(&device_state_lock);
|
|
|
|
hdev->children[port1-1] = NULL;
|
|
|
|
spin_unlock_irq(&device_state_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (status)
|
|
|
|
goto loop_disable;
|
|
|
|
|
|
|
|
status = hub_power_remaining(hub);
|
|
|
|
if (status)
|
2005-11-23 18:03:12 +01:00
|
|
|
dev_dbg(hub_dev, "%dmA power budget left\n", status);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
loop_disable:
|
|
|
|
hub_port_disable(hub, port1, 1);
|
|
|
|
loop:
|
|
|
|
ep0_reinit(udev);
|
|
|
|
release_address(udev);
|
|
|
|
usb_put_dev(udev);
|
|
|
|
if (status == -ENOTCONN)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
done:
|
|
|
|
hub_port_disable(hub, port1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hub_events(void)
|
|
|
|
{
|
|
|
|
struct list_head *tmp;
|
|
|
|
struct usb_device *hdev;
|
|
|
|
struct usb_interface *intf;
|
|
|
|
struct usb_hub *hub;
|
|
|
|
struct device *hub_dev;
|
|
|
|
u16 hubstatus;
|
|
|
|
u16 hubchange;
|
|
|
|
u16 portstatus;
|
|
|
|
u16 portchange;
|
|
|
|
int i, ret;
|
|
|
|
int connect_change;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We restart the list every time to avoid a deadlock with
|
|
|
|
* deleting hubs downstream from this one. This should be
|
|
|
|
* safe since we delete the hub from the event list.
|
|
|
|
* Not the most efficient, but avoids deadlocks.
|
|
|
|
*/
|
|
|
|
while (1) {
|
|
|
|
|
|
|
|
/* Grab the first entry at the beginning of the list */
|
|
|
|
spin_lock_irq(&hub_event_lock);
|
|
|
|
if (list_empty(&hub_event_list)) {
|
|
|
|
spin_unlock_irq(&hub_event_lock);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp = hub_event_list.next;
|
|
|
|
list_del_init(tmp);
|
|
|
|
|
|
|
|
hub = list_entry(tmp, struct usb_hub, event_list);
|
|
|
|
hdev = hub->hdev;
|
|
|
|
intf = to_usb_interface(hub->intfdev);
|
|
|
|
hub_dev = &intf->dev;
|
|
|
|
|
2005-09-23 07:32:24 +02:00
|
|
|
i = hub->resume_root_hub;
|
|
|
|
|
|
|
|
dev_dbg(hub_dev, "state %d ports %d chg %04x evt %04x%s\n",
|
2005-04-17 00:20:36 +02:00
|
|
|
hdev->state, hub->descriptor
|
|
|
|
? hub->descriptor->bNbrPorts
|
|
|
|
: 0,
|
|
|
|
/* NOTE: expects max 15 ports... */
|
|
|
|
(u16) hub->change_bits[0],
|
2005-09-23 07:32:24 +02:00
|
|
|
(u16) hub->event_bits[0],
|
|
|
|
i ? ", resume root" : "");
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
usb_get_intf(intf);
|
|
|
|
spin_unlock_irq(&hub_event_lock);
|
|
|
|
|
|
|
|
/* Lock the device, then check to see if we were
|
|
|
|
* disconnected while waiting for the lock to succeed. */
|
|
|
|
if (locktree(hdev) < 0) {
|
|
|
|
usb_put_intf(intf);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (hub != usb_get_intfdata(intf))
|
|
|
|
goto loop;
|
|
|
|
|
|
|
|
/* If the hub has died, clean up after it */
|
|
|
|
if (hdev->state == USB_STATE_NOTATTACHED) {
|
2006-06-01 19:37:24 +02:00
|
|
|
hub->error = -ENODEV;
|
|
|
|
hub_pre_reset(intf);
|
2005-04-17 00:20:36 +02:00
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
2006-07-02 04:11:02 +02:00
|
|
|
/* Is this is a root hub wanting to reactivate the downstream
|
|
|
|
* ports? If so, be sure the interface resumes even if its
|
|
|
|
* stub "device" node was never suspended.
|
|
|
|
*/
|
|
|
|
if (i)
|
|
|
|
usb_resume_both(hdev);
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
/* If this is an inactive or suspended hub, do nothing */
|
|
|
|
if (hub->quiescing)
|
|
|
|
goto loop;
|
|
|
|
|
|
|
|
if (hub->error) {
|
|
|
|
dev_dbg (hub_dev, "resetting for error %d\n",
|
|
|
|
hub->error);
|
|
|
|
|
2006-06-01 19:37:24 +02:00
|
|
|
ret = usb_reset_composite_device(hdev, intf);
|
2005-04-17 00:20:36 +02:00
|
|
|
if (ret) {
|
|
|
|
dev_dbg (hub_dev,
|
|
|
|
"error resetting hub: %d\n", ret);
|
|
|
|
goto loop;
|
|
|
|
}
|
|
|
|
|
|
|
|
hub->nerrors = 0;
|
|
|
|
hub->error = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* deal with port status changes */
|
|
|
|
for (i = 1; i <= hub->descriptor->bNbrPorts; i++) {
|
|
|
|
if (test_bit(i, hub->busy_bits))
|
|
|
|
continue;
|
|
|
|
connect_change = test_bit(i, hub->change_bits);
|
|
|
|
if (!test_and_clear_bit(i, hub->event_bits) &&
|
|
|
|
!connect_change && !hub->activating)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ret = hub_port_status(hub, i,
|
|
|
|
&portstatus, &portchange);
|
|
|
|
if (ret < 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (hub->activating && !hdev->children[i-1] &&
|
|
|
|
(portstatus &
|
|
|
|
USB_PORT_STAT_CONNECTION))
|
|
|
|
connect_change = 1;
|
|
|
|
|
|
|
|
if (portchange & USB_PORT_STAT_C_CONNECTION) {
|
|
|
|
clear_port_feature(hdev, i,
|
|
|
|
USB_PORT_FEAT_C_CONNECTION);
|
|
|
|
connect_change = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (portchange & USB_PORT_STAT_C_ENABLE) {
|
|
|
|
if (!connect_change)
|
|
|
|
dev_dbg (hub_dev,
|
|
|
|
"port %d enable change, "
|
|
|
|
"status %08x\n",
|
|
|
|
i, portstatus);
|
|
|
|
clear_port_feature(hdev, i,
|
|
|
|
USB_PORT_FEAT_C_ENABLE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* EM interference sometimes causes badly
|
|
|
|
* shielded USB devices to be shutdown by
|
|
|
|
* the hub, this hack enables them again.
|
|
|
|
* Works at least with mouse driver.
|
|
|
|
*/
|
|
|
|
if (!(portstatus & USB_PORT_STAT_ENABLE)
|
|
|
|
&& !connect_change
|
|
|
|
&& hdev->children[i-1]) {
|
|
|
|
dev_err (hub_dev,
|
|
|
|
"port %i "
|
|
|
|
"disabled by hub (EMI?), "
|
|
|
|
"re-enabling...\n",
|
|
|
|
i);
|
|
|
|
connect_change = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (portchange & USB_PORT_STAT_C_SUSPEND) {
|
|
|
|
clear_port_feature(hdev, i,
|
|
|
|
USB_PORT_FEAT_C_SUSPEND);
|
|
|
|
if (hdev->children[i-1]) {
|
|
|
|
ret = remote_wakeup(hdev->
|
|
|
|
children[i-1]);
|
|
|
|
if (ret < 0)
|
|
|
|
connect_change = 1;
|
|
|
|
} else {
|
|
|
|
ret = -ENODEV;
|
|
|
|
hub_port_disable(hub, i, 1);
|
|
|
|
}
|
|
|
|
dev_dbg (hub_dev,
|
|
|
|
"resume on port %d, status %d\n",
|
|
|
|
i, ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (portchange & USB_PORT_STAT_C_OVERCURRENT) {
|
|
|
|
dev_err (hub_dev,
|
|
|
|
"over-current change on port %d\n",
|
|
|
|
i);
|
|
|
|
clear_port_feature(hdev, i,
|
|
|
|
USB_PORT_FEAT_C_OVER_CURRENT);
|
|
|
|
hub_power_on(hub);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (portchange & USB_PORT_STAT_C_RESET) {
|
|
|
|
dev_dbg (hub_dev,
|
|
|
|
"reset change on port %d\n",
|
|
|
|
i);
|
|
|
|
clear_port_feature(hdev, i,
|
|
|
|
USB_PORT_FEAT_C_RESET);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (connect_change)
|
|
|
|
hub_port_connect_change(hub, i,
|
|
|
|
portstatus, portchange);
|
|
|
|
} /* end for i */
|
|
|
|
|
|
|
|
/* deal with hub status changes */
|
|
|
|
if (test_and_clear_bit(0, hub->event_bits) == 0)
|
|
|
|
; /* do nothing */
|
|
|
|
else if (hub_hub_status(hub, &hubstatus, &hubchange) < 0)
|
|
|
|
dev_err (hub_dev, "get_hub_status failed\n");
|
|
|
|
else {
|
|
|
|
if (hubchange & HUB_CHANGE_LOCAL_POWER) {
|
|
|
|
dev_dbg (hub_dev, "power change\n");
|
|
|
|
clear_hub_feature(hdev, C_HUB_LOCAL_POWER);
|
2005-11-23 18:03:12 +01:00
|
|
|
if (hubstatus & HUB_STATUS_LOCAL_POWER)
|
|
|
|
/* FIXME: Is this always true? */
|
|
|
|
hub->limited_power = 0;
|
|
|
|
else
|
|
|
|
hub->limited_power = 1;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
if (hubchange & HUB_CHANGE_OVERCURRENT) {
|
|
|
|
dev_dbg (hub_dev, "overcurrent change\n");
|
|
|
|
msleep(500); /* Cool down */
|
|
|
|
clear_hub_feature(hdev, C_HUB_OVER_CURRENT);
|
|
|
|
hub_power_on(hub);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
hub->activating = 0;
|
|
|
|
|
2005-04-21 21:56:37 +02:00
|
|
|
/* If this is a root hub, tell the HCD it's okay to
|
|
|
|
* re-enable port-change interrupts now. */
|
2006-08-11 22:52:39 +02:00
|
|
|
if (!hdev->parent && !hub->busy_bits[0])
|
2005-04-21 21:56:37 +02:00
|
|
|
usb_enable_root_hub_irq(hdev->bus);
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
loop:
|
|
|
|
usb_unlock_device(hdev);
|
|
|
|
usb_put_intf(intf);
|
|
|
|
|
|
|
|
} /* end while (1) */
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hub_thread(void *__unused)
|
|
|
|
{
|
|
|
|
do {
|
|
|
|
hub_events();
|
2005-06-20 23:29:58 +02:00
|
|
|
wait_event_interruptible(khubd_wait,
|
|
|
|
!list_empty(&hub_event_list) ||
|
|
|
|
kthread_should_stop());
|
2005-06-25 08:13:50 +02:00
|
|
|
try_to_freeze();
|
2005-06-20 23:29:58 +02:00
|
|
|
} while (!kthread_should_stop() || !list_empty(&hub_event_list));
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2005-06-20 23:29:58 +02:00
|
|
|
pr_debug("%s: khubd exiting\n", usbcore_name);
|
|
|
|
return 0;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct usb_device_id hub_id_table [] = {
|
|
|
|
{ .match_flags = USB_DEVICE_ID_MATCH_DEV_CLASS,
|
|
|
|
.bDeviceClass = USB_CLASS_HUB},
|
|
|
|
{ .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS,
|
|
|
|
.bInterfaceClass = USB_CLASS_HUB},
|
|
|
|
{ } /* Terminating entry */
|
|
|
|
};
|
|
|
|
|
|
|
|
MODULE_DEVICE_TABLE (usb, hub_id_table);
|
|
|
|
|
|
|
|
static struct usb_driver hub_driver = {
|
|
|
|
.name = "hub",
|
|
|
|
.probe = hub_probe,
|
|
|
|
.disconnect = hub_disconnect,
|
|
|
|
.suspend = hub_suspend,
|
|
|
|
.resume = hub_resume,
|
2006-06-01 19:37:24 +02:00
|
|
|
.pre_reset = hub_pre_reset,
|
|
|
|
.post_reset = hub_post_reset,
|
2005-04-17 00:20:36 +02:00
|
|
|
.ioctl = hub_ioctl,
|
|
|
|
.id_table = hub_id_table,
|
|
|
|
};
|
|
|
|
|
|
|
|
int usb_hub_init(void)
|
|
|
|
{
|
|
|
|
if (usb_register(&hub_driver) < 0) {
|
|
|
|
printk(KERN_ERR "%s: can't register hub driver\n",
|
|
|
|
usbcore_name);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2005-06-20 23:29:58 +02:00
|
|
|
khubd_task = kthread_run(hub_thread, NULL, "khubd");
|
|
|
|
if (!IS_ERR(khubd_task))
|
2005-04-17 00:20:36 +02:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Fall through if kernel_thread failed */
|
|
|
|
usb_deregister(&hub_driver);
|
|
|
|
printk(KERN_ERR "%s: can't start khubd\n", usbcore_name);
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void usb_hub_cleanup(void)
|
|
|
|
{
|
2005-06-20 23:29:58 +02:00
|
|
|
kthread_stop(khubd_task);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Hub resources are freed for us by usb_deregister. It calls
|
|
|
|
* usb_driver_purge on every device which in turn calls that
|
|
|
|
* devices disconnect function if it is using this driver.
|
|
|
|
* The hub_disconnect function takes care of releasing the
|
|
|
|
* individual hub resources. -greg
|
|
|
|
*/
|
|
|
|
usb_deregister(&hub_driver);
|
|
|
|
} /* usb_hub_cleanup() */
|
|
|
|
|
|
|
|
static int config_descriptors_changed(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
unsigned index;
|
|
|
|
unsigned len = 0;
|
|
|
|
struct usb_config_descriptor *buf;
|
|
|
|
|
|
|
|
for (index = 0; index < udev->descriptor.bNumConfigurations; index++) {
|
|
|
|
if (len < le16_to_cpu(udev->config[index].desc.wTotalLength))
|
|
|
|
len = le16_to_cpu(udev->config[index].desc.wTotalLength);
|
|
|
|
}
|
|
|
|
buf = kmalloc (len, SLAB_KERNEL);
|
|
|
|
if (buf == NULL) {
|
|
|
|
dev_err(&udev->dev, "no mem to re-read configs after reset\n");
|
|
|
|
/* assume the worst */
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
for (index = 0; index < udev->descriptor.bNumConfigurations; index++) {
|
|
|
|
int length;
|
|
|
|
int old_length = le16_to_cpu(udev->config[index].desc.wTotalLength);
|
|
|
|
|
|
|
|
length = usb_get_descriptor(udev, USB_DT_CONFIG, index, buf,
|
|
|
|
old_length);
|
|
|
|
if (length < old_length) {
|
|
|
|
dev_dbg(&udev->dev, "config index %d, error %d\n",
|
|
|
|
index, length);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (memcmp (buf, udev->rawdescriptors[index], old_length)
|
|
|
|
!= 0) {
|
|
|
|
dev_dbg(&udev->dev, "config index %d changed (#%d)\n",
|
|
|
|
index, buf->bConfigurationValue);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
kfree(buf);
|
|
|
|
return index != udev->descriptor.bNumConfigurations;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_reset_device - perform a USB port reset to reinitialize a device
|
|
|
|
* @udev: device to reset (not in SUSPENDED or NOTATTACHED state)
|
|
|
|
*
|
2006-06-01 19:33:42 +02:00
|
|
|
* WARNING - don't use this routine to reset a composite device
|
|
|
|
* (one with multiple interfaces owned by separate drivers)!
|
|
|
|
* Use usb_reset_composite_device() instead.
|
2005-04-17 00:20:36 +02:00
|
|
|
*
|
|
|
|
* Do a port reset, reassign the device's address, and establish its
|
|
|
|
* former operating configuration. If the reset fails, or the device's
|
|
|
|
* descriptors change from their values before the reset, or the original
|
|
|
|
* configuration and altsettings cannot be restored, a flag will be set
|
|
|
|
* telling khubd to pretend the device has been disconnected and then
|
|
|
|
* re-connected. All drivers will be unbound, and the device will be
|
|
|
|
* re-enumerated and probed all over again.
|
|
|
|
*
|
|
|
|
* Returns 0 if the reset succeeded, -ENODEV if the device has been
|
|
|
|
* flagged for logical disconnection, or some other negative error code
|
|
|
|
* if the reset wasn't even attempted.
|
|
|
|
*
|
|
|
|
* The caller must own the device lock. For example, it's safe to use
|
|
|
|
* this from a driver probe() routine after downloading new firmware.
|
|
|
|
* For calls that might not occur during probe(), drivers should lock
|
|
|
|
* the device using usb_lock_device_for_reset().
|
|
|
|
*/
|
|
|
|
int usb_reset_device(struct usb_device *udev)
|
|
|
|
{
|
|
|
|
struct usb_device *parent_hdev = udev->parent;
|
|
|
|
struct usb_hub *parent_hub;
|
|
|
|
struct usb_device_descriptor descriptor = udev->descriptor;
|
2005-11-23 18:09:52 +01:00
|
|
|
int i, ret = 0;
|
|
|
|
int port1 = udev->portnum;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
if (udev->state == USB_STATE_NOTATTACHED ||
|
|
|
|
udev->state == USB_STATE_SUSPENDED) {
|
|
|
|
dev_dbg(&udev->dev, "device reset not allowed in state %d\n",
|
|
|
|
udev->state);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!parent_hdev) {
|
|
|
|
/* this requires hcd-specific logic; see OHCI hc_restart() */
|
|
|
|
dev_dbg(&udev->dev, "%s for root hub!\n", __FUNCTION__);
|
|
|
|
return -EISDIR;
|
|
|
|
}
|
|
|
|
parent_hub = hdev_to_hub(parent_hdev);
|
|
|
|
|
|
|
|
set_bit(port1, parent_hub->busy_bits);
|
|
|
|
for (i = 0; i < SET_CONFIG_TRIES; ++i) {
|
|
|
|
|
|
|
|
/* ep0 maxpacket size may change; let the HCD know about it.
|
|
|
|
* Other endpoints will be handled by re-enumeration. */
|
|
|
|
ep0_reinit(udev);
|
|
|
|
ret = hub_port_init(parent_hub, udev, port1, i);
|
|
|
|
if (ret >= 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
clear_bit(port1, parent_hub->busy_bits);
|
2006-08-11 22:52:39 +02:00
|
|
|
if (!parent_hdev->parent && !parent_hub->busy_bits[0])
|
|
|
|
usb_enable_root_hub_irq(parent_hdev->bus);
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
if (ret < 0)
|
|
|
|
goto re_enumerate;
|
|
|
|
|
|
|
|
/* Device might have changed firmware (DFU or similar) */
|
|
|
|
if (memcmp(&udev->descriptor, &descriptor, sizeof descriptor)
|
|
|
|
|| config_descriptors_changed (udev)) {
|
|
|
|
dev_info(&udev->dev, "device firmware changed\n");
|
|
|
|
udev->descriptor = descriptor; /* for disconnect() calls */
|
|
|
|
goto re_enumerate;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!udev->actconfig)
|
|
|
|
goto done;
|
|
|
|
|
|
|
|
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
|
|
|
|
USB_REQ_SET_CONFIGURATION, 0,
|
|
|
|
udev->actconfig->desc.bConfigurationValue, 0,
|
|
|
|
NULL, 0, USB_CTRL_SET_TIMEOUT);
|
|
|
|
if (ret < 0) {
|
|
|
|
dev_err(&udev->dev,
|
|
|
|
"can't restore configuration #%d (error=%d)\n",
|
|
|
|
udev->actconfig->desc.bConfigurationValue, ret);
|
|
|
|
goto re_enumerate;
|
|
|
|
}
|
|
|
|
usb_set_device_state(udev, USB_STATE_CONFIGURED);
|
|
|
|
|
|
|
|
for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) {
|
|
|
|
struct usb_interface *intf = udev->actconfig->interface[i];
|
|
|
|
struct usb_interface_descriptor *desc;
|
|
|
|
|
|
|
|
/* set_interface resets host side toggle even
|
|
|
|
* for altsetting zero. the interface may have no driver.
|
|
|
|
*/
|
|
|
|
desc = &intf->cur_altsetting->desc;
|
|
|
|
ret = usb_set_interface(udev, desc->bInterfaceNumber,
|
|
|
|
desc->bAlternateSetting);
|
|
|
|
if (ret < 0) {
|
|
|
|
dev_err(&udev->dev, "failed to restore interface %d "
|
|
|
|
"altsetting %d (error=%d)\n",
|
|
|
|
desc->bInterfaceNumber,
|
|
|
|
desc->bAlternateSetting,
|
|
|
|
ret);
|
|
|
|
goto re_enumerate;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
done:
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
re_enumerate:
|
|
|
|
hub_port_logical_disconnect(parent_hub, port1);
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
2006-07-02 04:07:21 +02:00
|
|
|
EXPORT_SYMBOL(usb_reset_device);
|
2006-06-01 19:33:42 +02:00
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_reset_composite_device - warn interface drivers and perform a USB port reset
|
|
|
|
* @udev: device to reset (not in SUSPENDED or NOTATTACHED state)
|
|
|
|
* @iface: interface bound to the driver making the request (optional)
|
|
|
|
*
|
|
|
|
* Warns all drivers bound to registered interfaces (using their pre_reset
|
|
|
|
* method), performs the port reset, and then lets the drivers know that
|
|
|
|
* the reset is over (using their post_reset method).
|
|
|
|
*
|
|
|
|
* Return value is the same as for usb_reset_device().
|
|
|
|
*
|
|
|
|
* The caller must own the device lock. For example, it's safe to use
|
|
|
|
* this from a driver probe() routine after downloading new firmware.
|
|
|
|
* For calls that might not occur during probe(), drivers should lock
|
|
|
|
* the device using usb_lock_device_for_reset().
|
|
|
|
*
|
|
|
|
* The interface locks are acquired during the pre_reset stage and released
|
|
|
|
* during the post_reset stage. However if iface is not NULL and is
|
|
|
|
* currently being probed, we assume that the caller already owns its
|
|
|
|
* lock.
|
|
|
|
*/
|
|
|
|
int usb_reset_composite_device(struct usb_device *udev,
|
|
|
|
struct usb_interface *iface)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
struct usb_host_config *config = udev->actconfig;
|
|
|
|
|
|
|
|
if (udev->state == USB_STATE_NOTATTACHED ||
|
|
|
|
udev->state == USB_STATE_SUSPENDED) {
|
|
|
|
dev_dbg(&udev->dev, "device reset not allowed in state %d\n",
|
|
|
|
udev->state);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (iface && iface->condition != USB_INTERFACE_BINDING)
|
|
|
|
iface = NULL;
|
|
|
|
|
|
|
|
if (config) {
|
|
|
|
int i;
|
|
|
|
struct usb_interface *cintf;
|
|
|
|
struct usb_driver *drv;
|
|
|
|
|
|
|
|
for (i = 0; i < config->desc.bNumInterfaces; ++i) {
|
|
|
|
cintf = config->interface[i];
|
|
|
|
if (cintf != iface)
|
|
|
|
down(&cintf->dev.sem);
|
|
|
|
if (device_is_registered(&cintf->dev) &&
|
|
|
|
cintf->dev.driver) {
|
|
|
|
drv = to_usb_driver(cintf->dev.driver);
|
|
|
|
if (drv->pre_reset)
|
|
|
|
(drv->pre_reset)(cintf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = usb_reset_device(udev);
|
|
|
|
|
|
|
|
if (config) {
|
|
|
|
int i;
|
|
|
|
struct usb_interface *cintf;
|
|
|
|
struct usb_driver *drv;
|
|
|
|
|
|
|
|
for (i = config->desc.bNumInterfaces - 1; i >= 0; --i) {
|
|
|
|
cintf = config->interface[i];
|
|
|
|
if (device_is_registered(&cintf->dev) &&
|
|
|
|
cintf->dev.driver) {
|
|
|
|
drv = to_usb_driver(cintf->dev.driver);
|
|
|
|
if (drv->post_reset)
|
|
|
|
(drv->post_reset)(cintf);
|
|
|
|
}
|
|
|
|
if (cintf != iface)
|
|
|
|
up(&cintf->dev.sem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
2006-07-02 04:07:21 +02:00
|
|
|
EXPORT_SYMBOL(usb_reset_composite_device);
|