linux/drivers/crypto/atmel-aes.c

1499 lines
35 KiB
C
Raw Normal View History

/*
* Cryptographic API.
*
* Support for ATMEL AES HW acceleration.
*
* Copyright (c) 2012 Eukréa Electromatique - ATMEL
* Author: Nicolas Royer <nicolas@eukrea.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Some ideas are from omap-aes.c driver.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/hw_random.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include <linux/platform_data/crypto-atmel.h>
#include <dt-bindings/dma/at91.h>
#include "atmel-aes-regs.h"
#define CFB8_BLOCK_SIZE 1
#define CFB16_BLOCK_SIZE 2
#define CFB32_BLOCK_SIZE 4
#define CFB64_BLOCK_SIZE 8
/* AES flags */
#define AES_FLAGS_MODE_MASK 0x03ff
#define AES_FLAGS_ENCRYPT BIT(0)
#define AES_FLAGS_CBC BIT(1)
#define AES_FLAGS_CFB BIT(2)
#define AES_FLAGS_CFB8 BIT(3)
#define AES_FLAGS_CFB16 BIT(4)
#define AES_FLAGS_CFB32 BIT(5)
#define AES_FLAGS_CFB64 BIT(6)
#define AES_FLAGS_CFB128 BIT(7)
#define AES_FLAGS_OFB BIT(8)
#define AES_FLAGS_CTR BIT(9)
#define AES_FLAGS_INIT BIT(16)
#define AES_FLAGS_DMA BIT(17)
#define AES_FLAGS_BUSY BIT(18)
#define AES_FLAGS_FAST BIT(19)
#define ATMEL_AES_QUEUE_LENGTH 50
#define ATMEL_AES_DMA_THRESHOLD 16
struct atmel_aes_caps {
bool has_dualbuff;
bool has_cfb64;
u32 max_burst_size;
};
struct atmel_aes_dev;
struct atmel_aes_ctx {
struct atmel_aes_dev *dd;
int keylen;
u32 key[AES_KEYSIZE_256 / sizeof(u32)];
u16 block_size;
};
struct atmel_aes_reqctx {
unsigned long mode;
};
struct atmel_aes_dma {
struct dma_chan *chan;
struct dma_slave_config dma_conf;
};
struct atmel_aes_dev {
struct list_head list;
unsigned long phys_base;
void __iomem *io_base;
struct atmel_aes_ctx *ctx;
struct device *dev;
struct clk *iclk;
int irq;
unsigned long flags;
int err;
spinlock_t lock;
struct crypto_queue queue;
struct tasklet_struct done_task;
struct tasklet_struct queue_task;
struct ablkcipher_request *req;
size_t total;
struct scatterlist *in_sg;
unsigned int nb_in_sg;
size_t in_offset;
struct scatterlist *out_sg;
unsigned int nb_out_sg;
size_t out_offset;
size_t bufcnt;
size_t buflen;
size_t dma_size;
void *buf_in;
int dma_in;
dma_addr_t dma_addr_in;
struct atmel_aes_dma dma_lch_in;
void *buf_out;
int dma_out;
dma_addr_t dma_addr_out;
struct atmel_aes_dma dma_lch_out;
struct atmel_aes_caps caps;
u32 hw_version;
};
struct atmel_aes_drv {
struct list_head dev_list;
spinlock_t lock;
};
static struct atmel_aes_drv atmel_aes = {
.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
};
static int atmel_aes_sg_length(struct ablkcipher_request *req,
struct scatterlist *sg)
{
unsigned int total = req->nbytes;
int sg_nb;
unsigned int len;
struct scatterlist *sg_list;
sg_nb = 0;
sg_list = sg;
total = req->nbytes;
while (total) {
len = min(sg_list->length, total);
sg_nb++;
total -= len;
sg_list = sg_next(sg_list);
if (!sg_list)
total = 0;
}
return sg_nb;
}
static int atmel_aes_sg_copy(struct scatterlist **sg, size_t *offset,
void *buf, size_t buflen, size_t total, int out)
{
unsigned int count, off = 0;
while (buflen && total) {
count = min((*sg)->length - *offset, total);
count = min(count, buflen);
if (!count)
return off;
scatterwalk_map_and_copy(buf + off, *sg, *offset, count, out);
off += count;
buflen -= count;
*offset += count;
total -= count;
if (*offset == (*sg)->length) {
*sg = sg_next(*sg);
if (*sg)
*offset = 0;
else
total = 0;
}
}
return off;
}
static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
{
return readl_relaxed(dd->io_base + offset);
}
static inline void atmel_aes_write(struct atmel_aes_dev *dd,
u32 offset, u32 value)
{
writel_relaxed(value, dd->io_base + offset);
}
static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
*value = atmel_aes_read(dd, offset);
}
static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
u32 *value, int count)
{
for (; count--; value++, offset += 4)
atmel_aes_write(dd, offset, *value);
}
static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_ctx *ctx)
{
struct atmel_aes_dev *aes_dd = NULL;
struct atmel_aes_dev *tmp;
spin_lock_bh(&atmel_aes.lock);
if (!ctx->dd) {
list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
aes_dd = tmp;
break;
}
ctx->dd = aes_dd;
} else {
aes_dd = ctx->dd;
}
spin_unlock_bh(&atmel_aes.lock);
return aes_dd;
}
static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
{
clk_prepare_enable(dd->iclk);
if (!(dd->flags & AES_FLAGS_INIT)) {
atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
dd->flags |= AES_FLAGS_INIT;
dd->err = 0;
}
return 0;
}
static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
{
return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
}
static void atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
{
atmel_aes_hw_init(dd);
dd->hw_version = atmel_aes_get_version(dd);
dev_info(dd->dev,
"version: 0x%x\n", dd->hw_version);
clk_disable_unprepare(dd->iclk);
}
static void atmel_aes_finish_req(struct atmel_aes_dev *dd, int err)
{
struct ablkcipher_request *req = dd->req;
clk_disable_unprepare(dd->iclk);
dd->flags &= ~AES_FLAGS_BUSY;
req->base.complete(&req->base, err);
}
static void atmel_aes_dma_callback(void *data)
{
struct atmel_aes_dev *dd = data;
/* dma_lch_out - completed */
tasklet_schedule(&dd->done_task);
}
static int atmel_aes_crypt_dma(struct atmel_aes_dev *dd,
dma_addr_t dma_addr_in, dma_addr_t dma_addr_out, int length)
{
struct scatterlist sg[2];
struct dma_async_tx_descriptor *in_desc, *out_desc;
dd->dma_size = length;
dma_sync_single_for_device(dd->dev, dma_addr_in, length,
DMA_TO_DEVICE);
dma_sync_single_for_device(dd->dev, dma_addr_out, length,
DMA_FROM_DEVICE);
if (dd->flags & AES_FLAGS_CFB8) {
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_1_BYTE;
dd->dma_lch_out.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_1_BYTE;
} else if (dd->flags & AES_FLAGS_CFB16) {
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_2_BYTES;
dd->dma_lch_out.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_2_BYTES;
} else {
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_out.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
}
if (dd->flags & (AES_FLAGS_CFB8 | AES_FLAGS_CFB16 |
AES_FLAGS_CFB32 | AES_FLAGS_CFB64)) {
dd->dma_lch_in.dma_conf.src_maxburst = 1;
dd->dma_lch_in.dma_conf.dst_maxburst = 1;
dd->dma_lch_out.dma_conf.src_maxburst = 1;
dd->dma_lch_out.dma_conf.dst_maxburst = 1;
} else {
dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size;
dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size;
dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size;
dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size;
}
dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
dmaengine_slave_config(dd->dma_lch_out.chan, &dd->dma_lch_out.dma_conf);
dd->flags |= AES_FLAGS_DMA;
sg_init_table(&sg[0], 1);
sg_dma_address(&sg[0]) = dma_addr_in;
sg_dma_len(&sg[0]) = length;
sg_init_table(&sg[1], 1);
sg_dma_address(&sg[1]) = dma_addr_out;
sg_dma_len(&sg[1]) = length;
in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, &sg[0],
1, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!in_desc)
return -EINVAL;
out_desc = dmaengine_prep_slave_sg(dd->dma_lch_out.chan, &sg[1],
1, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!out_desc)
return -EINVAL;
out_desc->callback = atmel_aes_dma_callback;
out_desc->callback_param = dd;
dmaengine_submit(out_desc);
dma_async_issue_pending(dd->dma_lch_out.chan);
dmaengine_submit(in_desc);
dma_async_issue_pending(dd->dma_lch_in.chan);
return 0;
}
static int atmel_aes_crypt_cpu_start(struct atmel_aes_dev *dd)
{
dd->flags &= ~AES_FLAGS_DMA;
dma_sync_single_for_cpu(dd->dev, dd->dma_addr_in,
dd->dma_size, DMA_TO_DEVICE);
dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
dd->dma_size, DMA_FROM_DEVICE);
/* use cache buffers */
dd->nb_in_sg = atmel_aes_sg_length(dd->req, dd->in_sg);
if (!dd->nb_in_sg)
return -EINVAL;
dd->nb_out_sg = atmel_aes_sg_length(dd->req, dd->out_sg);
if (!dd->nb_out_sg)
return -EINVAL;
dd->bufcnt = sg_copy_to_buffer(dd->in_sg, dd->nb_in_sg,
dd->buf_in, dd->total);
if (!dd->bufcnt)
return -EINVAL;
dd->total -= dd->bufcnt;
atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
atmel_aes_write_n(dd, AES_IDATAR(0), (u32 *) dd->buf_in,
dd->bufcnt >> 2);
return 0;
}
static int atmel_aes_crypt_dma_start(struct atmel_aes_dev *dd)
{
int err, fast = 0, in, out;
size_t count;
dma_addr_t addr_in, addr_out;
if ((!dd->in_offset) && (!dd->out_offset)) {
/* check for alignment */
in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32)) &&
IS_ALIGNED(dd->in_sg->length, dd->ctx->block_size);
out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32)) &&
IS_ALIGNED(dd->out_sg->length, dd->ctx->block_size);
fast = in && out;
if (sg_dma_len(dd->in_sg) != sg_dma_len(dd->out_sg))
fast = 0;
}
if (fast) {
count = min(dd->total, sg_dma_len(dd->in_sg));
count = min(count, sg_dma_len(dd->out_sg));
err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
return -EINVAL;
}
err = dma_map_sg(dd->dev, dd->out_sg, 1,
DMA_FROM_DEVICE);
if (!err) {
dev_err(dd->dev, "dma_map_sg() error\n");
dma_unmap_sg(dd->dev, dd->in_sg, 1,
DMA_TO_DEVICE);
return -EINVAL;
}
addr_in = sg_dma_address(dd->in_sg);
addr_out = sg_dma_address(dd->out_sg);
dd->flags |= AES_FLAGS_FAST;
} else {
dma_sync_single_for_cpu(dd->dev, dd->dma_addr_in,
dd->dma_size, DMA_TO_DEVICE);
/* use cache buffers */
count = atmel_aes_sg_copy(&dd->in_sg, &dd->in_offset,
dd->buf_in, dd->buflen, dd->total, 0);
addr_in = dd->dma_addr_in;
addr_out = dd->dma_addr_out;
dd->flags &= ~AES_FLAGS_FAST;
}
dd->total -= count;
err = atmel_aes_crypt_dma(dd, addr_in, addr_out, count);
if (err && (dd->flags & AES_FLAGS_FAST)) {
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
}
return err;
}
static int atmel_aes_write_ctrl(struct atmel_aes_dev *dd)
{
int err;
u32 valcr = 0, valmr = 0;
err = atmel_aes_hw_init(dd);
if (err)
return err;
/* MR register must be set before IV registers */
if (dd->ctx->keylen == AES_KEYSIZE_128)
valmr |= AES_MR_KEYSIZE_128;
else if (dd->ctx->keylen == AES_KEYSIZE_192)
valmr |= AES_MR_KEYSIZE_192;
else
valmr |= AES_MR_KEYSIZE_256;
if (dd->flags & AES_FLAGS_CBC) {
valmr |= AES_MR_OPMOD_CBC;
} else if (dd->flags & AES_FLAGS_CFB) {
valmr |= AES_MR_OPMOD_CFB;
if (dd->flags & AES_FLAGS_CFB8)
valmr |= AES_MR_CFBS_8b;
else if (dd->flags & AES_FLAGS_CFB16)
valmr |= AES_MR_CFBS_16b;
else if (dd->flags & AES_FLAGS_CFB32)
valmr |= AES_MR_CFBS_32b;
else if (dd->flags & AES_FLAGS_CFB64)
valmr |= AES_MR_CFBS_64b;
else if (dd->flags & AES_FLAGS_CFB128)
valmr |= AES_MR_CFBS_128b;
} else if (dd->flags & AES_FLAGS_OFB) {
valmr |= AES_MR_OPMOD_OFB;
} else if (dd->flags & AES_FLAGS_CTR) {
valmr |= AES_MR_OPMOD_CTR;
} else {
valmr |= AES_MR_OPMOD_ECB;
}
if (dd->flags & AES_FLAGS_ENCRYPT)
valmr |= AES_MR_CYPHER_ENC;
if (dd->total > ATMEL_AES_DMA_THRESHOLD) {
valmr |= AES_MR_SMOD_IDATAR0;
if (dd->caps.has_dualbuff)
valmr |= AES_MR_DUALBUFF;
} else {
valmr |= AES_MR_SMOD_AUTO;
}
atmel_aes_write(dd, AES_CR, valcr);
atmel_aes_write(dd, AES_MR, valmr);
atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
dd->ctx->keylen >> 2);
if (((dd->flags & AES_FLAGS_CBC) || (dd->flags & AES_FLAGS_CFB) ||
(dd->flags & AES_FLAGS_OFB) || (dd->flags & AES_FLAGS_CTR)) &&
dd->req->info) {
atmel_aes_write_n(dd, AES_IVR(0), dd->req->info, 4);
}
return 0;
}
static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
struct ablkcipher_request *req)
{
struct crypto_async_request *async_req, *backlog;
struct atmel_aes_ctx *ctx;
struct atmel_aes_reqctx *rctx;
unsigned long flags;
int err, ret = 0;
spin_lock_irqsave(&dd->lock, flags);
if (req)
ret = ablkcipher_enqueue_request(&dd->queue, req);
if (dd->flags & AES_FLAGS_BUSY) {
spin_unlock_irqrestore(&dd->lock, flags);
return ret;
}
backlog = crypto_get_backlog(&dd->queue);
async_req = crypto_dequeue_request(&dd->queue);
if (async_req)
dd->flags |= AES_FLAGS_BUSY;
spin_unlock_irqrestore(&dd->lock, flags);
if (!async_req)
return ret;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req = ablkcipher_request_cast(async_req);
/* assign new request to device */
dd->req = req;
dd->total = req->nbytes;
dd->in_offset = 0;
dd->in_sg = req->src;
dd->out_offset = 0;
dd->out_sg = req->dst;
rctx = ablkcipher_request_ctx(req);
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
rctx->mode &= AES_FLAGS_MODE_MASK;
dd->flags = (dd->flags & ~AES_FLAGS_MODE_MASK) | rctx->mode;
dd->ctx = ctx;
ctx->dd = dd;
err = atmel_aes_write_ctrl(dd);
if (!err) {
if (dd->total > ATMEL_AES_DMA_THRESHOLD)
err = atmel_aes_crypt_dma_start(dd);
else
err = atmel_aes_crypt_cpu_start(dd);
}
if (err) {
/* aes_task will not finish it, so do it here */
atmel_aes_finish_req(dd, err);
tasklet_schedule(&dd->queue_task);
}
return ret;
}
static int atmel_aes_crypt_dma_stop(struct atmel_aes_dev *dd)
{
int err = -EINVAL;
size_t count;
if (dd->flags & AES_FLAGS_DMA) {
err = 0;
if (dd->flags & AES_FLAGS_FAST) {
dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
} else {
dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
dd->dma_size, DMA_FROM_DEVICE);
/* copy data */
count = atmel_aes_sg_copy(&dd->out_sg, &dd->out_offset,
dd->buf_out, dd->buflen, dd->dma_size, 1);
if (count != dd->dma_size) {
err = -EINVAL;
pr_err("not all data converted: %u\n", count);
}
}
}
return err;
}
static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
{
int err = -ENOMEM;
dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, 0);
dd->buflen = PAGE_SIZE;
dd->buflen &= ~(AES_BLOCK_SIZE - 1);
if (!dd->buf_in || !dd->buf_out) {
dev_err(dd->dev, "unable to alloc pages.\n");
goto err_alloc;
}
/* MAP here */
dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in,
dd->buflen, DMA_TO_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_in;
}
dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out,
dd->buflen, DMA_FROM_DEVICE);
if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
err = -EINVAL;
goto err_map_out;
}
return 0;
err_map_out:
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
err_map_in:
err_alloc:
free_page((unsigned long)dd->buf_out);
free_page((unsigned long)dd->buf_in);
if (err)
pr_err("error: %d\n", err);
return err;
}
static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
{
dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
DMA_FROM_DEVICE);
dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
DMA_TO_DEVICE);
free_page((unsigned long)dd->buf_out);
free_page((unsigned long)dd->buf_in);
}
static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
struct atmel_aes_dev *dd;
if (mode & AES_FLAGS_CFB8) {
if (!IS_ALIGNED(req->nbytes, CFB8_BLOCK_SIZE)) {
pr_err("request size is not exact amount of CFB8 blocks\n");
return -EINVAL;
}
ctx->block_size = CFB8_BLOCK_SIZE;
} else if (mode & AES_FLAGS_CFB16) {
if (!IS_ALIGNED(req->nbytes, CFB16_BLOCK_SIZE)) {
pr_err("request size is not exact amount of CFB16 blocks\n");
return -EINVAL;
}
ctx->block_size = CFB16_BLOCK_SIZE;
} else if (mode & AES_FLAGS_CFB32) {
if (!IS_ALIGNED(req->nbytes, CFB32_BLOCK_SIZE)) {
pr_err("request size is not exact amount of CFB32 blocks\n");
return -EINVAL;
}
ctx->block_size = CFB32_BLOCK_SIZE;
} else if (mode & AES_FLAGS_CFB64) {
if (!IS_ALIGNED(req->nbytes, CFB64_BLOCK_SIZE)) {
pr_err("request size is not exact amount of CFB64 blocks\n");
return -EINVAL;
}
ctx->block_size = CFB64_BLOCK_SIZE;
} else {
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
pr_err("request size is not exact amount of AES blocks\n");
return -EINVAL;
}
ctx->block_size = AES_BLOCK_SIZE;
}
dd = atmel_aes_find_dev(ctx);
if (!dd)
return -ENODEV;
rctx->mode = mode;
return atmel_aes_handle_queue(dd, req);
}
static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
{
struct at_dma_slave *sl = slave;
if (sl && sl->dma_dev == chan->device->dev) {
chan->private = sl;
return true;
} else {
return false;
}
}
static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
struct crypto_platform_data *pdata)
{
int err = -ENOMEM;
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* Try to grab 2 DMA channels */
dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask,
atmel_aes_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
if (!dd->dma_lch_in.chan)
goto err_dma_in;
dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
AES_IDATAR(0);
dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size;
dd->dma_lch_in.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size;
dd->dma_lch_in.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_in.dma_conf.device_fc = false;
dd->dma_lch_out.chan = dma_request_slave_channel_compat(mask,
atmel_aes_filter, &pdata->dma_slave->txdata, dd->dev, "rx");
if (!dd->dma_lch_out.chan)
goto err_dma_out;
dd->dma_lch_out.dma_conf.direction = DMA_DEV_TO_MEM;
dd->dma_lch_out.dma_conf.src_addr = dd->phys_base +
AES_ODATAR(0);
dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size;
dd->dma_lch_out.dma_conf.src_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size;
dd->dma_lch_out.dma_conf.dst_addr_width =
DMA_SLAVE_BUSWIDTH_4_BYTES;
dd->dma_lch_out.dma_conf.device_fc = false;
return 0;
err_dma_out:
dma_release_channel(dd->dma_lch_in.chan);
err_dma_in:
dev_warn(dd->dev, "no DMA channel available\n");
return err;
}
static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
{
dma_release_channel(dd->dma_lch_in.chan);
dma_release_channel(dd->dma_lch_out.chan);
}
static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256) {
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT);
}
static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
0);
}
static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
}
static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_CBC);
}
static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
}
static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_OFB);
}
static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB128);
}
static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_CFB | AES_FLAGS_CFB128);
}
static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB64);
}
static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_CFB | AES_FLAGS_CFB64);
}
static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB32);
}
static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_CFB | AES_FLAGS_CFB32);
}
static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB16);
}
static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_CFB | AES_FLAGS_CFB16);
}
static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB8);
}
static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_CFB | AES_FLAGS_CFB8);
}
static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
}
static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
{
return atmel_aes_crypt(req,
AES_FLAGS_CTR);
}
static int atmel_aes_cra_init(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
return 0;
}
static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
{
}
static struct crypto_alg aes_algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "atmel-ecb-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ecb_encrypt,
.decrypt = atmel_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "atmel-cbc-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cbc_encrypt,
.decrypt = atmel_aes_cbc_decrypt,
}
},
{
.cra_name = "ofb(aes)",
.cra_driver_name = "atmel-ofb-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ofb_encrypt,
.decrypt = atmel_aes_ofb_decrypt,
}
},
{
.cra_name = "cfb(aes)",
.cra_driver_name = "atmel-cfb-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb_encrypt,
.decrypt = atmel_aes_cfb_decrypt,
}
},
{
.cra_name = "cfb32(aes)",
.cra_driver_name = "atmel-cfb32-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = CFB32_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0x3,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb32_encrypt,
.decrypt = atmel_aes_cfb32_decrypt,
}
},
{
.cra_name = "cfb16(aes)",
.cra_driver_name = "atmel-cfb16-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = CFB16_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0x1,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb16_encrypt,
.decrypt = atmel_aes_cfb16_decrypt,
}
},
{
.cra_name = "cfb8(aes)",
.cra_driver_name = "atmel-cfb8-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = CFB8_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0x0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb8_encrypt,
.decrypt = atmel_aes_cfb8_decrypt,
}
},
{
.cra_name = "ctr(aes)",
.cra_driver_name = "atmel-ctr-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0xf,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_ctr_encrypt,
.decrypt = atmel_aes_ctr_decrypt,
}
},
};
static struct crypto_alg aes_cfb64_alg = {
.cra_name = "cfb64(aes)",
.cra_driver_name = "atmel-cfb64-aes",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = CFB64_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct atmel_aes_ctx),
.cra_alignmask = 0x7,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = atmel_aes_cra_init,
.cra_exit = atmel_aes_cra_exit,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = atmel_aes_setkey,
.encrypt = atmel_aes_cfb64_encrypt,
.decrypt = atmel_aes_cfb64_decrypt,
}
};
static void atmel_aes_queue_task(unsigned long data)
{
struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
atmel_aes_handle_queue(dd, NULL);
}
static void atmel_aes_done_task(unsigned long data)
{
struct atmel_aes_dev *dd = (struct atmel_aes_dev *) data;
int err;
if (!(dd->flags & AES_FLAGS_DMA)) {
atmel_aes_read_n(dd, AES_ODATAR(0), (u32 *) dd->buf_out,
dd->bufcnt >> 2);
if (sg_copy_from_buffer(dd->out_sg, dd->nb_out_sg,
dd->buf_out, dd->bufcnt))
err = 0;
else
err = -EINVAL;
goto cpu_end;
}
err = atmel_aes_crypt_dma_stop(dd);
err = dd->err ? : err;
if (dd->total && !err) {
if (dd->flags & AES_FLAGS_FAST) {
dd->in_sg = sg_next(dd->in_sg);
dd->out_sg = sg_next(dd->out_sg);
if (!dd->in_sg || !dd->out_sg)
err = -EINVAL;
}
if (!err)
err = atmel_aes_crypt_dma_start(dd);
if (!err)
return; /* DMA started. Not fininishing. */
}
cpu_end:
atmel_aes_finish_req(dd, err);
atmel_aes_handle_queue(dd, NULL);
}
static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
{
struct atmel_aes_dev *aes_dd = dev_id;
u32 reg;
reg = atmel_aes_read(aes_dd, AES_ISR);
if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
atmel_aes_write(aes_dd, AES_IDR, reg);
if (AES_FLAGS_BUSY & aes_dd->flags)
tasklet_schedule(&aes_dd->done_task);
else
dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
{
int i;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
crypto_unregister_alg(&aes_algs[i]);
if (dd->caps.has_cfb64)
crypto_unregister_alg(&aes_cfb64_alg);
}
static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
{
int err, i, j;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
err = crypto_register_alg(&aes_algs[i]);
if (err)
goto err_aes_algs;
}
if (dd->caps.has_cfb64) {
err = crypto_register_alg(&aes_cfb64_alg);
if (err)
goto err_aes_cfb64_alg;
}
return 0;
err_aes_cfb64_alg:
i = ARRAY_SIZE(aes_algs);
err_aes_algs:
for (j = 0; j < i; j++)
crypto_unregister_alg(&aes_algs[j]);
return err;
}
static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
{
dd->caps.has_dualbuff = 0;
dd->caps.has_cfb64 = 0;
dd->caps.max_burst_size = 1;
/* keep only major version number */
switch (dd->hw_version & 0xff0) {
case 0x200:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.max_burst_size = 4;
break;
case 0x130:
dd->caps.has_dualbuff = 1;
dd->caps.has_cfb64 = 1;
dd->caps.max_burst_size = 4;
break;
case 0x120:
break;
default:
dev_warn(dd->dev,
"Unmanaged aes version, set minimum capabilities\n");
break;
}
}
#if defined(CONFIG_OF)
static const struct of_device_id atmel_aes_dt_ids[] = {
{ .compatible = "atmel,at91sam9g46-aes" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct crypto_platform_data *pdata;
if (!np) {
dev_err(&pdev->dev, "device node not found\n");
return ERR_PTR(-EINVAL);
}
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&pdev->dev, "could not allocate memory for pdata\n");
return ERR_PTR(-ENOMEM);
}
pdata->dma_slave = devm_kzalloc(&pdev->dev,
sizeof(*(pdata->dma_slave)),
GFP_KERNEL);
if (!pdata->dma_slave) {
dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
devm_kfree(&pdev->dev, pdata);
return ERR_PTR(-ENOMEM);
}
return pdata;
}
#else
static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
{
return ERR_PTR(-EINVAL);
}
#endif
static int atmel_aes_probe(struct platform_device *pdev)
{
struct atmel_aes_dev *aes_dd;
struct crypto_platform_data *pdata;
struct device *dev = &pdev->dev;
struct resource *aes_res;
unsigned long aes_phys_size;
int err;
pdata = pdev->dev.platform_data;
if (!pdata) {
pdata = atmel_aes_of_init(pdev);
if (IS_ERR(pdata)) {
err = PTR_ERR(pdata);
goto aes_dd_err;
}
}
if (!pdata->dma_slave) {
err = -ENXIO;
goto aes_dd_err;
}
aes_dd = kzalloc(sizeof(struct atmel_aes_dev), GFP_KERNEL);
if (aes_dd == NULL) {
dev_err(dev, "unable to alloc data struct.\n");
err = -ENOMEM;
goto aes_dd_err;
}
aes_dd->dev = dev;
platform_set_drvdata(pdev, aes_dd);
INIT_LIST_HEAD(&aes_dd->list);
spin_lock_init(&aes_dd->lock);
tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
(unsigned long)aes_dd);
tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
(unsigned long)aes_dd);
crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
aes_dd->irq = -1;
/* Get the base address */
aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!aes_res) {
dev_err(dev, "no MEM resource info\n");
err = -ENODEV;
goto res_err;
}
aes_dd->phys_base = aes_res->start;
aes_phys_size = resource_size(aes_res);
/* Get the IRQ */
aes_dd->irq = platform_get_irq(pdev, 0);
if (aes_dd->irq < 0) {
dev_err(dev, "no IRQ resource info\n");
err = aes_dd->irq;
goto aes_irq_err;
}
err = request_irq(aes_dd->irq, atmel_aes_irq, IRQF_SHARED, "atmel-aes",
aes_dd);
if (err) {
dev_err(dev, "unable to request aes irq.\n");
goto aes_irq_err;
}
/* Initializing the clock */
aes_dd->iclk = clk_get(&pdev->dev, "aes_clk");
if (IS_ERR(aes_dd->iclk)) {
dev_err(dev, "clock initialization failed.\n");
err = PTR_ERR(aes_dd->iclk);
goto clk_err;
}
aes_dd->io_base = ioremap(aes_dd->phys_base, aes_phys_size);
if (!aes_dd->io_base) {
dev_err(dev, "can't ioremap\n");
err = -ENOMEM;
goto aes_io_err;
}
atmel_aes_hw_version_init(aes_dd);
atmel_aes_get_cap(aes_dd);
err = atmel_aes_buff_init(aes_dd);
if (err)
goto err_aes_buff;
err = atmel_aes_dma_init(aes_dd, pdata);
if (err)
goto err_aes_dma;
spin_lock(&atmel_aes.lock);
list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
spin_unlock(&atmel_aes.lock);
err = atmel_aes_register_algs(aes_dd);
if (err)
goto err_algs;
dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
dma_chan_name(aes_dd->dma_lch_in.chan),
dma_chan_name(aes_dd->dma_lch_out.chan));
return 0;
err_algs:
spin_lock(&atmel_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&atmel_aes.lock);
atmel_aes_dma_cleanup(aes_dd);
err_aes_dma:
atmel_aes_buff_cleanup(aes_dd);
err_aes_buff:
iounmap(aes_dd->io_base);
aes_io_err:
clk_put(aes_dd->iclk);
clk_err:
free_irq(aes_dd->irq, aes_dd);
aes_irq_err:
res_err:
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
kfree(aes_dd);
aes_dd = NULL;
aes_dd_err:
dev_err(dev, "initialization failed.\n");
return err;
}
static int atmel_aes_remove(struct platform_device *pdev)
{
static struct atmel_aes_dev *aes_dd;
aes_dd = platform_get_drvdata(pdev);
if (!aes_dd)
return -ENODEV;
spin_lock(&atmel_aes.lock);
list_del(&aes_dd->list);
spin_unlock(&atmel_aes.lock);
atmel_aes_unregister_algs(aes_dd);
tasklet_kill(&aes_dd->done_task);
tasklet_kill(&aes_dd->queue_task);
atmel_aes_dma_cleanup(aes_dd);
iounmap(aes_dd->io_base);
clk_put(aes_dd->iclk);
if (aes_dd->irq > 0)
free_irq(aes_dd->irq, aes_dd);
kfree(aes_dd);
aes_dd = NULL;
return 0;
}
static struct platform_driver atmel_aes_driver = {
.probe = atmel_aes_probe,
.remove = atmel_aes_remove,
.driver = {
.name = "atmel_aes",
.of_match_table = of_match_ptr(atmel_aes_dt_ids),
},
};
module_platform_driver(atmel_aes_driver);
MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");