linux/net/ipv6/exthdrs.c

924 lines
22 KiB
C
Raw Normal View History

/*
* Extension Header handling for IPv6
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
* Andi Kleen <ak@muc.de>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/* Changes:
* yoshfuji : ensure not to overrun while parsing
* tlv options.
* Mitsuru KANDA @USAGI and: Remove ipv6_parse_exthdrs().
* YOSHIFUJI Hideaki @USAGI Register inbound extension header
* handlers as inet6_protocol{}.
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/in6.h>
#include <linux/icmpv6.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 09:04:11 +01:00
#include <linux/slab.h>
#include <linux/export.h>
#include <net/dst.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/protocol.h>
#include <net/transp_v6.h>
#include <net/rawv6.h>
#include <net/ndisc.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
#include <net/xfrm.h>
#endif
#include <asm/uaccess.h>
int ipv6_find_tlv(struct sk_buff *skb, int offset, int type)
{
const unsigned char *nh = skb_network_header(skb);
int packet_len = skb->tail - skb->network_header;
struct ipv6_opt_hdr *hdr;
int len;
if (offset + 2 > packet_len)
goto bad;
hdr = (struct ipv6_opt_hdr *)(nh + offset);
len = ((hdr->hdrlen + 1) << 3);
if (offset + len > packet_len)
goto bad;
offset += 2;
len -= 2;
while (len > 0) {
int opttype = nh[offset];
int optlen;
if (opttype == type)
return offset;
switch (opttype) {
case IPV6_TLV_PAD1:
optlen = 1;
break;
default:
optlen = nh[offset + 1] + 2;
if (optlen > len)
goto bad;
break;
}
offset += optlen;
len -= optlen;
}
/* not_found */
bad:
return -1;
}
EXPORT_SYMBOL_GPL(ipv6_find_tlv);
/*
* Parsing tlv encoded headers.
*
* Parsing function "func" returns true, if parsing succeed
* and false, if it failed.
* It MUST NOT touch skb->h.
*/
struct tlvtype_proc {
int type;
bool (*func)(struct sk_buff *skb, int offset);
};
/*********************
Generic functions
*********************/
/* An unknown option is detected, decide what to do */
static bool ip6_tlvopt_unknown(struct sk_buff *skb, int optoff)
{
switch ((skb_network_header(skb)[optoff] & 0xC0) >> 6) {
case 0: /* ignore */
return true;
case 1: /* drop packet */
break;
case 3: /* Send ICMP if not a multicast address and drop packet */
/* Actually, it is redundant check. icmp_send
will recheck in any case.
*/
if (ipv6_addr_is_multicast(&ipv6_hdr(skb)->daddr))
break;
case 2: /* send ICMP PARM PROB regardless and drop packet */
icmpv6_param_prob(skb, ICMPV6_UNK_OPTION, optoff);
return false;
}
kfree_skb(skb);
return false;
}
/* Parse tlv encoded option header (hop-by-hop or destination) */
static bool ip6_parse_tlv(const struct tlvtype_proc *procs, struct sk_buff *skb)
{
const struct tlvtype_proc *curr;
const unsigned char *nh = skb_network_header(skb);
int off = skb_network_header_len(skb);
int len = (skb_transport_header(skb)[1] + 1) << 3;
int padlen = 0;
if (skb_transport_offset(skb) + len > skb_headlen(skb))
goto bad;
off += 2;
len -= 2;
while (len > 0) {
int optlen = nh[off + 1] + 2;
int i;
switch (nh[off]) {
case IPV6_TLV_PAD1:
optlen = 1;
padlen++;
if (padlen > 7)
goto bad;
break;
case IPV6_TLV_PADN:
/* RFC 2460 states that the purpose of PadN is
* to align the containing header to multiples
* of 8. 7 is therefore the highest valid value.
* See also RFC 4942, Section 2.1.9.5.
*/
padlen += optlen;
if (padlen > 7)
goto bad;
/* RFC 4942 recommends receiving hosts to
* actively check PadN payload to contain
* only zeroes.
*/
for (i = 2; i < optlen; i++) {
if (nh[off + i] != 0)
goto bad;
}
break;
default: /* Other TLV code so scan list */
if (optlen > len)
goto bad;
for (curr=procs; curr->type >= 0; curr++) {
if (curr->type == nh[off]) {
/* type specific length/alignment
checks will be performed in the
func(). */
if (curr->func(skb, off) == false)
return false;
break;
}
}
if (curr->type < 0) {
if (ip6_tlvopt_unknown(skb, off) == 0)
return false;
}
padlen = 0;
break;
}
off += optlen;
len -= optlen;
}
/* This case will not be caught by above check since its padding
* length is smaller than 7:
* 1 byte NH + 1 byte Length + 6 bytes Padding
*/
if ((padlen == 6) && ((off - skb_network_header_len(skb)) == 8))
goto bad;
if (len == 0)
return true;
bad:
kfree_skb(skb);
return false;
}
/*****************************
Destination options header.
*****************************/
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
static bool ipv6_dest_hao(struct sk_buff *skb, int optoff)
{
struct ipv6_destopt_hao *hao;
struct inet6_skb_parm *opt = IP6CB(skb);
struct ipv6hdr *ipv6h = ipv6_hdr(skb);
struct in6_addr tmp_addr;
int ret;
if (opt->dsthao) {
LIMIT_NETDEBUG(KERN_DEBUG "hao duplicated\n");
goto discard;
}
opt->dsthao = opt->dst1;
opt->dst1 = 0;
hao = (struct ipv6_destopt_hao *)(skb_network_header(skb) + optoff);
if (hao->length != 16) {
LIMIT_NETDEBUG(
KERN_DEBUG "hao invalid option length = %d\n", hao->length);
goto discard;
}
if (!(ipv6_addr_type(&hao->addr) & IPV6_ADDR_UNICAST)) {
LIMIT_NETDEBUG(
KERN_DEBUG "hao is not an unicast addr: %pI6\n", &hao->addr);
goto discard;
}
ret = xfrm6_input_addr(skb, (xfrm_address_t *)&ipv6h->daddr,
(xfrm_address_t *)&hao->addr, IPPROTO_DSTOPTS);
if (unlikely(ret < 0))
goto discard;
if (skb_cloned(skb)) {
if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
goto discard;
/* update all variable using below by copied skbuff */
hao = (struct ipv6_destopt_hao *)(skb_network_header(skb) +
optoff);
ipv6h = ipv6_hdr(skb);
}
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->ip_summed = CHECKSUM_NONE;
tmp_addr = ipv6h->saddr;
ipv6h->saddr = hao->addr;
hao->addr = tmp_addr;
if (skb->tstamp.tv64 == 0)
__net_timestamp(skb);
return true;
discard:
kfree_skb(skb);
return false;
}
#endif
static const struct tlvtype_proc tlvprocdestopt_lst[] = {
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
{
.type = IPV6_TLV_HAO,
.func = ipv6_dest_hao,
},
#endif
{-1, NULL}
};
static int ipv6_destopt_rcv(struct sk_buff *skb)
{
struct inet6_skb_parm *opt = IP6CB(skb);
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
__u16 dstbuf;
#endif
struct dst_entry *dst = skb_dst(skb);
if (!pskb_may_pull(skb, skb_transport_offset(skb) + 8) ||
!pskb_may_pull(skb, (skb_transport_offset(skb) +
((skb_transport_header(skb)[1] + 1) << 3)))) {
IP6_INC_STATS_BH(dev_net(dst->dev), ip6_dst_idev(dst),
IPSTATS_MIB_INHDRERRORS);
kfree_skb(skb);
return -1;
}
opt->lastopt = opt->dst1 = skb_network_header_len(skb);
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
dstbuf = opt->dst1;
#endif
if (ip6_parse_tlv(tlvprocdestopt_lst, skb)) {
skb->transport_header += (skb_transport_header(skb)[1] + 1) << 3;
opt = IP6CB(skb);
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
opt->nhoff = dstbuf;
#else
opt->nhoff = opt->dst1;
#endif
return 1;
}
IP6_INC_STATS_BH(dev_net(dst->dev),
ip6_dst_idev(dst), IPSTATS_MIB_INHDRERRORS);
return -1;
}
/********************************
Routing header.
********************************/
/* called with rcu_read_lock() */
static int ipv6_rthdr_rcv(struct sk_buff *skb)
{
struct inet6_skb_parm *opt = IP6CB(skb);
struct in6_addr *addr = NULL;
struct in6_addr daddr;
struct inet6_dev *idev;
int n, i;
struct ipv6_rt_hdr *hdr;
struct rt0_hdr *rthdr;
struct net *net = dev_net(skb->dev);
int accept_source_route = net->ipv6.devconf_all->accept_source_route;
idev = __in6_dev_get(skb->dev);
if (idev && accept_source_route > idev->cnf.accept_source_route)
accept_source_route = idev->cnf.accept_source_route;
if (!pskb_may_pull(skb, skb_transport_offset(skb) + 8) ||
!pskb_may_pull(skb, (skb_transport_offset(skb) +
((skb_transport_header(skb)[1] + 1) << 3)))) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INHDRERRORS);
kfree_skb(skb);
return -1;
}
hdr = (struct ipv6_rt_hdr *)skb_transport_header(skb);
if (ipv6_addr_is_multicast(&ipv6_hdr(skb)->daddr) ||
skb->pkt_type != PACKET_HOST) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INADDRERRORS);
kfree_skb(skb);
return -1;
}
looped_back:
if (hdr->segments_left == 0) {
switch (hdr->type) {
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
case IPV6_SRCRT_TYPE_2:
/* Silently discard type 2 header unless it was
* processed by own
*/
if (!addr) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INADDRERRORS);
kfree_skb(skb);
return -1;
}
break;
#endif
default:
break;
}
opt->lastopt = opt->srcrt = skb_network_header_len(skb);
skb->transport_header += (hdr->hdrlen + 1) << 3;
opt->dst0 = opt->dst1;
opt->dst1 = 0;
opt->nhoff = (&hdr->nexthdr) - skb_network_header(skb);
return 1;
}
switch (hdr->type) {
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
case IPV6_SRCRT_TYPE_2:
if (accept_source_route < 0)
goto unknown_rh;
/* Silently discard invalid RTH type 2 */
if (hdr->hdrlen != 2 || hdr->segments_left != 1) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INHDRERRORS);
kfree_skb(skb);
return -1;
}
break;
#endif
default:
goto unknown_rh;
}
/*
* This is the routing header forwarding algorithm from
* RFC 2460, page 16.
*/
n = hdr->hdrlen >> 1;
if (hdr->segments_left > n) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
((&hdr->segments_left) -
skb_network_header(skb)));
return -1;
}
/* We are about to mangle packet header. Be careful!
Do not damage packets queued somewhere.
*/
if (skb_cloned(skb)) {
/* the copy is a forwarded packet */
if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_OUTDISCARDS);
kfree_skb(skb);
return -1;
}
hdr = (struct ipv6_rt_hdr *)skb_transport_header(skb);
}
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->ip_summed = CHECKSUM_NONE;
i = n - --hdr->segments_left;
rthdr = (struct rt0_hdr *) hdr;
addr = rthdr->addr;
addr += i - 1;
switch (hdr->type) {
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
case IPV6_SRCRT_TYPE_2:
if (xfrm6_input_addr(skb, (xfrm_address_t *)addr,
(xfrm_address_t *)&ipv6_hdr(skb)->saddr,
IPPROTO_ROUTING) < 0) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INADDRERRORS);
kfree_skb(skb);
return -1;
}
if (!ipv6_chk_home_addr(dev_net(skb_dst(skb)->dev), addr)) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INADDRERRORS);
kfree_skb(skb);
return -1;
}
break;
#endif
default:
break;
}
if (ipv6_addr_is_multicast(addr)) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INADDRERRORS);
kfree_skb(skb);
return -1;
}
daddr = *addr;
*addr = ipv6_hdr(skb)->daddr;
ipv6_hdr(skb)->daddr = daddr;
skb_dst_drop(skb);
ip6_route_input(skb);
if (skb_dst(skb)->error) {
skb_push(skb, skb->data - skb_network_header(skb));
dst_input(skb);
return -1;
}
if (skb_dst(skb)->dev->flags&IFF_LOOPBACK) {
if (ipv6_hdr(skb)->hop_limit <= 1) {
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_INHDRERRORS);
icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT,
0);
kfree_skb(skb);
return -1;
}
ipv6_hdr(skb)->hop_limit--;
goto looped_back;
}
skb_push(skb, skb->data - skb_network_header(skb));
dst_input(skb);
return -1;
unknown_rh:
IP6_INC_STATS_BH(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
(&hdr->type) - skb_network_header(skb));
return -1;
}
static const struct inet6_protocol rthdr_protocol = {
.handler = ipv6_rthdr_rcv,
.flags = INET6_PROTO_NOPOLICY | INET6_PROTO_GSO_EXTHDR,
};
static const struct inet6_protocol destopt_protocol = {
.handler = ipv6_destopt_rcv,
.flags = INET6_PROTO_NOPOLICY | INET6_PROTO_GSO_EXTHDR,
};
static const struct inet6_protocol nodata_protocol = {
.handler = dst_discard,
.flags = INET6_PROTO_NOPOLICY,
};
int __init ipv6_exthdrs_init(void)
{
int ret;
ret = inet6_add_protocol(&rthdr_protocol, IPPROTO_ROUTING);
if (ret)
goto out;
ret = inet6_add_protocol(&destopt_protocol, IPPROTO_DSTOPTS);
if (ret)
goto out_rthdr;
ret = inet6_add_protocol(&nodata_protocol, IPPROTO_NONE);
if (ret)
goto out_destopt;
out:
return ret;
out_rthdr:
inet6_del_protocol(&rthdr_protocol, IPPROTO_ROUTING);
out_destopt:
inet6_del_protocol(&destopt_protocol, IPPROTO_DSTOPTS);
goto out;
};
void ipv6_exthdrs_exit(void)
{
inet6_del_protocol(&nodata_protocol, IPPROTO_NONE);
inet6_del_protocol(&destopt_protocol, IPPROTO_DSTOPTS);
inet6_del_protocol(&rthdr_protocol, IPPROTO_ROUTING);
}
/**********************************
Hop-by-hop options.
**********************************/
/*
* Note: we cannot rely on skb_dst(skb) before we assign it in ip6_route_input().
*/
static inline struct inet6_dev *ipv6_skb_idev(struct sk_buff *skb)
{
return skb_dst(skb) ? ip6_dst_idev(skb_dst(skb)) : __in6_dev_get(skb->dev);
}
static inline struct net *ipv6_skb_net(struct sk_buff *skb)
{
return skb_dst(skb) ? dev_net(skb_dst(skb)->dev) : dev_net(skb->dev);
}
/* Router Alert as of RFC 2711 */
static bool ipv6_hop_ra(struct sk_buff *skb, int optoff)
{
const unsigned char *nh = skb_network_header(skb);
if (nh[optoff + 1] == 2) {
IP6CB(skb)->ra = optoff;
return true;
}
LIMIT_NETDEBUG(KERN_DEBUG "ipv6_hop_ra: wrong RA length %d\n",
nh[optoff + 1]);
kfree_skb(skb);
return false;
}
/* Jumbo payload */
static bool ipv6_hop_jumbo(struct sk_buff *skb, int optoff)
{
const unsigned char *nh = skb_network_header(skb);
struct net *net = ipv6_skb_net(skb);
u32 pkt_len;
if (nh[optoff + 1] != 4 || (optoff & 3) != 2) {
LIMIT_NETDEBUG(KERN_DEBUG "ipv6_hop_jumbo: wrong jumbo opt length/alignment %d\n",
nh[optoff+1]);
IP6_INC_STATS_BH(net, ipv6_skb_idev(skb),
IPSTATS_MIB_INHDRERRORS);
goto drop;
}
pkt_len = ntohl(*(__be32 *)(nh + optoff + 2));
if (pkt_len <= IPV6_MAXPLEN) {
IP6_INC_STATS_BH(net, ipv6_skb_idev(skb),
IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, optoff+2);
return false;
}
if (ipv6_hdr(skb)->payload_len) {
IP6_INC_STATS_BH(net, ipv6_skb_idev(skb),
IPSTATS_MIB_INHDRERRORS);
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, optoff);
return false;
}
if (pkt_len > skb->len - sizeof(struct ipv6hdr)) {
IP6_INC_STATS_BH(net, ipv6_skb_idev(skb),
IPSTATS_MIB_INTRUNCATEDPKTS);
goto drop;
}
if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
goto drop;
return true;
drop:
kfree_skb(skb);
return false;
}
static const struct tlvtype_proc tlvprochopopt_lst[] = {
{
.type = IPV6_TLV_ROUTERALERT,
.func = ipv6_hop_ra,
},
{
.type = IPV6_TLV_JUMBO,
.func = ipv6_hop_jumbo,
},
{ -1, }
};
int ipv6_parse_hopopts(struct sk_buff *skb)
{
struct inet6_skb_parm *opt = IP6CB(skb);
/*
* skb_network_header(skb) is equal to skb->data, and
* skb_network_header_len(skb) is always equal to
* sizeof(struct ipv6hdr) by definition of
* hop-by-hop options.
*/
if (!pskb_may_pull(skb, sizeof(struct ipv6hdr) + 8) ||
!pskb_may_pull(skb, (sizeof(struct ipv6hdr) +
((skb_transport_header(skb)[1] + 1) << 3)))) {
kfree_skb(skb);
return -1;
}
opt->hop = sizeof(struct ipv6hdr);
if (ip6_parse_tlv(tlvprochopopt_lst, skb)) {
skb->transport_header += (skb_transport_header(skb)[1] + 1) << 3;
opt = IP6CB(skb);
opt->nhoff = sizeof(struct ipv6hdr);
return 1;
}
return -1;
}
/*
* Creating outbound headers.
*
* "build" functions work when skb is filled from head to tail (datagram)
* "push" functions work when headers are added from tail to head (tcp)
*
* In both cases we assume, that caller reserved enough room
* for headers.
*/
static void ipv6_push_rthdr(struct sk_buff *skb, u8 *proto,
struct ipv6_rt_hdr *opt,
struct in6_addr **addr_p)
{
struct rt0_hdr *phdr, *ihdr;
int hops;
ihdr = (struct rt0_hdr *) opt;
phdr = (struct rt0_hdr *) skb_push(skb, (ihdr->rt_hdr.hdrlen + 1) << 3);
memcpy(phdr, ihdr, sizeof(struct rt0_hdr));
hops = ihdr->rt_hdr.hdrlen >> 1;
if (hops > 1)
memcpy(phdr->addr, ihdr->addr + 1,
(hops - 1) * sizeof(struct in6_addr));
phdr->addr[hops - 1] = **addr_p;
*addr_p = ihdr->addr;
phdr->rt_hdr.nexthdr = *proto;
*proto = NEXTHDR_ROUTING;
}
static void ipv6_push_exthdr(struct sk_buff *skb, u8 *proto, u8 type, struct ipv6_opt_hdr *opt)
{
struct ipv6_opt_hdr *h = (struct ipv6_opt_hdr *)skb_push(skb, ipv6_optlen(opt));
memcpy(h, opt, ipv6_optlen(opt));
h->nexthdr = *proto;
*proto = type;
}
void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
u8 *proto,
struct in6_addr **daddr)
{
if (opt->srcrt) {
ipv6_push_rthdr(skb, proto, opt->srcrt, daddr);
/*
* IPV6_RTHDRDSTOPTS is ignored
* unless IPV6_RTHDR is set (RFC3542).
*/
if (opt->dst0opt)
ipv6_push_exthdr(skb, proto, NEXTHDR_DEST, opt->dst0opt);
}
if (opt->hopopt)
ipv6_push_exthdr(skb, proto, NEXTHDR_HOP, opt->hopopt);
}
EXPORT_SYMBOL(ipv6_push_nfrag_opts);
void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt, u8 *proto)
{
if (opt->dst1opt)
ipv6_push_exthdr(skb, proto, NEXTHDR_DEST, opt->dst1opt);
}
struct ipv6_txoptions *
ipv6_dup_options(struct sock *sk, struct ipv6_txoptions *opt)
{
struct ipv6_txoptions *opt2;
opt2 = sock_kmalloc(sk, opt->tot_len, GFP_ATOMIC);
if (opt2) {
long dif = (char *)opt2 - (char *)opt;
memcpy(opt2, opt, opt->tot_len);
if (opt2->hopopt)
*((char **)&opt2->hopopt) += dif;
if (opt2->dst0opt)
*((char **)&opt2->dst0opt) += dif;
if (opt2->dst1opt)
*((char **)&opt2->dst1opt) += dif;
if (opt2->srcrt)
*((char **)&opt2->srcrt) += dif;
}
return opt2;
}
EXPORT_SYMBOL_GPL(ipv6_dup_options);
static int ipv6_renew_option(void *ohdr,
struct ipv6_opt_hdr __user *newopt, int newoptlen,
int inherit,
struct ipv6_opt_hdr **hdr,
char **p)
{
if (inherit) {
if (ohdr) {
memcpy(*p, ohdr, ipv6_optlen((struct ipv6_opt_hdr *)ohdr));
*hdr = (struct ipv6_opt_hdr *)*p;
*p += CMSG_ALIGN(ipv6_optlen(*hdr));
}
} else {
if (newopt) {
if (copy_from_user(*p, newopt, newoptlen))
return -EFAULT;
*hdr = (struct ipv6_opt_hdr *)*p;
if (ipv6_optlen(*hdr) > newoptlen)
return -EINVAL;
*p += CMSG_ALIGN(newoptlen);
}
}
return 0;
}
struct ipv6_txoptions *
ipv6_renew_options(struct sock *sk, struct ipv6_txoptions *opt,
int newtype,
struct ipv6_opt_hdr __user *newopt, int newoptlen)
{
int tot_len = 0;
char *p;
struct ipv6_txoptions *opt2;
int err;
if (opt) {
if (newtype != IPV6_HOPOPTS && opt->hopopt)
tot_len += CMSG_ALIGN(ipv6_optlen(opt->hopopt));
if (newtype != IPV6_RTHDRDSTOPTS && opt->dst0opt)
tot_len += CMSG_ALIGN(ipv6_optlen(opt->dst0opt));
if (newtype != IPV6_RTHDR && opt->srcrt)
tot_len += CMSG_ALIGN(ipv6_optlen(opt->srcrt));
if (newtype != IPV6_DSTOPTS && opt->dst1opt)
tot_len += CMSG_ALIGN(ipv6_optlen(opt->dst1opt));
}
if (newopt && newoptlen)
tot_len += CMSG_ALIGN(newoptlen);
if (!tot_len)
return NULL;
tot_len += sizeof(*opt2);
opt2 = sock_kmalloc(sk, tot_len, GFP_ATOMIC);
if (!opt2)
return ERR_PTR(-ENOBUFS);
memset(opt2, 0, tot_len);
opt2->tot_len = tot_len;
p = (char *)(opt2 + 1);
err = ipv6_renew_option(opt ? opt->hopopt : NULL, newopt, newoptlen,
newtype != IPV6_HOPOPTS,
&opt2->hopopt, &p);
if (err)
goto out;
err = ipv6_renew_option(opt ? opt->dst0opt : NULL, newopt, newoptlen,
newtype != IPV6_RTHDRDSTOPTS,
&opt2->dst0opt, &p);
if (err)
goto out;
err = ipv6_renew_option(opt ? opt->srcrt : NULL, newopt, newoptlen,
newtype != IPV6_RTHDR,
(struct ipv6_opt_hdr **)&opt2->srcrt, &p);
if (err)
goto out;
err = ipv6_renew_option(opt ? opt->dst1opt : NULL, newopt, newoptlen,
newtype != IPV6_DSTOPTS,
&opt2->dst1opt, &p);
if (err)
goto out;
opt2->opt_nflen = (opt2->hopopt ? ipv6_optlen(opt2->hopopt) : 0) +
(opt2->dst0opt ? ipv6_optlen(opt2->dst0opt) : 0) +
(opt2->srcrt ? ipv6_optlen(opt2->srcrt) : 0);
opt2->opt_flen = (opt2->dst1opt ? ipv6_optlen(opt2->dst1opt) : 0);
return opt2;
out:
sock_kfree_s(sk, opt2, opt2->tot_len);
return ERR_PTR(err);
}
struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
struct ipv6_txoptions *opt)
{
/*
* ignore the dest before srcrt unless srcrt is being included.
* --yoshfuji
*/
if (opt && opt->dst0opt && !opt->srcrt) {
if (opt_space != opt) {
memcpy(opt_space, opt, sizeof(*opt_space));
opt = opt_space;
}
opt->opt_nflen -= ipv6_optlen(opt->dst0opt);
opt->dst0opt = NULL;
}
return opt;
}
EXPORT_SYMBOL_GPL(ipv6_fixup_options);
/**
* fl6_update_dst - update flowi destination address with info given
* by srcrt option, if any.
*
* @fl6: flowi6 for which daddr is to be updated
* @opt: struct ipv6_txoptions in which to look for srcrt opt
* @orig: copy of original daddr address if modified
*
* Returns NULL if no txoptions or no srcrt, otherwise returns orig
* and initial value of fl6->daddr set in orig
*/
struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
const struct ipv6_txoptions *opt,
struct in6_addr *orig)
{
if (!opt || !opt->srcrt)
return NULL;
*orig = fl6->daddr;
fl6->daddr = *((struct rt0_hdr *)opt->srcrt)->addr;
return orig;
}
EXPORT_SYMBOL_GPL(fl6_update_dst);