linux/fs/xfs/kmem.c

134 lines
3.5 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/mm.h>
#include <linux/highmem.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 09:04:11 +01:00
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include "kmem.h"
#include "xfs_message.h"
/*
* Greedy allocation. May fail and may return vmalloced memory.
*/
void *
kmem_zalloc_greedy(size_t *size, size_t minsize, size_t maxsize)
{
void *ptr;
size_t kmsize = maxsize;
while (!(ptr = vzalloc(kmsize))) {
if ((kmsize >>= 1) <= minsize)
kmsize = minsize;
}
if (ptr)
*size = kmsize;
return ptr;
}
void *
kmem_alloc(size_t size, xfs_km_flags_t flags)
{
int retries = 0;
gfp_t lflags = kmem_flags_convert(flags);
void *ptr;
do {
ptr = kmalloc(size, lflags);
if (ptr || (flags & (KM_MAYFAIL|KM_NOSLEEP)))
return ptr;
if (!(++retries % 100))
xfs_err(NULL,
"%s(%u) possible memory allocation deadlock size %u in %s (mode:0x%x)",
current->comm, current->pid,
(unsigned int)size, __func__, lflags);
congestion_wait(BLK_RW_ASYNC, HZ/50);
} while (1);
}
void *
kmem_zalloc_large(size_t size, xfs_km_flags_t flags)
{
xfs: use NOIO contexts for vm_map_ram When we map pages in the buffer cache, we can do so in GFP_NOFS contexts. However, the vmap interfaces do not provide any method of communicating this information to memory reclaim, and hence we get lockdep complaining about it regularly and occassionally see hangs that may be vmap related reclaim deadlocks. We can also see these same problems from anywhere where we use vmalloc for a large buffer (e.g. attribute code) inside a transaction context. A typical lockdep report shows up as a reclaim state warning like so: [14046.101458] ================================= [14046.102850] [ INFO: inconsistent lock state ] [14046.102850] 3.14.0-rc4+ #2 Not tainted [14046.102850] --------------------------------- [14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes: [14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a [14046.102850] {RECLAIM_FS-ON-W} state was registered at: [14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7 [14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4 [14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e [14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6 [14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf [14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f [14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5 [14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d [14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8 [14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74 [14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81 [14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68 [14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce [14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92 [14046.102850] [<790e4ddd>] setxattr+0xcf/0x159 [14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb [14046.102850] [<79268438>] sysenter_do_call+0x12/0x36 Now, we can't completely remove these traces - mainly because vm_map_ram() will do GFP_KERNEL allocation and that generates the above warning before we get into the reclaim code, but we can turn them all into false positive warnings. To do that, use the method that DM and other IO context code uses to avoid this problem: there is a process flag to tell memory reclaim not to do IO that we can set appropriately. That prevents GFP_KERNEL context reclaim being done from deep inside the vmalloc code in places we can't directly pass a GFP_NOFS context to. That interface has a pair of wrapper functions: memalloc_noio_save() and memalloc_noio_restore(). Adding them around vm_map_ram and the vzalloc call in kmem_alloc_large() will prevent deadlocks and most lockdep reports for this issue. Also, convert the vzalloc() call in kmem_alloc_large() to use __vmalloc() so that we can pass the correct gfp context to the data page allocation routine inside __vmalloc() so that it is clear that GFP_NOFS context is important to this vmalloc call. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 06:19:14 +01:00
unsigned noio_flag = 0;
void *ptr;
xfs: use NOIO contexts for vm_map_ram When we map pages in the buffer cache, we can do so in GFP_NOFS contexts. However, the vmap interfaces do not provide any method of communicating this information to memory reclaim, and hence we get lockdep complaining about it regularly and occassionally see hangs that may be vmap related reclaim deadlocks. We can also see these same problems from anywhere where we use vmalloc for a large buffer (e.g. attribute code) inside a transaction context. A typical lockdep report shows up as a reclaim state warning like so: [14046.101458] ================================= [14046.102850] [ INFO: inconsistent lock state ] [14046.102850] 3.14.0-rc4+ #2 Not tainted [14046.102850] --------------------------------- [14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes: [14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a [14046.102850] {RECLAIM_FS-ON-W} state was registered at: [14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7 [14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4 [14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e [14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6 [14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf [14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f [14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5 [14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d [14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8 [14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74 [14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81 [14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68 [14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce [14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92 [14046.102850] [<790e4ddd>] setxattr+0xcf/0x159 [14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb [14046.102850] [<79268438>] sysenter_do_call+0x12/0x36 Now, we can't completely remove these traces - mainly because vm_map_ram() will do GFP_KERNEL allocation and that generates the above warning before we get into the reclaim code, but we can turn them all into false positive warnings. To do that, use the method that DM and other IO context code uses to avoid this problem: there is a process flag to tell memory reclaim not to do IO that we can set appropriately. That prevents GFP_KERNEL context reclaim being done from deep inside the vmalloc code in places we can't directly pass a GFP_NOFS context to. That interface has a pair of wrapper functions: memalloc_noio_save() and memalloc_noio_restore(). Adding them around vm_map_ram and the vzalloc call in kmem_alloc_large() will prevent deadlocks and most lockdep reports for this issue. Also, convert the vzalloc() call in kmem_alloc_large() to use __vmalloc() so that we can pass the correct gfp context to the data page allocation routine inside __vmalloc() so that it is clear that GFP_NOFS context is important to this vmalloc call. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 06:19:14 +01:00
gfp_t lflags;
ptr = kmem_zalloc(size, flags | KM_MAYFAIL);
if (ptr)
return ptr;
xfs: use NOIO contexts for vm_map_ram When we map pages in the buffer cache, we can do so in GFP_NOFS contexts. However, the vmap interfaces do not provide any method of communicating this information to memory reclaim, and hence we get lockdep complaining about it regularly and occassionally see hangs that may be vmap related reclaim deadlocks. We can also see these same problems from anywhere where we use vmalloc for a large buffer (e.g. attribute code) inside a transaction context. A typical lockdep report shows up as a reclaim state warning like so: [14046.101458] ================================= [14046.102850] [ INFO: inconsistent lock state ] [14046.102850] 3.14.0-rc4+ #2 Not tainted [14046.102850] --------------------------------- [14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. [14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes: [14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a [14046.102850] {RECLAIM_FS-ON-W} state was registered at: [14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7 [14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4 [14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e [14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6 [14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf [14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f [14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5 [14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d [14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8 [14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74 [14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81 [14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68 [14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce [14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92 [14046.102850] [<790e4ddd>] setxattr+0xcf/0x159 [14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb [14046.102850] [<79268438>] sysenter_do_call+0x12/0x36 Now, we can't completely remove these traces - mainly because vm_map_ram() will do GFP_KERNEL allocation and that generates the above warning before we get into the reclaim code, but we can turn them all into false positive warnings. To do that, use the method that DM and other IO context code uses to avoid this problem: there is a process flag to tell memory reclaim not to do IO that we can set appropriately. That prevents GFP_KERNEL context reclaim being done from deep inside the vmalloc code in places we can't directly pass a GFP_NOFS context to. That interface has a pair of wrapper functions: memalloc_noio_save() and memalloc_noio_restore(). Adding them around vm_map_ram and the vzalloc call in kmem_alloc_large() will prevent deadlocks and most lockdep reports for this issue. Also, convert the vzalloc() call in kmem_alloc_large() to use __vmalloc() so that we can pass the correct gfp context to the data page allocation routine inside __vmalloc() so that it is clear that GFP_NOFS context is important to this vmalloc call. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-03-07 06:19:14 +01:00
/*
* __vmalloc() will allocate data pages and auxillary structures (e.g.
* pagetables) with GFP_KERNEL, yet we may be under GFP_NOFS context
* here. Hence we need to tell memory reclaim that we are in such a
* context via PF_MEMALLOC_NOIO to prevent memory reclaim re-entering
* the filesystem here and potentially deadlocking.
*/
if ((current->flags & PF_FSTRANS) || (flags & KM_NOFS))
noio_flag = memalloc_noio_save();
lflags = kmem_flags_convert(flags);
ptr = __vmalloc(size, lflags | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
if ((current->flags & PF_FSTRANS) || (flags & KM_NOFS))
memalloc_noio_restore(noio_flag);
return ptr;
}
void *
kmem_realloc(const void *old, size_t newsize, xfs_km_flags_t flags)
{
int retries = 0;
gfp_t lflags = kmem_flags_convert(flags);
void *ptr;
do {
ptr = krealloc(old, newsize, lflags);
if (ptr || (flags & (KM_MAYFAIL|KM_NOSLEEP)))
return ptr;
if (!(++retries % 100))
xfs_err(NULL,
"%s(%u) possible memory allocation deadlock size %zu in %s (mode:0x%x)",
current->comm, current->pid,
newsize, __func__, lflags);
congestion_wait(BLK_RW_ASYNC, HZ/50);
} while (1);
}
void *
kmem_zone_alloc(kmem_zone_t *zone, xfs_km_flags_t flags)
{
int retries = 0;
gfp_t lflags = kmem_flags_convert(flags);
void *ptr;
do {
ptr = kmem_cache_alloc(zone, lflags);
if (ptr || (flags & (KM_MAYFAIL|KM_NOSLEEP)))
return ptr;
if (!(++retries % 100))
xfs_err(NULL,
"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
current->comm, current->pid,
__func__, lflags);
congestion_wait(BLK_RW_ASYNC, HZ/50);
} while (1);
}