linux/arch/mips/kernel/r2300_switch.S

170 lines
3.3 KiB
ArmAsm
Raw Normal View History

/*
* r2300_switch.S: R2300 specific task switching code.
*
* Copyright (C) 1994, 1995, 1996, 1999 by Ralf Baechle
* Copyright (C) 1994, 1995, 1996 by Andreas Busse
*
* Multi-cpu abstraction and macros for easier reading:
* Copyright (C) 1996 David S. Miller (davem@davemloft.net)
*
* Further modifications to make this work:
* Copyright (c) 1998-2000 Harald Koerfgen
*/
#include <asm/asm.h>
#include <asm/cachectl.h>
#include <asm/fpregdef.h>
#include <asm/mipsregs.h>
#include <asm/asm-offsets.h>
#include <asm/regdef.h>
#include <asm/stackframe.h>
#include <asm/thread_info.h>
#include <asm/asmmacro.h>
.set mips1
.align 5
/*
* Offset to the current process status flags, the first 32 bytes of the
* stack are not used.
*/
#define ST_OFF (_THREAD_SIZE - 32 - PT_SIZE + PT_STATUS)
/*
* FPU context is saved iff the process has used it's FPU in the current
* time slice as indicated by TIF_USEDFPU. In any case, the CU1 bit for user
* space STATUS register should be 0, so that a process *always* starts its
* userland with FPU disabled after each context switch.
*
* FPU will be enabled as soon as the process accesses FPU again, through
* do_cpu() trap.
*/
/*
* task_struct *resume(task_struct *prev, task_struct *next,
* struct thread_info *next_ti, int usedfpu)
*/
LEAF(resume)
mfc0 t1, CP0_STATUS
sw t1, THREAD_STATUS(a0)
cpu_save_nonscratch a0
sw ra, THREAD_REG31(a0)
beqz a3, 1f
PTR_L t3, TASK_THREAD_INFO(a0)
/*
* clear saved user stack CU1 bit
*/
lw t0, ST_OFF(t3)
li t1, ~ST0_CU1
and t0, t0, t1
sw t0, ST_OFF(t3)
fpu_save_single a0, t0 # clobbers t0
1:
#if defined(CONFIG_CC_STACKPROTECTOR) && !defined(CONFIG_SMP)
MIPS: stack protector: Fix per-task canary switch Commit 1400eb6 (MIPS: r4k,octeon,r2300: stack protector: change canary per task) was merged in v3.11 and introduced assembly in the MIPS resume functions to update the value of the current canary in __stack_chk_guard. However it used PTR_L resulting in a load of the canary value, instead of PTR_LA to construct its address. The value is intended to be random but is then treated as an address in the subsequent LONG_S (store). This was observed to cause a fault and panic: CPU 0 Unable to handle kernel paging request at virtual address 139fea20, epc == 8000cc0c, ra == 8034f2a4 Oops[#1]: ... $24 : 139fea20 1e1f7cb6 ... Call Trace: [<8000cc0c>] resume+0xac/0x118 [<8034f2a4>] __schedule+0x5f8/0x78c [<8034f4e0>] schedule_preempt_disabled+0x20/0x2c [<80348eec>] rest_init+0x74/0x84 [<804dc990>] start_kernel+0x43c/0x454 Code: 3c18804b 8f184030 8cb901f8 <af190000> 00c0e021 8cb002f0 8cb102f4 8cb202f8 8cb302fc This can also be forced by modifying arch/mips/include/asm/stackprotector.h so that the default __stack_chk_guard value is more likely to be a bad (or unaligned) pointer. Fix it to use PTR_LA instead, to load the address of the canary value, which the LONG_S can then use to write into it. Reported-by: bobjones (via #mipslinux on IRC) Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Gregory Fong <gregory.0xf0@gmail.com> Cc: linux-mips@linux-mips.org Cc: stable@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/6026/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-10-07 13:14:26 +02:00
PTR_LA t8, __stack_chk_guard
LONG_L t9, TASK_STACK_CANARY(a1)
LONG_S t9, 0(t8)
#endif
/*
* The order of restoring the registers takes care of the race
* updating $28, $29 and kernelsp without disabling ints.
*/
move $28, a2
cpu_restore_nonscratch a1
addiu t1, $28, _THREAD_SIZE - 32
sw t1, kernelsp
mfc0 t1, CP0_STATUS /* Do we really need this? */
li a3, 0xff01
and t1, a3
lw a2, THREAD_STATUS(a1)
nor a3, $0, a3
and a2, a3
or a2, t1
mtc0 a2, CP0_STATUS
move v0, a0
jr ra
END(resume)
/*
* Save a thread's fp context.
*/
LEAF(_save_fp)
fpu_save_single a0, t1 # clobbers t1
jr ra
END(_save_fp)
/*
* Restore a thread's fp context.
*/
LEAF(_restore_fp)
fpu_restore_single a0, t1 # clobbers t1
jr ra
END(_restore_fp)
/*
* Load the FPU with signalling NANS. This bit pattern we're using has
* the property that no matter whether considered as single or as double
* precision represents signaling NANS.
*
* The value to initialize fcr31 to comes in $a0.
*/
.set push
SET_HARDFLOAT
LEAF(_init_fpu)
mfc0 t0, CP0_STATUS
li t1, ST0_CU1
or t0, t1
mtc0 t0, CP0_STATUS
ctc1 a0, fcr31
li t0, -1
mtc1 t0, $f0
mtc1 t0, $f1
mtc1 t0, $f2
mtc1 t0, $f3
mtc1 t0, $f4
mtc1 t0, $f5
mtc1 t0, $f6
mtc1 t0, $f7
mtc1 t0, $f8
mtc1 t0, $f9
mtc1 t0, $f10
mtc1 t0, $f11
mtc1 t0, $f12
mtc1 t0, $f13
mtc1 t0, $f14
mtc1 t0, $f15
mtc1 t0, $f16
mtc1 t0, $f17
mtc1 t0, $f18
mtc1 t0, $f19
mtc1 t0, $f20
mtc1 t0, $f21
mtc1 t0, $f22
mtc1 t0, $f23
mtc1 t0, $f24
mtc1 t0, $f25
mtc1 t0, $f26
mtc1 t0, $f27
mtc1 t0, $f28
mtc1 t0, $f29
mtc1 t0, $f30
mtc1 t0, $f31
jr ra
END(_init_fpu)
.set pop