tracing, perf: Implement BPF programs attached to kprobes
BPF programs, attached to kprobes, provide a safe way to execute
user-defined BPF byte-code programs without being able to crash or
hang the kernel in any way. The BPF engine makes sure that such
programs have a finite execution time and that they cannot break
out of their sandbox.
The user interface is to attach to a kprobe via the perf syscall:
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.config = event_id,
...
};
event_fd = perf_event_open(&attr,...);
ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);
'prog_fd' is a file descriptor associated with BPF program
previously loaded.
'event_id' is an ID of the kprobe created.
Closing 'event_fd':
close(event_fd);
... automatically detaches BPF program from it.
BPF programs can call in-kernel helper functions to:
- lookup/update/delete elements in maps
- probe_read - wraper of probe_kernel_read() used to access any
kernel data structures
BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is
architecture dependent) and return 0 to ignore the event and 1 to store
kprobe event into the ring buffer.
Note, kprobes are a fundamentally _not_ a stable kernel ABI,
so BPF programs attached to kprobes must be recompiled for
every kernel version and user must supply correct LINUX_VERSION_CODE
in attr.kern_version during bpf_prog_load() call.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-25 20:49:20 +01:00
|
|
|
/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
|
|
* License as published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/bpf.h>
|
|
|
|
#include <linux/filter.h>
|
|
|
|
#include <linux/uaccess.h>
|
2015-03-25 20:49:22 +01:00
|
|
|
#include <linux/ctype.h>
|
tracing, perf: Implement BPF programs attached to kprobes
BPF programs, attached to kprobes, provide a safe way to execute
user-defined BPF byte-code programs without being able to crash or
hang the kernel in any way. The BPF engine makes sure that such
programs have a finite execution time and that they cannot break
out of their sandbox.
The user interface is to attach to a kprobe via the perf syscall:
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.config = event_id,
...
};
event_fd = perf_event_open(&attr,...);
ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);
'prog_fd' is a file descriptor associated with BPF program
previously loaded.
'event_id' is an ID of the kprobe created.
Closing 'event_fd':
close(event_fd);
... automatically detaches BPF program from it.
BPF programs can call in-kernel helper functions to:
- lookup/update/delete elements in maps
- probe_read - wraper of probe_kernel_read() used to access any
kernel data structures
BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is
architecture dependent) and return 0 to ignore the event and 1 to store
kprobe event into the ring buffer.
Note, kprobes are a fundamentally _not_ a stable kernel ABI,
so BPF programs attached to kprobes must be recompiled for
every kernel version and user must supply correct LINUX_VERSION_CODE
in attr.kern_version during bpf_prog_load() call.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-25 20:49:20 +01:00
|
|
|
#include "trace.h"
|
|
|
|
|
|
|
|
static DEFINE_PER_CPU(int, bpf_prog_active);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* trace_call_bpf - invoke BPF program
|
|
|
|
* @prog: BPF program
|
|
|
|
* @ctx: opaque context pointer
|
|
|
|
*
|
|
|
|
* kprobe handlers execute BPF programs via this helper.
|
|
|
|
* Can be used from static tracepoints in the future.
|
|
|
|
*
|
|
|
|
* Return: BPF programs always return an integer which is interpreted by
|
|
|
|
* kprobe handler as:
|
|
|
|
* 0 - return from kprobe (event is filtered out)
|
|
|
|
* 1 - store kprobe event into ring buffer
|
|
|
|
* Other values are reserved and currently alias to 1
|
|
|
|
*/
|
|
|
|
unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
|
|
|
|
{
|
|
|
|
unsigned int ret;
|
|
|
|
|
|
|
|
if (in_nmi()) /* not supported yet */
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
preempt_disable();
|
|
|
|
|
|
|
|
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
|
|
|
|
/*
|
|
|
|
* since some bpf program is already running on this cpu,
|
|
|
|
* don't call into another bpf program (same or different)
|
|
|
|
* and don't send kprobe event into ring-buffer,
|
|
|
|
* so return zero here
|
|
|
|
*/
|
|
|
|
ret = 0;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
rcu_read_lock();
|
|
|
|
ret = BPF_PROG_RUN(prog, ctx);
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
out:
|
|
|
|
__this_cpu_dec(bpf_prog_active);
|
|
|
|
preempt_enable();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(trace_call_bpf);
|
|
|
|
|
|
|
|
static u64 bpf_probe_read(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
|
|
|
|
{
|
|
|
|
void *dst = (void *) (long) r1;
|
|
|
|
int size = (int) r2;
|
|
|
|
void *unsafe_ptr = (void *) (long) r3;
|
|
|
|
|
|
|
|
return probe_kernel_read(dst, unsafe_ptr, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct bpf_func_proto bpf_probe_read_proto = {
|
|
|
|
.func = bpf_probe_read,
|
|
|
|
.gpl_only = true,
|
|
|
|
.ret_type = RET_INTEGER,
|
|
|
|
.arg1_type = ARG_PTR_TO_STACK,
|
|
|
|
.arg2_type = ARG_CONST_STACK_SIZE,
|
|
|
|
.arg3_type = ARG_ANYTHING,
|
|
|
|
};
|
|
|
|
|
2015-03-25 20:49:22 +01:00
|
|
|
/*
|
|
|
|
* limited trace_printk()
|
2015-08-29 00:56:23 +02:00
|
|
|
* only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed
|
2015-03-25 20:49:22 +01:00
|
|
|
*/
|
|
|
|
static u64 bpf_trace_printk(u64 r1, u64 fmt_size, u64 r3, u64 r4, u64 r5)
|
|
|
|
{
|
|
|
|
char *fmt = (char *) (long) r1;
|
2015-08-29 00:56:23 +02:00
|
|
|
bool str_seen = false;
|
2015-03-25 20:49:22 +01:00
|
|
|
int mod[3] = {};
|
|
|
|
int fmt_cnt = 0;
|
2015-08-29 00:56:23 +02:00
|
|
|
u64 unsafe_addr;
|
|
|
|
char buf[64];
|
2015-03-25 20:49:22 +01:00
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* bpf_check()->check_func_arg()->check_stack_boundary()
|
|
|
|
* guarantees that fmt points to bpf program stack,
|
|
|
|
* fmt_size bytes of it were initialized and fmt_size > 0
|
|
|
|
*/
|
|
|
|
if (fmt[--fmt_size] != 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* check format string for allowed specifiers */
|
|
|
|
for (i = 0; i < fmt_size; i++) {
|
|
|
|
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (fmt[i] != '%')
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (fmt_cnt >= 3)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
|
|
|
|
i++;
|
|
|
|
if (fmt[i] == 'l') {
|
|
|
|
mod[fmt_cnt]++;
|
|
|
|
i++;
|
2015-08-29 00:56:23 +02:00
|
|
|
} else if (fmt[i] == 'p' || fmt[i] == 's') {
|
2015-03-25 20:49:22 +01:00
|
|
|
mod[fmt_cnt]++;
|
|
|
|
i++;
|
|
|
|
if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
|
|
|
|
return -EINVAL;
|
|
|
|
fmt_cnt++;
|
2015-08-29 00:56:23 +02:00
|
|
|
if (fmt[i - 1] == 's') {
|
|
|
|
if (str_seen)
|
|
|
|
/* allow only one '%s' per fmt string */
|
|
|
|
return -EINVAL;
|
|
|
|
str_seen = true;
|
|
|
|
|
|
|
|
switch (fmt_cnt) {
|
|
|
|
case 1:
|
|
|
|
unsafe_addr = r3;
|
|
|
|
r3 = (long) buf;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
unsafe_addr = r4;
|
|
|
|
r4 = (long) buf;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
unsafe_addr = r5;
|
|
|
|
r5 = (long) buf;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
buf[0] = 0;
|
|
|
|
strncpy_from_unsafe(buf,
|
|
|
|
(void *) (long) unsafe_addr,
|
|
|
|
sizeof(buf));
|
|
|
|
}
|
2015-03-25 20:49:22 +01:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fmt[i] == 'l') {
|
|
|
|
mod[fmt_cnt]++;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x')
|
|
|
|
return -EINVAL;
|
|
|
|
fmt_cnt++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return __trace_printk(1/* fake ip will not be printed */, fmt,
|
|
|
|
mod[0] == 2 ? r3 : mod[0] == 1 ? (long) r3 : (u32) r3,
|
|
|
|
mod[1] == 2 ? r4 : mod[1] == 1 ? (long) r4 : (u32) r4,
|
|
|
|
mod[2] == 2 ? r5 : mod[2] == 1 ? (long) r5 : (u32) r5);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct bpf_func_proto bpf_trace_printk_proto = {
|
|
|
|
.func = bpf_trace_printk,
|
|
|
|
.gpl_only = true,
|
|
|
|
.ret_type = RET_INTEGER,
|
|
|
|
.arg1_type = ARG_PTR_TO_STACK,
|
|
|
|
.arg2_type = ARG_CONST_STACK_SIZE,
|
|
|
|
};
|
|
|
|
|
2015-06-13 04:39:13 +02:00
|
|
|
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* this program might be calling bpf_trace_printk,
|
|
|
|
* so allocate per-cpu printk buffers
|
|
|
|
*/
|
|
|
|
trace_printk_init_buffers();
|
|
|
|
|
|
|
|
return &bpf_trace_printk_proto;
|
|
|
|
}
|
|
|
|
|
2015-08-06 09:02:35 +02:00
|
|
|
static u64 bpf_perf_event_read(u64 r1, u64 index, u64 r3, u64 r4, u64 r5)
|
|
|
|
{
|
|
|
|
struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
|
|
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
|
|
struct perf_event *event;
|
|
|
|
|
|
|
|
if (unlikely(index >= array->map.max_entries))
|
|
|
|
return -E2BIG;
|
|
|
|
|
|
|
|
event = (struct perf_event *)array->ptrs[index];
|
|
|
|
if (!event)
|
|
|
|
return -ENOENT;
|
|
|
|
|
2015-10-23 02:10:14 +02:00
|
|
|
/* make sure event is local and doesn't have pmu::count */
|
|
|
|
if (event->oncpu != smp_processor_id() ||
|
|
|
|
event->pmu->count)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2015-08-06 09:02:35 +02:00
|
|
|
/*
|
|
|
|
* we don't know if the function is run successfully by the
|
|
|
|
* return value. It can be judged in other places, such as
|
|
|
|
* eBPF programs.
|
|
|
|
*/
|
|
|
|
return perf_event_read_local(event);
|
|
|
|
}
|
|
|
|
|
2015-10-23 02:10:14 +02:00
|
|
|
static const struct bpf_func_proto bpf_perf_event_read_proto = {
|
2015-08-06 09:02:35 +02:00
|
|
|
.func = bpf_perf_event_read,
|
2015-10-23 23:58:19 +02:00
|
|
|
.gpl_only = true,
|
2015-08-06 09:02:35 +02:00
|
|
|
.ret_type = RET_INTEGER,
|
|
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
|
|
.arg2_type = ARG_ANYTHING,
|
|
|
|
};
|
|
|
|
|
2015-10-21 05:02:34 +02:00
|
|
|
static u64 bpf_perf_event_output(u64 r1, u64 r2, u64 index, u64 r4, u64 size)
|
|
|
|
{
|
|
|
|
struct pt_regs *regs = (struct pt_regs *) (long) r1;
|
|
|
|
struct bpf_map *map = (struct bpf_map *) (long) r2;
|
|
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
|
|
void *data = (void *) (long) r4;
|
|
|
|
struct perf_sample_data sample_data;
|
|
|
|
struct perf_event *event;
|
|
|
|
struct perf_raw_record raw = {
|
|
|
|
.size = size,
|
|
|
|
.data = data,
|
|
|
|
};
|
|
|
|
|
|
|
|
if (unlikely(index >= array->map.max_entries))
|
|
|
|
return -E2BIG;
|
|
|
|
|
|
|
|
event = (struct perf_event *)array->ptrs[index];
|
|
|
|
if (unlikely(!event))
|
|
|
|
return -ENOENT;
|
|
|
|
|
|
|
|
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
|
|
|
|
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (unlikely(event->oncpu != smp_processor_id()))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
perf_sample_data_init(&sample_data, 0, 0);
|
|
|
|
sample_data.raw = &raw;
|
|
|
|
perf_event_output(event, &sample_data, regs);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto = {
|
|
|
|
.func = bpf_perf_event_output,
|
2015-10-23 23:58:19 +02:00
|
|
|
.gpl_only = true,
|
2015-10-21 05:02:34 +02:00
|
|
|
.ret_type = RET_INTEGER,
|
|
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
|
|
.arg3_type = ARG_ANYTHING,
|
|
|
|
.arg4_type = ARG_PTR_TO_STACK,
|
|
|
|
.arg5_type = ARG_CONST_STACK_SIZE,
|
|
|
|
};
|
|
|
|
|
tracing, perf: Implement BPF programs attached to kprobes
BPF programs, attached to kprobes, provide a safe way to execute
user-defined BPF byte-code programs without being able to crash or
hang the kernel in any way. The BPF engine makes sure that such
programs have a finite execution time and that they cannot break
out of their sandbox.
The user interface is to attach to a kprobe via the perf syscall:
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.config = event_id,
...
};
event_fd = perf_event_open(&attr,...);
ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);
'prog_fd' is a file descriptor associated with BPF program
previously loaded.
'event_id' is an ID of the kprobe created.
Closing 'event_fd':
close(event_fd);
... automatically detaches BPF program from it.
BPF programs can call in-kernel helper functions to:
- lookup/update/delete elements in maps
- probe_read - wraper of probe_kernel_read() used to access any
kernel data structures
BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is
architecture dependent) and return 0 to ignore the event and 1 to store
kprobe event into the ring buffer.
Note, kprobes are a fundamentally _not_ a stable kernel ABI,
so BPF programs attached to kprobes must be recompiled for
every kernel version and user must supply correct LINUX_VERSION_CODE
in attr.kern_version during bpf_prog_load() call.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-25 20:49:20 +01:00
|
|
|
static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
|
|
|
|
{
|
|
|
|
switch (func_id) {
|
|
|
|
case BPF_FUNC_map_lookup_elem:
|
|
|
|
return &bpf_map_lookup_elem_proto;
|
|
|
|
case BPF_FUNC_map_update_elem:
|
|
|
|
return &bpf_map_update_elem_proto;
|
|
|
|
case BPF_FUNC_map_delete_elem:
|
|
|
|
return &bpf_map_delete_elem_proto;
|
|
|
|
case BPF_FUNC_probe_read:
|
|
|
|
return &bpf_probe_read_proto;
|
2015-03-25 20:49:21 +01:00
|
|
|
case BPF_FUNC_ktime_get_ns:
|
|
|
|
return &bpf_ktime_get_ns_proto;
|
bpf: allow bpf programs to tail-call other bpf programs
introduce bpf_tail_call(ctx, &jmp_table, index) helper function
which can be used from BPF programs like:
int bpf_prog(struct pt_regs *ctx)
{
...
bpf_tail_call(ctx, &jmp_table, index);
...
}
that is roughly equivalent to:
int bpf_prog(struct pt_regs *ctx)
{
...
if (jmp_table[index])
return (*jmp_table[index])(ctx);
...
}
The important detail that it's not a normal call, but a tail call.
The kernel stack is precious, so this helper reuses the current
stack frame and jumps into another BPF program without adding
extra call frame.
It's trivially done in interpreter and a bit trickier in JITs.
In case of x64 JIT the bigger part of generated assembler prologue
is common for all programs, so it is simply skipped while jumping.
Other JITs can do similar prologue-skipping optimization or
do stack unwind before jumping into the next program.
bpf_tail_call() arguments:
ctx - context pointer
jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
index - index in the jump table
Since all BPF programs are idenitified by file descriptor, user space
need to populate the jmp_table with FDs of other BPF programs.
If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
and program execution continues as normal.
New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
populate this jmp_table array with FDs of other bpf programs.
Programs can share the same jmp_table array or use multiple jmp_tables.
The chain of tail calls can form unpredictable dynamic loops therefore
tail_call_cnt is used to limit the number of calls and currently is set to 32.
Use cases:
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
==========
- simplify complex programs by splitting them into a sequence of small programs
- dispatch routine
For tracing and future seccomp the program may be triggered on all system
calls, but processing of syscall arguments will be different. It's more
efficient to implement them as:
int syscall_entry(struct seccomp_data *ctx)
{
bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
... default: process unknown syscall ...
}
int sys_write_event(struct seccomp_data *ctx) {...}
int sys_read_event(struct seccomp_data *ctx) {...}
syscall_jmp_table[__NR_write] = sys_write_event;
syscall_jmp_table[__NR_read] = sys_read_event;
For networking the program may call into different parsers depending on
packet format, like:
int packet_parser(struct __sk_buff *skb)
{
... parse L2, L3 here ...
__u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
... default: process unknown protocol ...
}
int parse_tcp(struct __sk_buff *skb) {...}
int parse_udp(struct __sk_buff *skb) {...}
ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
ipproto_jmp_table[IPPROTO_UDP] = parse_udp;
- for TC use case, bpf_tail_call() allows to implement reclassify-like logic
- bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
are atomic, so user space can build chains of BPF programs on the fly
Implementation details:
=======================
- high performance of bpf_tail_call() is the goal.
It could have been implemented without JIT changes as a wrapper on top of
BPF_PROG_RUN() macro, but with two downsides:
. all programs would have to pay performance penalty for this feature and
tail call itself would be slower, since mandatory stack unwind, return,
stack allocate would be done for every tailcall.
. tailcall would be limited to programs running preempt_disabled, since
generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
need to be either global per_cpu variable accessed by helper and by wrapper
or global variable protected by locks.
In this implementation x64 JIT bypasses stack unwind and jumps into the
callee program after prologue.
- bpf_prog_array_compatible() ensures that prog_type of callee and caller
are the same and JITed/non-JITed flag is the same, since calling JITed
program from non-JITed is invalid, since stack frames are different.
Similarly calling kprobe type program from socket type program is invalid.
- jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
abstraction, its user space API and all of verifier logic.
It's in the existing arraymap.c file, since several functions are
shared with regular array map.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-20 01:59:03 +02:00
|
|
|
case BPF_FUNC_tail_call:
|
|
|
|
return &bpf_tail_call_proto;
|
2015-06-13 04:39:12 +02:00
|
|
|
case BPF_FUNC_get_current_pid_tgid:
|
|
|
|
return &bpf_get_current_pid_tgid_proto;
|
|
|
|
case BPF_FUNC_get_current_uid_gid:
|
|
|
|
return &bpf_get_current_uid_gid_proto;
|
|
|
|
case BPF_FUNC_get_current_comm:
|
|
|
|
return &bpf_get_current_comm_proto;
|
2015-03-25 20:49:22 +01:00
|
|
|
case BPF_FUNC_trace_printk:
|
2015-06-13 04:39:13 +02:00
|
|
|
return bpf_get_trace_printk_proto();
|
2015-06-13 04:39:14 +02:00
|
|
|
case BPF_FUNC_get_smp_processor_id:
|
|
|
|
return &bpf_get_smp_processor_id_proto;
|
2015-08-06 09:02:35 +02:00
|
|
|
case BPF_FUNC_perf_event_read:
|
|
|
|
return &bpf_perf_event_read_proto;
|
2015-10-21 05:02:34 +02:00
|
|
|
case BPF_FUNC_perf_event_output:
|
|
|
|
return &bpf_perf_event_output_proto;
|
tracing, perf: Implement BPF programs attached to kprobes
BPF programs, attached to kprobes, provide a safe way to execute
user-defined BPF byte-code programs without being able to crash or
hang the kernel in any way. The BPF engine makes sure that such
programs have a finite execution time and that they cannot break
out of their sandbox.
The user interface is to attach to a kprobe via the perf syscall:
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.config = event_id,
...
};
event_fd = perf_event_open(&attr,...);
ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);
'prog_fd' is a file descriptor associated with BPF program
previously loaded.
'event_id' is an ID of the kprobe created.
Closing 'event_fd':
close(event_fd);
... automatically detaches BPF program from it.
BPF programs can call in-kernel helper functions to:
- lookup/update/delete elements in maps
- probe_read - wraper of probe_kernel_read() used to access any
kernel data structures
BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is
architecture dependent) and return 0 to ignore the event and 1 to store
kprobe event into the ring buffer.
Note, kprobes are a fundamentally _not_ a stable kernel ABI,
so BPF programs attached to kprobes must be recompiled for
every kernel version and user must supply correct LINUX_VERSION_CODE
in attr.kern_version during bpf_prog_load() call.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-25 20:49:20 +01:00
|
|
|
default:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
|
|
|
|
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type)
|
|
|
|
{
|
|
|
|
/* check bounds */
|
|
|
|
if (off < 0 || off >= sizeof(struct pt_regs))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* only read is allowed */
|
|
|
|
if (type != BPF_READ)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* disallow misaligned access */
|
|
|
|
if (off % size != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct bpf_verifier_ops kprobe_prog_ops = {
|
|
|
|
.get_func_proto = kprobe_prog_func_proto,
|
|
|
|
.is_valid_access = kprobe_prog_is_valid_access,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct bpf_prog_type_list kprobe_tl = {
|
|
|
|
.ops = &kprobe_prog_ops,
|
|
|
|
.type = BPF_PROG_TYPE_KPROBE,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init register_kprobe_prog_ops(void)
|
|
|
|
{
|
|
|
|
bpf_register_prog_type(&kprobe_tl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
late_initcall(register_kprobe_prog_ops);
|