linux/mm/oom_kill.c

633 lines
16 KiB
C
Raw Normal View History

/*
* linux/mm/oom_kill.c
*
* Copyright (C) 1998,2000 Rik van Riel
* Thanks go out to Claus Fischer for some serious inspiration and
* for goading me into coding this file...
*
* The routines in this file are used to kill a process when
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
* we're seriously out of memory. This gets called from __alloc_pages()
* in mm/page_alloc.c when we really run out of memory.
*
* Since we won't call these routines often (on a well-configured
* machine) this file will double as a 'coding guide' and a signpost
* for newbie kernel hackers. It features several pointers to major
* kernel subsystems and hints as to where to find out what things do.
*/
#include <linux/oom.h>
#include <linux/mm.h>
Remove fs.h from mm.h Remove fs.h from mm.h. For this, 1) Uninline vma_wants_writenotify(). It's pretty huge anyway. 2) Add back fs.h or less bloated headers (err.h) to files that need it. As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files rebuilt down to 3444 (-12.3%). Cross-compile tested without regressions on my two usual configs and (sigh): alpha arm-mx1ads mips-bigsur powerpc-ebony alpha-allnoconfig arm-neponset mips-capcella powerpc-g5 alpha-defconfig arm-netwinder mips-cobalt powerpc-holly alpha-up arm-netx mips-db1000 powerpc-iseries arm arm-ns9xxx mips-db1100 powerpc-linkstation arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200 arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2 arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads arm-ep93xx i386-up mips-pb1100 powerpc-pasemi arm-footbridge ia64 mips-pb1500 powerpc-pmac32 arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64 arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800 arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3 arm-h7202 ia64-gensparse mips-qemu powerpc-pseries arm-hackkit ia64-sim mips-rbhma4200 powerpc-up arm-integrator ia64-sn2 mips-rbhma4500 s390 arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig arm-iop33x ia64-zx1 mips-sead s390-up arm-ixp2000 m68k mips-tb0219 sparc arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig arm-jornada720 m68k-atari mips-workpad sparc-up arm-kafa m68k-bvme6000 mips-wrppmc sparc64 arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig arm-ks8695 m68k-mac parisc sparc64-defconfig arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64 arm-lpd7a400 m68k-q40 parisc-up x86_64 arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig arm-lusl7200 mips powerpc-celleb x86_64-up arm-mainstone mips-atlas powerpc-chrp32 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-30 02:36:13 +04:00
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/swap.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/cpuset.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/memcontrol.h>
security: Fix setting of PF_SUPERPRIV by __capable() Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 11:37:28 +01:00
#include <linux/security.h>
int sysctl_panic_on_oom;
int sysctl_oom_kill_allocating_task;
int sysctl_oom_dump_tasks;
static DEFINE_SPINLOCK(zone_scan_lock);
/* #define DEBUG */
/**
* badness - calculate a numeric value for how bad this task has been
* @p: task struct of which task we should calculate
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
* @uptime: current uptime in seconds
*
* The formula used is relatively simple and documented inline in the
* function. The main rationale is that we want to select a good task
* to kill when we run out of memory.
*
* Good in this context means that:
* 1) we lose the minimum amount of work done
* 2) we recover a large amount of memory
* 3) we don't kill anything innocent of eating tons of memory
* 4) we want to kill the minimum amount of processes (one)
* 5) we try to kill the process the user expects us to kill, this
* algorithm has been meticulously tuned to meet the principle
* of least surprise ... (be careful when you change it)
*/
unsigned long badness(struct task_struct *p, unsigned long uptime)
{
unsigned long points, cpu_time, run_time, s;
struct mm_struct *mm;
struct task_struct *child;
task_lock(p);
mm = p->mm;
if (!mm) {
task_unlock(p);
return 0;
}
/*
* The memory size of the process is the basis for the badness.
*/
points = mm->total_vm;
/*
* After this unlock we can no longer dereference local variable `mm'
*/
task_unlock(p);
/*
* swapoff can easily use up all memory, so kill those first.
*/
if (p->flags & PF_SWAPOFF)
return ULONG_MAX;
/*
* Processes which fork a lot of child processes are likely
[PATCH] OOM kill: children accounting In the badness() calculation, there's currently this piece of code: /* * Processes which fork a lot of child processes are likely * a good choice. We add the vmsize of the children if they * have an own mm. This prevents forking servers to flood the * machine with an endless amount of children */ list_for_each(tsk, &p->children) { struct task_struct *chld; chld = list_entry(tsk, struct task_struct, sibling); if (chld->mm = p->mm && chld->mm) points += chld->mm->total_vm; } The intention is clear: If some server (apache) keeps spawning new children and we run OOM, we want to kill the father rather than picking a child. This -- to some degree -- also helps a bit with getting fork bombs under control, though I'd consider this a desirable side-effect rather than a feature. There's one problem with this: No matter how many or few children there are, if just one of them misbehaves, and all others (including the father) do everything right, we still always kill the whole family. This hits in real life; whether it's javascript in konqueror resulting in kdeinit (and thus the whole KDE session) being hit or just a classical server that spawns children. Sidenote: The killer does kill all direct children as well, not only the selected father, see oom_kill_process(). The idea in attached patch is that we do want to account the memory consumption of the (direct) children to the father -- however not fully. This maintains the property that fathers with too many children will still very likely be picked, whereas a single misbehaving child has the chance to be picked by the OOM killer. In the patch I account only half (rounded up) of the children's vm_size to the parent. This means that if one child eats more mem than the rest of the family, it will be picked, otherwise it's still the father and thus the whole family that gets selected. This is heuristics -- we could debate whether accounting for a fourth would be better than for half of it. Or -- if people would consider it worth the trouble -- make it a sysctl. For now I sticked to accounting for half, which should IMHO be a significant improvement. The patch does one more thing: As users tend to be irritated by the choice of killed processes (mainly because the children are killed first, despite some of them having a very low OOM score), I added some more output: The selected (father) process will be reported first and it's oom_score printed to syslog. Description: Only account for half of children's vm size in oom score calculation This should still give the parent enough point in case of fork bombs. If any child however has more than 50% of the vm size of all children together, it'll get a higher score and be elected. This patch also makes the kernel display the oom_score. Signed-off-by: Kurt Garloff <garloff@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-20 18:27:51 -08:00
* a good choice. We add half the vmsize of the children if they
* have an own mm. This prevents forking servers to flood the
[PATCH] OOM kill: children accounting In the badness() calculation, there's currently this piece of code: /* * Processes which fork a lot of child processes are likely * a good choice. We add the vmsize of the children if they * have an own mm. This prevents forking servers to flood the * machine with an endless amount of children */ list_for_each(tsk, &p->children) { struct task_struct *chld; chld = list_entry(tsk, struct task_struct, sibling); if (chld->mm = p->mm && chld->mm) points += chld->mm->total_vm; } The intention is clear: If some server (apache) keeps spawning new children and we run OOM, we want to kill the father rather than picking a child. This -- to some degree -- also helps a bit with getting fork bombs under control, though I'd consider this a desirable side-effect rather than a feature. There's one problem with this: No matter how many or few children there are, if just one of them misbehaves, and all others (including the father) do everything right, we still always kill the whole family. This hits in real life; whether it's javascript in konqueror resulting in kdeinit (and thus the whole KDE session) being hit or just a classical server that spawns children. Sidenote: The killer does kill all direct children as well, not only the selected father, see oom_kill_process(). The idea in attached patch is that we do want to account the memory consumption of the (direct) children to the father -- however not fully. This maintains the property that fathers with too many children will still very likely be picked, whereas a single misbehaving child has the chance to be picked by the OOM killer. In the patch I account only half (rounded up) of the children's vm_size to the parent. This means that if one child eats more mem than the rest of the family, it will be picked, otherwise it's still the father and thus the whole family that gets selected. This is heuristics -- we could debate whether accounting for a fourth would be better than for half of it. Or -- if people would consider it worth the trouble -- make it a sysctl. For now I sticked to accounting for half, which should IMHO be a significant improvement. The patch does one more thing: As users tend to be irritated by the choice of killed processes (mainly because the children are killed first, despite some of them having a very low OOM score), I added some more output: The selected (father) process will be reported first and it's oom_score printed to syslog. Description: Only account for half of children's vm size in oom score calculation This should still give the parent enough point in case of fork bombs. If any child however has more than 50% of the vm size of all children together, it'll get a higher score and be elected. This patch also makes the kernel display the oom_score. Signed-off-by: Kurt Garloff <garloff@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-20 18:27:51 -08:00
* machine with an endless amount of children. In case a single
* child is eating the vast majority of memory, adding only half
* to the parents will make the child our kill candidate of choice.
*/
list_for_each_entry(child, &p->children, sibling) {
task_lock(child);
if (child->mm != mm && child->mm)
points += child->mm->total_vm/2 + 1;
task_unlock(child);
}
/*
* CPU time is in tens of seconds and run time is in thousands
* of seconds. There is no particular reason for this other than
* that it turned out to work very well in practice.
*/
cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
>> (SHIFT_HZ + 3);
if (uptime >= p->start_time.tv_sec)
run_time = (uptime - p->start_time.tv_sec) >> 10;
else
run_time = 0;
s = int_sqrt(cpu_time);
if (s)
points /= s;
s = int_sqrt(int_sqrt(run_time));
if (s)
points /= s;
/*
* Niced processes are most likely less important, so double
* their badness points.
*/
if (task_nice(p) > 0)
points *= 2;
/*
* Superuser processes are usually more important, so we make it
* less likely that we kill those.
*/
if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
has_capability_noaudit(p, CAP_SYS_RESOURCE))
points /= 4;
/*
* We don't want to kill a process with direct hardware access.
* Not only could that mess up the hardware, but usually users
* tend to only have this flag set on applications they think
* of as important.
*/
if (has_capability_noaudit(p, CAP_SYS_RAWIO))
points /= 4;
/*
* If p's nodes don't overlap ours, it may still help to kill p
* because p may have allocated or otherwise mapped memory on
* this node before. However it will be less likely.
*/
if (!cpuset_mems_allowed_intersects(current, p))
points /= 8;
/*
* Adjust the score by oomkilladj.
*/
if (p->oomkilladj) {
if (p->oomkilladj > 0) {
if (!points)
points = 1;
points <<= p->oomkilladj;
} else
points >>= -(p->oomkilladj);
}
#ifdef DEBUG
printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
p->pid, p->comm, points);
#endif
return points;
}
/*
* Determine the type of allocation constraint.
*/
static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
gfp_t gfp_mask)
{
#ifdef CONFIG_NUMA
struct zone *zone;
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
struct zoneref *z;
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
nodemask_t nodes = node_states[N_HIGH_MEMORY];
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
if (cpuset_zone_allowed_softwall(zone, gfp_mask))
node_clear(zone_to_nid(zone), nodes);
else
return CONSTRAINT_CPUSET;
if (!nodes_empty(nodes))
return CONSTRAINT_MEMORY_POLICY;
#endif
return CONSTRAINT_NONE;
}
/*
* Simple selection loop. We chose the process with the highest
* number of 'points'. We expect the caller will lock the tasklist.
*
* (not docbooked, we don't want this one cluttering up the manual)
*/
static struct task_struct *select_bad_process(unsigned long *ppoints,
struct mem_cgroup *mem)
{
struct task_struct *g, *p;
struct task_struct *chosen = NULL;
struct timespec uptime;
[PATCH] OOM kill: children accounting In the badness() calculation, there's currently this piece of code: /* * Processes which fork a lot of child processes are likely * a good choice. We add the vmsize of the children if they * have an own mm. This prevents forking servers to flood the * machine with an endless amount of children */ list_for_each(tsk, &p->children) { struct task_struct *chld; chld = list_entry(tsk, struct task_struct, sibling); if (chld->mm = p->mm && chld->mm) points += chld->mm->total_vm; } The intention is clear: If some server (apache) keeps spawning new children and we run OOM, we want to kill the father rather than picking a child. This -- to some degree -- also helps a bit with getting fork bombs under control, though I'd consider this a desirable side-effect rather than a feature. There's one problem with this: No matter how many or few children there are, if just one of them misbehaves, and all others (including the father) do everything right, we still always kill the whole family. This hits in real life; whether it's javascript in konqueror resulting in kdeinit (and thus the whole KDE session) being hit or just a classical server that spawns children. Sidenote: The killer does kill all direct children as well, not only the selected father, see oom_kill_process(). The idea in attached patch is that we do want to account the memory consumption of the (direct) children to the father -- however not fully. This maintains the property that fathers with too many children will still very likely be picked, whereas a single misbehaving child has the chance to be picked by the OOM killer. In the patch I account only half (rounded up) of the children's vm_size to the parent. This means that if one child eats more mem than the rest of the family, it will be picked, otherwise it's still the father and thus the whole family that gets selected. This is heuristics -- we could debate whether accounting for a fourth would be better than for half of it. Or -- if people would consider it worth the trouble -- make it a sysctl. For now I sticked to accounting for half, which should IMHO be a significant improvement. The patch does one more thing: As users tend to be irritated by the choice of killed processes (mainly because the children are killed first, despite some of them having a very low OOM score), I added some more output: The selected (father) process will be reported first and it's oom_score printed to syslog. Description: Only account for half of children's vm size in oom score calculation This should still give the parent enough point in case of fork bombs. If any child however has more than 50% of the vm size of all children together, it'll get a higher score and be elected. This patch also makes the kernel display the oom_score. Signed-off-by: Kurt Garloff <garloff@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-20 18:27:51 -08:00
*ppoints = 0;
do_posix_clock_monotonic_gettime(&uptime);
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
do_each_thread(g, p) {
unsigned long points;
/*
* skip kernel threads and tasks which have already released
* their mm.
*/
if (!p->mm)
continue;
/* skip the init task */
pid namespaces: define is_global_init() and is_container_init() is_init() is an ambiguous name for the pid==1 check. Split it into is_global_init() and is_container_init(). A cgroup init has it's tsk->pid == 1. A global init also has it's tsk->pid == 1 and it's active pid namespace is the init_pid_ns. But rather than check the active pid namespace, compare the task structure with 'init_pid_ns.child_reaper', which is initialized during boot to the /sbin/init process and never changes. Changelog: 2.6.22-rc4-mm2-pidns1: - Use 'init_pid_ns.child_reaper' to determine if a given task is the global init (/sbin/init) process. This would improve performance and remove dependence on the task_pid(). 2.6.21-mm2-pidns2: - [Sukadev Bhattiprolu] Changed is_container_init() calls in {powerpc, ppc,avr32}/traps.c for the _exception() call to is_global_init(). This way, we kill only the cgroup if the cgroup's init has a bug rather than force a kernel panic. [akpm@linux-foundation.org: fix comment] [sukadev@us.ibm.com: Use is_global_init() in arch/m32r/mm/fault.c] [bunk@stusta.de: kernel/pid.c: remove unused exports] [sukadev@us.ibm.com: Fix capability.c to work with threaded init] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Acked-by: Pavel Emelianov <xemul@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzel <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 23:39:52 -07:00
if (is_global_init(p))
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
continue;
if (mem && !task_in_mem_cgroup(p, mem))
continue;
/*
* This task already has access to memory reserves and is
* being killed. Don't allow any other task access to the
* memory reserve.
*
* Note: this may have a chance of deadlock if it gets
* blocked waiting for another task which itself is waiting
* for memory. Is there a better alternative?
*/
if (test_tsk_thread_flag(p, TIF_MEMDIE))
return ERR_PTR(-1UL);
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
/*
* This is in the process of releasing memory so wait for it
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
* to finish before killing some other task by mistake.
*
* However, if p is the current task, we allow the 'kill' to
* go ahead if it is exiting: this will simply set TIF_MEMDIE,
* which will allow it to gain access to memory reserves in
* the process of exiting and releasing its resources.
* Otherwise we could get an easy OOM deadlock.
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
*/
if (p->flags & PF_EXITING) {
if (p != current)
return ERR_PTR(-1UL);
chosen = p;
*ppoints = ULONG_MAX;
}
if (p->oomkilladj == OOM_DISABLE)
continue;
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
points = badness(p, uptime.tv_sec);
[PATCH] OOM kill: children accounting In the badness() calculation, there's currently this piece of code: /* * Processes which fork a lot of child processes are likely * a good choice. We add the vmsize of the children if they * have an own mm. This prevents forking servers to flood the * machine with an endless amount of children */ list_for_each(tsk, &p->children) { struct task_struct *chld; chld = list_entry(tsk, struct task_struct, sibling); if (chld->mm = p->mm && chld->mm) points += chld->mm->total_vm; } The intention is clear: If some server (apache) keeps spawning new children and we run OOM, we want to kill the father rather than picking a child. This -- to some degree -- also helps a bit with getting fork bombs under control, though I'd consider this a desirable side-effect rather than a feature. There's one problem with this: No matter how many or few children there are, if just one of them misbehaves, and all others (including the father) do everything right, we still always kill the whole family. This hits in real life; whether it's javascript in konqueror resulting in kdeinit (and thus the whole KDE session) being hit or just a classical server that spawns children. Sidenote: The killer does kill all direct children as well, not only the selected father, see oom_kill_process(). The idea in attached patch is that we do want to account the memory consumption of the (direct) children to the father -- however not fully. This maintains the property that fathers with too many children will still very likely be picked, whereas a single misbehaving child has the chance to be picked by the OOM killer. In the patch I account only half (rounded up) of the children's vm_size to the parent. This means that if one child eats more mem than the rest of the family, it will be picked, otherwise it's still the father and thus the whole family that gets selected. This is heuristics -- we could debate whether accounting for a fourth would be better than for half of it. Or -- if people would consider it worth the trouble -- make it a sysctl. For now I sticked to accounting for half, which should IMHO be a significant improvement. The patch does one more thing: As users tend to be irritated by the choice of killed processes (mainly because the children are killed first, despite some of them having a very low OOM score), I added some more output: The selected (father) process will be reported first and it's oom_score printed to syslog. Description: Only account for half of children's vm size in oom score calculation This should still give the parent enough point in case of fork bombs. If any child however has more than 50% of the vm size of all children together, it'll get a higher score and be elected. This patch also makes the kernel display the oom_score. Signed-off-by: Kurt Garloff <garloff@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-20 18:27:51 -08:00
if (points > *ppoints || !chosen) {
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
chosen = p;
[PATCH] OOM kill: children accounting In the badness() calculation, there's currently this piece of code: /* * Processes which fork a lot of child processes are likely * a good choice. We add the vmsize of the children if they * have an own mm. This prevents forking servers to flood the * machine with an endless amount of children */ list_for_each(tsk, &p->children) { struct task_struct *chld; chld = list_entry(tsk, struct task_struct, sibling); if (chld->mm = p->mm && chld->mm) points += chld->mm->total_vm; } The intention is clear: If some server (apache) keeps spawning new children and we run OOM, we want to kill the father rather than picking a child. This -- to some degree -- also helps a bit with getting fork bombs under control, though I'd consider this a desirable side-effect rather than a feature. There's one problem with this: No matter how many or few children there are, if just one of them misbehaves, and all others (including the father) do everything right, we still always kill the whole family. This hits in real life; whether it's javascript in konqueror resulting in kdeinit (and thus the whole KDE session) being hit or just a classical server that spawns children. Sidenote: The killer does kill all direct children as well, not only the selected father, see oom_kill_process(). The idea in attached patch is that we do want to account the memory consumption of the (direct) children to the father -- however not fully. This maintains the property that fathers with too many children will still very likely be picked, whereas a single misbehaving child has the chance to be picked by the OOM killer. In the patch I account only half (rounded up) of the children's vm_size to the parent. This means that if one child eats more mem than the rest of the family, it will be picked, otherwise it's still the father and thus the whole family that gets selected. This is heuristics -- we could debate whether accounting for a fourth would be better than for half of it. Or -- if people would consider it worth the trouble -- make it a sysctl. For now I sticked to accounting for half, which should IMHO be a significant improvement. The patch does one more thing: As users tend to be irritated by the choice of killed processes (mainly because the children are killed first, despite some of them having a very low OOM score), I added some more output: The selected (father) process will be reported first and it's oom_score printed to syslog. Description: Only account for half of children's vm size in oom score calculation This should still give the parent enough point in case of fork bombs. If any child however has more than 50% of the vm size of all children together, it'll get a higher score and be elected. This patch also makes the kernel display the oom_score. Signed-off-by: Kurt Garloff <garloff@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-20 18:27:51 -08:00
*ppoints = points;
}
[PATCH] cpusets: oom_kill tweaks This patch series extends the use of the cpuset attribute 'mem_exclusive' to support cpuset configurations that: 1) allow GFP_KERNEL allocations to come from a potentially larger set of memory nodes than GFP_USER allocations, and 2) can constrain the oom killer to tasks running in cpusets in a specified subtree of the cpuset hierarchy. Here's an example usage scenario. For a few hours or more, a large NUMA system at a University is to be divided in two halves, with a bunch of student jobs running in half the system under some form of batch manager, and with a big research project running in the other half. Each of the student jobs is placed in a small cpuset, but should share the classic Unix time share facilities, such as buffered pages of files in /bin and /usr/lib. The big research project wants no interference whatsoever from the student jobs, and has highly tuned, unusual memory and i/o patterns that intend to make full use of all the main memory on the nodes available to it. In this example, we have two big sibling cpusets, one of which is further divided into a more dynamic set of child cpusets. We want kernel memory allocations constrained by the two big cpusets, and user allocations constrained by the smaller child cpusets where present. And we require that the oom killer not operate across the two halves of this system, or else the first time a student job runs amuck, the big research project will likely be first inline to get shot. Tweaking /proc/<pid>/oom_adj is not ideal -- if the big research project really does run amuck allocating memory, it should be shot, not some other task outside the research projects mem_exclusive cpuset. I propose to extend the use of the 'mem_exclusive' flag of cpusets to manage such scenarios. Let memory allocations for user space (GFP_USER) be constrained by a tasks current cpuset, but memory allocations for kernel space (GFP_KERNEL) by constrained by the nearest mem_exclusive ancestor of the current cpuset, even though kernel space allocations will still _prefer_ to remain within the current tasks cpuset, if memory is easily available. Let the oom killer be constrained to consider only tasks that are in overlapping mem_exclusive cpusets (it won't help much to kill a task that normally cannot allocate memory on any of the same nodes as the ones on which the current task can allocate.) The current constraints imposed on setting mem_exclusive are unchanged. A cpuset may only be mem_exclusive if its parent is also mem_exclusive, and a mem_exclusive cpuset may not overlap any of its siblings memory nodes. This patch was presented on linux-mm in early July 2005, though did not generate much feedback at that time. It has been built for a variety of arch's using cross tools, and built, booted and tested for function on SN2 (ia64). There are 4 patches in this set: 1) Some minor cleanup, and some improvements to the code layout of one routine to make subsequent patches cleaner. 2) Add another GFP flag - __GFP_HARDWALL. It marks memory requests for USER space, which are tightly confined by the current tasks cpuset. 3) Now memory requests (such as KERNEL) that not marked HARDWALL can if short on memory, look in the potentially larger pool of memory defined by the nearest mem_exclusive ancestor cpuset of the current tasks cpuset. 4) Finally, modify the oom killer to skip any task whose mem_exclusive cpuset doesn't overlap ours. Patch (1), the one time I looked on an SN2 (ia64) build, actually saved 32 bytes of kernel text space. Patch (2) has no affect on the size of kernel text space (it just adds a preprocessor flag). Patches (3) and (4) added about 600 bytes each of kernel text space, mostly in kernel/cpuset.c, which matters only if CONFIG_CPUSET is enabled. This patch: This patch applies a few comment and code cleanups to mm/oom_kill.c prior to applying a few small patches to improve cpuset management of memory placement. The comment changed in oom_kill.c was seriously misleading. The code layout change in select_bad_process() makes room for adding another condition on which a process can be spared the oom killer (see the subsequent cpuset_nodes_overlap patch for this addition). Also a couple typos and spellos that bugged me, while I was here. This patch should have no material affect. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-06 15:18:09 -07:00
} while_each_thread(g, p);
return chosen;
}
/**
* dump_tasks - dump current memory state of all system tasks
* @mem: target memory controller
*
* Dumps the current memory state of all system tasks, excluding kernel threads.
* State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
* score, and name.
*
* If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
* shown.
*
* Call with tasklist_lock read-locked.
*/
static void dump_tasks(const struct mem_cgroup *mem)
{
struct task_struct *g, *p;
printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
"name\n");
do_each_thread(g, p) {
/*
* total_vm and rss sizes do not exist for tasks with a
* detached mm so there's no need to report them.
*/
if (!p->mm)
continue;
if (mem && !task_in_mem_cgroup(p, mem))
continue;
if (!thread_group_leader(p))
continue;
task_lock(p);
printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
p->pid, __task_cred(p)->uid, p->tgid,
p->mm->total_vm, get_mm_rss(p->mm), (int)task_cpu(p),
p->oomkilladj, p->comm);
task_unlock(p);
} while_each_thread(g, p);
}
/*
* Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
* flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
* set.
*/
static void __oom_kill_task(struct task_struct *p, int verbose)
{
pid namespaces: define is_global_init() and is_container_init() is_init() is an ambiguous name for the pid==1 check. Split it into is_global_init() and is_container_init(). A cgroup init has it's tsk->pid == 1. A global init also has it's tsk->pid == 1 and it's active pid namespace is the init_pid_ns. But rather than check the active pid namespace, compare the task structure with 'init_pid_ns.child_reaper', which is initialized during boot to the /sbin/init process and never changes. Changelog: 2.6.22-rc4-mm2-pidns1: - Use 'init_pid_ns.child_reaper' to determine if a given task is the global init (/sbin/init) process. This would improve performance and remove dependence on the task_pid(). 2.6.21-mm2-pidns2: - [Sukadev Bhattiprolu] Changed is_container_init() calls in {powerpc, ppc,avr32}/traps.c for the _exception() call to is_global_init(). This way, we kill only the cgroup if the cgroup's init has a bug rather than force a kernel panic. [akpm@linux-foundation.org: fix comment] [sukadev@us.ibm.com: Use is_global_init() in arch/m32r/mm/fault.c] [bunk@stusta.de: kernel/pid.c: remove unused exports] [sukadev@us.ibm.com: Fix capability.c to work with threaded init] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Acked-by: Pavel Emelianov <xemul@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzel <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-18 23:39:52 -07:00
if (is_global_init(p)) {
WARN_ON(1);
printk(KERN_WARNING "tried to kill init!\n");
return;
}
if (!p->mm) {
WARN_ON(1);
printk(KERN_WARNING "tried to kill an mm-less task!\n");
return;
}
if (verbose)
printk(KERN_ERR "Killed process %d (%s)\n",
task_pid_nr(p), p->comm);
/*
* We give our sacrificial lamb high priority and access to
* all the memory it needs. That way it should be able to
* exit() and clear out its resources quickly...
*/
p->rt.time_slice = HZ;
set_tsk_thread_flag(p, TIF_MEMDIE);
force_sig(SIGKILL, p);
}
static int oom_kill_task(struct task_struct *p)
{
struct mm_struct *mm;
struct task_struct *g, *q;
mm = p->mm;
/* WARNING: mm may not be dereferenced since we did not obtain its
* value from get_task_mm(p). This is OK since all we need to do is
* compare mm to q->mm below.
*
* Furthermore, even if mm contains a non-NULL value, p->mm may
* change to NULL at any time since we do not hold task_lock(p).
* However, this is of no concern to us.
*/
if (mm == NULL)
return 1;
/*
* Don't kill the process if any threads are set to OOM_DISABLE
*/
do_each_thread(g, q) {
if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
return 1;
} while_each_thread(g, q);
__oom_kill_task(p, 1);
/*
* kill all processes that share the ->mm (i.e. all threads),
* but are in a different thread group. Don't let them have access
* to memory reserves though, otherwise we might deplete all memory.
*/
do_each_thread(g, q) {
if (q->mm == mm && !same_thread_group(q, p))
force_sig(SIGKILL, q);
} while_each_thread(g, q);
return 0;
}
static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
unsigned long points, struct mem_cgroup *mem,
const char *message)
{
struct task_struct *c;
if (printk_ratelimit()) {
printk(KERN_WARNING "%s invoked oom-killer: "
"gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
current->comm, gfp_mask, order, current->oomkilladj);
task_lock(current);
cpuset_print_task_mems_allowed(current);
task_unlock(current);
dump_stack();
show_mem();
if (sysctl_oom_dump_tasks)
dump_tasks(mem);
}
/*
* If the task is already exiting, don't alarm the sysadmin or kill
* its children or threads, just set TIF_MEMDIE so it can die quickly
*/
if (p->flags & PF_EXITING) {
__oom_kill_task(p, 0);
return 0;
}
printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
message, task_pid_nr(p), p->comm, points);
/* Try to kill a child first */
list_for_each_entry(c, &p->children, sibling) {
if (c->mm == p->mm)
continue;
if (!oom_kill_task(c))
return 0;
}
return oom_kill_task(p);
}
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
{
unsigned long points = 0;
struct task_struct *p;
cgroup_lock();
memcg: fix oops in oom handling When I used a test program to fork mass processes and immediately move them to a cgroup where the memory limit is low enough to trigger oom kill, I got oops: BUG: unable to handle kernel NULL pointer dereference at 0000000000000808 IP: [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18 PGD 4c95f067 PUD 4406c067 PMD 0 Oops: 0002 [1] SMP CPU 2 Modules linked in: Pid: 11973, comm: a.out Not tainted 2.6.25-rc7 #5 RIP: 0010:[<ffffffff8045c47f>] [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18 RSP: 0018:ffff8100448c7c30 EFLAGS: 00010002 RAX: 0000000000000202 RBX: 0000000000000009 RCX: 000000000001c9f3 RDX: 0000000000000100 RSI: 0000000000000001 RDI: 0000000000000808 RBP: ffff81007e444080 R08: 0000000000000000 R09: ffff8100448c7900 R10: ffff81000105f480 R11: 00000100ffffffff R12: ffff810067c84140 R13: 0000000000000001 R14: ffff8100441d0018 R15: ffff81007da56200 FS: 00007f70eb1856f0(0000) GS:ffff81007fbad3c0(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000808 CR3: 000000004498a000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process a.out (pid: 11973, threadinfo ffff8100448c6000, task ffff81007da533e0) Stack: ffffffff8023ef5a 00000000000000d0 ffffffff80548dc0 00000000000000d0 ffff810067c84140 ffff81007e444080 ffffffff8026cef9 00000000000000d0 ffff8100441d0000 00000000000000d0 ffff8100441d0000 ffff8100505445c0 Call Trace: [<ffffffff8023ef5a>] ? force_sig_info+0x25/0xb9 [<ffffffff8026cef9>] ? oom_kill_task+0x77/0xe2 [<ffffffff8026d696>] ? mem_cgroup_out_of_memory+0x55/0x67 [<ffffffff802910ad>] ? mem_cgroup_charge_common+0xec/0x202 [<ffffffff8027997b>] ? handle_mm_fault+0x24e/0x77f [<ffffffff8022c4af>] ? default_wake_function+0x0/0xe [<ffffffff8027a17a>] ? get_user_pages+0x2ce/0x3af [<ffffffff80290fee>] ? mem_cgroup_charge_common+0x2d/0x202 [<ffffffff8027a441>] ? make_pages_present+0x8e/0xa4 [<ffffffff8027d1ab>] ? mmap_region+0x373/0x429 [<ffffffff8027d7eb>] ? do_mmap_pgoff+0x2ff/0x364 [<ffffffff80210471>] ? sys_mmap+0xe5/0x111 [<ffffffff8020bfc9>] ? tracesys+0xdc/0xe1 Code: 00 00 01 48 8b 3c 24 e9 46 d4 dd ff f0 ff 07 48 8b 3c 24 e9 3a d4 dd ff fe 07 48 8b 3c 24 e9 2f d4 dd ff 9c 58 fa ba 00 01 00 00 <f0> 66 0f c1 17 38 f2 74 06 f3 90 8a 17 eb f6 c3 fa b8 00 01 00 RIP [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18 RSP <ffff8100448c7c30> CR2: 0000000000000808 ---[ end trace c3702fa668021ea4 ]--- It's reproducable in a x86_64 box, but doesn't happen in x86_32. This is because tsk->sighand is not guarded by RCU, so we have to hold tasklist_lock, just as what out_of_memory() does. Signed-off-by: Li Zefan <lizf@cn.fujitsu> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: David Rientjes <rientjes@cs.washington.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-15 14:34:37 -07:00
read_lock(&tasklist_lock);
retry:
p = select_bad_process(&points, mem);
if (PTR_ERR(p) == -1UL)
goto out;
if (!p)
p = current;
if (oom_kill_process(p, gfp_mask, 0, points, mem,
"Memory cgroup out of memory"))
goto retry;
out:
memcg: fix oops in oom handling When I used a test program to fork mass processes and immediately move them to a cgroup where the memory limit is low enough to trigger oom kill, I got oops: BUG: unable to handle kernel NULL pointer dereference at 0000000000000808 IP: [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18 PGD 4c95f067 PUD 4406c067 PMD 0 Oops: 0002 [1] SMP CPU 2 Modules linked in: Pid: 11973, comm: a.out Not tainted 2.6.25-rc7 #5 RIP: 0010:[<ffffffff8045c47f>] [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18 RSP: 0018:ffff8100448c7c30 EFLAGS: 00010002 RAX: 0000000000000202 RBX: 0000000000000009 RCX: 000000000001c9f3 RDX: 0000000000000100 RSI: 0000000000000001 RDI: 0000000000000808 RBP: ffff81007e444080 R08: 0000000000000000 R09: ffff8100448c7900 R10: ffff81000105f480 R11: 00000100ffffffff R12: ffff810067c84140 R13: 0000000000000001 R14: ffff8100441d0018 R15: ffff81007da56200 FS: 00007f70eb1856f0(0000) GS:ffff81007fbad3c0(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000808 CR3: 000000004498a000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process a.out (pid: 11973, threadinfo ffff8100448c6000, task ffff81007da533e0) Stack: ffffffff8023ef5a 00000000000000d0 ffffffff80548dc0 00000000000000d0 ffff810067c84140 ffff81007e444080 ffffffff8026cef9 00000000000000d0 ffff8100441d0000 00000000000000d0 ffff8100441d0000 ffff8100505445c0 Call Trace: [<ffffffff8023ef5a>] ? force_sig_info+0x25/0xb9 [<ffffffff8026cef9>] ? oom_kill_task+0x77/0xe2 [<ffffffff8026d696>] ? mem_cgroup_out_of_memory+0x55/0x67 [<ffffffff802910ad>] ? mem_cgroup_charge_common+0xec/0x202 [<ffffffff8027997b>] ? handle_mm_fault+0x24e/0x77f [<ffffffff8022c4af>] ? default_wake_function+0x0/0xe [<ffffffff8027a17a>] ? get_user_pages+0x2ce/0x3af [<ffffffff80290fee>] ? mem_cgroup_charge_common+0x2d/0x202 [<ffffffff8027a441>] ? make_pages_present+0x8e/0xa4 [<ffffffff8027d1ab>] ? mmap_region+0x373/0x429 [<ffffffff8027d7eb>] ? do_mmap_pgoff+0x2ff/0x364 [<ffffffff80210471>] ? sys_mmap+0xe5/0x111 [<ffffffff8020bfc9>] ? tracesys+0xdc/0xe1 Code: 00 00 01 48 8b 3c 24 e9 46 d4 dd ff f0 ff 07 48 8b 3c 24 e9 3a d4 dd ff fe 07 48 8b 3c 24 e9 2f d4 dd ff 9c 58 fa ba 00 01 00 00 <f0> 66 0f c1 17 38 f2 74 06 f3 90 8a 17 eb f6 c3 fa b8 00 01 00 RIP [<ffffffff8045c47f>] _spin_lock_irqsave+0x8/0x18 RSP <ffff8100448c7c30> CR2: 0000000000000808 ---[ end trace c3702fa668021ea4 ]--- It's reproducable in a x86_64 box, but doesn't happen in x86_32. This is because tsk->sighand is not guarded by RCU, so we have to hold tasklist_lock, just as what out_of_memory() does. Signed-off-by: Li Zefan <lizf@cn.fujitsu> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Paul Menage <menage@google.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: David Rientjes <rientjes@cs.washington.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-15 14:34:37 -07:00
read_unlock(&tasklist_lock);
cgroup_unlock();
}
#endif
static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
int register_oom_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&oom_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_oom_notifier);
int unregister_oom_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&oom_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_oom_notifier);
/*
* Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
* if a parallel OOM killing is already taking place that includes a zone in
* the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
*/
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
{
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
struct zoneref *z;
struct zone *zone;
int ret = 1;
spin_lock(&zone_scan_lock);
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
if (zone_is_oom_locked(zone)) {
ret = 0;
goto out;
}
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
}
for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
/*
* Lock each zone in the zonelist under zone_scan_lock so a
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
* parallel invocation of try_set_zone_oom() doesn't succeed
* when it shouldn't.
*/
zone_set_flag(zone, ZONE_OOM_LOCKED);
}
out:
spin_unlock(&zone_scan_lock);
return ret;
}
/*
* Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
* allocation attempts with zonelists containing them may now recall the OOM
* killer, if necessary.
*/
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
{
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
struct zoneref *z;
struct zone *zone;
spin_lock(&zone_scan_lock);
mm: have zonelist contains structs with both a zone pointer and zone_idx Filtering zonelists requires very frequent use of zone_idx(). This is costly as it involves a lookup of another structure and a substraction operation. As the zone_idx is often required, it should be quickly accessible. The node idx could also be stored here if it was found that accessing zone->node is significant which may be the case on workloads where nodemasks are heavily used. This patch introduces a struct zoneref to store a zone pointer and a zone index. The zonelist then consists of an array of these struct zonerefs which are looked up as necessary. Helpers are given for accessing the zone index as well as the node index. [kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers] [hugh@veritas.com: mm-have-zonelist: fix memcg ooms] [hugh@veritas.com: just return do_try_to_free_pages] [hugh@veritas.com: do_try_to_free_pages gfp_mask redundant] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:12:17 -07:00
for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
zone_clear_flag(zone, ZONE_OOM_LOCKED);
}
spin_unlock(&zone_scan_lock);
}
/*
* Must be called with tasklist_lock held for read.
*/
static void __out_of_memory(gfp_t gfp_mask, int order)
{
if (sysctl_oom_kill_allocating_task) {
oom_kill_process(current, gfp_mask, order, 0, NULL,
"Out of memory (oom_kill_allocating_task)");
} else {
unsigned long points;
struct task_struct *p;
retry:
/*
* Rambo mode: Shoot down a process and hope it solves whatever
* issues we may have.
*/
p = select_bad_process(&points, NULL);
if (PTR_ERR(p) == -1UL)
return;
/* Found nothing?!?! Either we hang forever, or we panic. */
if (!p) {
read_unlock(&tasklist_lock);
panic("Out of memory and no killable processes...\n");
}
if (oom_kill_process(p, gfp_mask, order, points, NULL,
"Out of memory"))
goto retry;
}
}
/*
* pagefault handler calls into here because it is out of memory but
* doesn't know exactly how or why.
*/
void pagefault_out_of_memory(void)
{
unsigned long freed = 0;
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
if (freed > 0)
/* Got some memory back in the last second. */
return;
if (sysctl_panic_on_oom)
panic("out of memory from page fault. panic_on_oom is selected.\n");
read_lock(&tasklist_lock);
__out_of_memory(0, 0); /* unknown gfp_mask and order */
read_unlock(&tasklist_lock);
/*
* Give "p" a good chance of killing itself before we
* retry to allocate memory.
*/
if (!test_thread_flag(TIF_MEMDIE))
schedule_timeout_uninterruptible(1);
}
/**
* out_of_memory - kill the "best" process when we run out of memory
* @zonelist: zonelist pointer
* @gfp_mask: memory allocation flags
* @order: amount of memory being requested as a power of 2
*
* If we run out of memory, we have the choice between either
* killing a random task (bad), letting the system crash (worse)
* OR try to be smart about which process to kill. Note that we
* don't have to be perfect here, we just have to be good.
*/
void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
{
unsigned long freed = 0;
enum oom_constraint constraint;
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
if (freed > 0)
/* Got some memory back in the last second. */
return;
if (sysctl_panic_on_oom == 2)
panic("out of memory. Compulsory panic_on_oom is selected.\n");
/*
* Check if there were limitations on the allocation (only relevant for
* NUMA) that may require different handling.
*/
constraint = constrained_alloc(zonelist, gfp_mask);
read_lock(&tasklist_lock);
switch (constraint) {
case CONSTRAINT_MEMORY_POLICY:
oom_kill_process(current, gfp_mask, order, 0, NULL,
"No available memory (MPOL_BIND)");
break;
case CONSTRAINT_NONE:
if (sysctl_panic_on_oom)
panic("out of memory. panic_on_oom is selected\n");
/* Fall-through */
case CONSTRAINT_CPUSET:
__out_of_memory(gfp_mask, order);
break;
}
read_unlock(&tasklist_lock);
/*
* Give "p" a good chance of killing itself before we
* retry to allocate memory unless "p" is current
*/
if (!test_thread_flag(TIF_MEMDIE))
schedule_timeout_uninterruptible(1);
}