linux/sound/hda/hdac_device.c

1075 lines
27 KiB
C
Raw Normal View History

/*
* HD-audio codec core device
*/
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/export.h>
#include <linux/pm_runtime.h>
#include <sound/hdaudio.h>
#include <sound/hda_regmap.h>
#include <sound/pcm.h>
#include "local.h"
static void setup_fg_nodes(struct hdac_device *codec);
static int get_codec_vendor_name(struct hdac_device *codec);
static void default_release(struct device *dev)
{
snd_hdac_device_exit(container_of(dev, struct hdac_device, dev));
}
/**
* snd_hdac_device_init - initialize the HD-audio codec base device
* @codec: device to initialize
* @bus: but to attach
* @name: device name string
* @addr: codec address
*
* Returns zero for success or a negative error code.
*
* This function increments the runtime PM counter and marks it active.
* The caller needs to turn it off appropriately later.
*
* The caller needs to set the device's release op properly by itself.
*/
int snd_hdac_device_init(struct hdac_device *codec, struct hdac_bus *bus,
const char *name, unsigned int addr)
{
struct device *dev;
hda_nid_t fg;
int err;
dev = &codec->dev;
device_initialize(dev);
dev->parent = bus->dev;
dev->bus = &snd_hda_bus_type;
dev->release = default_release;
ALSA: hda - Add widget sysfs tree This patch changes the sysfs files assigned to the codec device on the bus which were formerly identical with hwdep sysfs files. Now it shows only a few core parameter, vendor_id, subsystem_id, revision_id, afg, mfg, vendor_name and chip_name. In addition, now a widget tree is added to the bus device sysfs directory for showing the widget topology and attributes. It's just a flat tree consisting of subdirectories named as the widget NID including various attributes like widget capability bits. The AFG (usually NID 0x01) is always found there, and it contains always amp_in_caps, amp_out_caps and power_caps files. Each of these attributes show a single value. The rest are the widget nodes belonging to that AFG. Note that the child node might not start from 0x02 but from another value like 0x0a. Each child node may contain caps, pin_caps, amp_in_caps, amp_out_caps, power_caps and connections files. The caps (representing the widget capability bits) always contain a value. The rest may contain value(s) if the attribute exists on the node. Only connections file show multiple values while other attributes have zero or one single value. An example of ls -R output is like below: % ls -R /sys/bus/hdaudio/devices/hdaudioC0D0/ /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/: 01/ 04/ 07/ 0a/ 0d/ 10/ 13/ 16/ 19/ 1c/ 1f/ 22/ 02/ 05/ 08/ 0b/ 0e/ 11/ 14/ 17/ 1a/ 1d/ 20/ 23/ 03/ 06/ 09/ 0c/ 0f/ 12/ 15/ 18/ 1b/ 1e/ 21/ /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/01: amp_in_caps amp_out_caps power_caps /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/02: amp_in_caps amp_out_caps caps connections pin_caps pin_cfg power_caps /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/03: ..... Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-02-24 14:59:42 +01:00
dev->groups = hdac_dev_attr_groups;
dev_set_name(dev, "%s", name);
device_enable_async_suspend(dev);
codec->bus = bus;
codec->addr = addr;
codec->type = HDA_DEV_CORE;
pm_runtime_set_active(&codec->dev);
pm_runtime_get_noresume(&codec->dev);
atomic_set(&codec->in_pm, 0);
err = snd_hdac_bus_add_device(bus, codec);
if (err < 0)
goto error;
/* fill parameters */
codec->vendor_id = snd_hdac_read_parm(codec, AC_NODE_ROOT,
AC_PAR_VENDOR_ID);
if (codec->vendor_id == -1) {
/* read again, hopefully the access method was corrected
* in the last read...
*/
codec->vendor_id = snd_hdac_read_parm(codec, AC_NODE_ROOT,
AC_PAR_VENDOR_ID);
}
codec->subsystem_id = snd_hdac_read_parm(codec, AC_NODE_ROOT,
AC_PAR_SUBSYSTEM_ID);
codec->revision_id = snd_hdac_read_parm(codec, AC_NODE_ROOT,
AC_PAR_REV_ID);
setup_fg_nodes(codec);
if (!codec->afg && !codec->mfg) {
dev_err(dev, "no AFG or MFG node found\n");
err = -ENODEV;
goto error;
}
fg = codec->afg ? codec->afg : codec->mfg;
err = snd_hdac_refresh_widgets(codec);
if (err < 0)
goto error;
codec->power_caps = snd_hdac_read_parm(codec, fg, AC_PAR_POWER_STATE);
/* reread ssid if not set by parameter */
if (codec->subsystem_id == -1 || codec->subsystem_id == 0)
snd_hdac_read(codec, fg, AC_VERB_GET_SUBSYSTEM_ID, 0,
&codec->subsystem_id);
err = get_codec_vendor_name(codec);
if (err < 0)
goto error;
codec->chip_name = kasprintf(GFP_KERNEL, "ID %x",
codec->vendor_id & 0xffff);
if (!codec->chip_name) {
err = -ENOMEM;
goto error;
}
return 0;
error:
put_device(&codec->dev);
return err;
}
EXPORT_SYMBOL_GPL(snd_hdac_device_init);
/**
* snd_hdac_device_exit - clean up the HD-audio codec base device
* @codec: device to clean up
*/
void snd_hdac_device_exit(struct hdac_device *codec)
{
pm_runtime_put_noidle(&codec->dev);
snd_hdac_bus_remove_device(codec->bus, codec);
kfree(codec->vendor_name);
kfree(codec->chip_name);
}
EXPORT_SYMBOL_GPL(snd_hdac_device_exit);
ALSA: hda - Add widget sysfs tree This patch changes the sysfs files assigned to the codec device on the bus which were formerly identical with hwdep sysfs files. Now it shows only a few core parameter, vendor_id, subsystem_id, revision_id, afg, mfg, vendor_name and chip_name. In addition, now a widget tree is added to the bus device sysfs directory for showing the widget topology and attributes. It's just a flat tree consisting of subdirectories named as the widget NID including various attributes like widget capability bits. The AFG (usually NID 0x01) is always found there, and it contains always amp_in_caps, amp_out_caps and power_caps files. Each of these attributes show a single value. The rest are the widget nodes belonging to that AFG. Note that the child node might not start from 0x02 but from another value like 0x0a. Each child node may contain caps, pin_caps, amp_in_caps, amp_out_caps, power_caps and connections files. The caps (representing the widget capability bits) always contain a value. The rest may contain value(s) if the attribute exists on the node. Only connections file show multiple values while other attributes have zero or one single value. An example of ls -R output is like below: % ls -R /sys/bus/hdaudio/devices/hdaudioC0D0/ /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/: 01/ 04/ 07/ 0a/ 0d/ 10/ 13/ 16/ 19/ 1c/ 1f/ 22/ 02/ 05/ 08/ 0b/ 0e/ 11/ 14/ 17/ 1a/ 1d/ 20/ 23/ 03/ 06/ 09/ 0c/ 0f/ 12/ 15/ 18/ 1b/ 1e/ 21/ /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/01: amp_in_caps amp_out_caps power_caps /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/02: amp_in_caps amp_out_caps caps connections pin_caps pin_cfg power_caps /sys/bus/hdaudio/devices/hdaudioC0D0/widgets/03: ..... Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-02-24 14:59:42 +01:00
/**
* snd_hdac_device_register - register the hd-audio codec base device
* codec: the device to register
*/
int snd_hdac_device_register(struct hdac_device *codec)
{
int err;
err = device_add(&codec->dev);
if (err < 0)
return err;
err = hda_widget_sysfs_init(codec);
if (err < 0) {
device_del(&codec->dev);
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_device_register);
/**
* snd_hdac_device_unregister - unregister the hd-audio codec base device
* codec: the device to unregister
*/
void snd_hdac_device_unregister(struct hdac_device *codec)
{
if (device_is_registered(&codec->dev)) {
hda_widget_sysfs_exit(codec);
device_del(&codec->dev);
}
}
EXPORT_SYMBOL_GPL(snd_hdac_device_unregister);
/**
* snd_hdac_device_set_chip_name - set/update the codec name
* @codec: the HDAC device
* @name: name string to set
*
* Returns 0 if the name is set or updated, or a negative error code.
*/
int snd_hdac_device_set_chip_name(struct hdac_device *codec, const char *name)
{
char *newname;
if (!name)
return 0;
newname = kstrdup(name, GFP_KERNEL);
if (!newname)
return -ENOMEM;
kfree(codec->chip_name);
codec->chip_name = newname;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_device_set_chip_name);
/**
* snd_hdac_codec_modalias - give the module alias name
* @codec: HDAC device
* @buf: string buffer to store
* @size: string buffer size
*
* Returns the size of string, like snprintf(), or a negative error code.
*/
int snd_hdac_codec_modalias(struct hdac_device *codec, char *buf, size_t size)
{
return snprintf(buf, size, "hdaudio:v%08Xr%08Xa%02X\n",
codec->vendor_id, codec->revision_id, codec->type);
}
EXPORT_SYMBOL_GPL(snd_hdac_codec_modalias);
/**
* snd_hdac_make_cmd - compose a 32bit command word to be sent to the
* HD-audio controller
* @codec: the codec object
* @nid: NID to encode
* @verb: verb to encode
* @parm: parameter to encode
*
* Return an encoded command verb or -1 for error.
*/
unsigned int snd_hdac_make_cmd(struct hdac_device *codec, hda_nid_t nid,
unsigned int verb, unsigned int parm)
{
u32 val, addr;
addr = codec->addr;
if ((addr & ~0xf) || (nid & ~0x7f) ||
(verb & ~0xfff) || (parm & ~0xffff)) {
dev_err(&codec->dev, "out of range cmd %x:%x:%x:%x\n",
addr, nid, verb, parm);
return -1;
}
val = addr << 28;
val |= (u32)nid << 20;
val |= verb << 8;
val |= parm;
return val;
}
EXPORT_SYMBOL_GPL(snd_hdac_make_cmd);
/**
* snd_hdac_exec_verb - execute an encoded verb
* @codec: the codec object
* @cmd: encoded verb to execute
* @flags: optional flags, pass zero for default
* @res: the pointer to store the result, NULL if running async
*
* Returns zero if successful, or a negative error code.
*
* This calls the exec_verb op when set in hdac_codec. If not,
* call the default snd_hdac_bus_exec_verb().
*/
int snd_hdac_exec_verb(struct hdac_device *codec, unsigned int cmd,
unsigned int flags, unsigned int *res)
{
if (codec->exec_verb)
return codec->exec_verb(codec, cmd, flags, res);
return snd_hdac_bus_exec_verb(codec->bus, codec->addr, cmd, res);
}
EXPORT_SYMBOL_GPL(snd_hdac_exec_verb);
/**
* snd_hdac_read - execute a verb
* @codec: the codec object
* @nid: NID to execute a verb
* @verb: verb to execute
* @parm: parameter for a verb
* @res: the pointer to store the result, NULL if running async
*
* Returns zero if successful, or a negative error code.
*/
int snd_hdac_read(struct hdac_device *codec, hda_nid_t nid,
unsigned int verb, unsigned int parm, unsigned int *res)
{
unsigned int cmd = snd_hdac_make_cmd(codec, nid, verb, parm);
return snd_hdac_exec_verb(codec, cmd, 0, res);
}
EXPORT_SYMBOL_GPL(snd_hdac_read);
/**
* _snd_hdac_read_parm - read a parmeter
*
* This function returns zero or an error unlike snd_hdac_read_parm().
*/
int _snd_hdac_read_parm(struct hdac_device *codec, hda_nid_t nid, int parm,
unsigned int *res)
{
unsigned int cmd;
cmd = snd_hdac_regmap_encode_verb(nid, AC_VERB_PARAMETERS) | parm;
return snd_hdac_regmap_read_raw(codec, cmd, res);
}
EXPORT_SYMBOL_GPL(_snd_hdac_read_parm);
/**
* snd_hdac_read_parm_uncached - read a codec parameter without caching
* @codec: the codec object
* @nid: NID to read a parameter
* @parm: parameter to read
*
* Returns -1 for error. If you need to distinguish the error more
* strictly, use snd_hdac_read() directly.
*/
int snd_hdac_read_parm_uncached(struct hdac_device *codec, hda_nid_t nid,
int parm)
{
int val;
if (codec->regmap)
regcache_cache_bypass(codec->regmap, true);
val = snd_hdac_read_parm(codec, nid, parm);
if (codec->regmap)
regcache_cache_bypass(codec->regmap, false);
return val;
}
EXPORT_SYMBOL_GPL(snd_hdac_read_parm_uncached);
/**
* snd_hdac_override_parm - override read-only parameters
* @codec: the codec object
* @nid: NID for the parameter
* @parm: the parameter to change
* @val: the parameter value to overwrite
*/
int snd_hdac_override_parm(struct hdac_device *codec, hda_nid_t nid,
unsigned int parm, unsigned int val)
{
unsigned int verb = (AC_VERB_PARAMETERS << 8) | (nid << 20) | parm;
int err;
if (!codec->regmap)
return -EINVAL;
codec->caps_overwriting = true;
err = snd_hdac_regmap_write_raw(codec, verb, val);
codec->caps_overwriting = false;
return err;
}
EXPORT_SYMBOL_GPL(snd_hdac_override_parm);
/**
* snd_hdac_get_sub_nodes - get start NID and number of subtree nodes
* @codec: the codec object
* @nid: NID to inspect
* @start_id: the pointer to store the starting NID
*
* Returns the number of subtree nodes or zero if not found.
* This function reads parameters always without caching.
*/
int snd_hdac_get_sub_nodes(struct hdac_device *codec, hda_nid_t nid,
hda_nid_t *start_id)
{
unsigned int parm;
parm = snd_hdac_read_parm_uncached(codec, nid, AC_PAR_NODE_COUNT);
if (parm == -1) {
*start_id = 0;
return 0;
}
*start_id = (parm >> 16) & 0x7fff;
return (int)(parm & 0x7fff);
}
EXPORT_SYMBOL_GPL(snd_hdac_get_sub_nodes);
/*
* look for an AFG and MFG nodes
*/
static void setup_fg_nodes(struct hdac_device *codec)
{
int i, total_nodes, function_id;
hda_nid_t nid;
total_nodes = snd_hdac_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
for (i = 0; i < total_nodes; i++, nid++) {
function_id = snd_hdac_read_parm(codec, nid,
AC_PAR_FUNCTION_TYPE);
switch (function_id & 0xff) {
case AC_GRP_AUDIO_FUNCTION:
codec->afg = nid;
codec->afg_function_id = function_id & 0xff;
codec->afg_unsol = (function_id >> 8) & 1;
break;
case AC_GRP_MODEM_FUNCTION:
codec->mfg = nid;
codec->mfg_function_id = function_id & 0xff;
codec->mfg_unsol = (function_id >> 8) & 1;
break;
default:
break;
}
}
}
/**
* snd_hdac_refresh_widgets - Reset the widget start/end nodes
* @codec: the codec object
*/
int snd_hdac_refresh_widgets(struct hdac_device *codec)
{
hda_nid_t start_nid;
int nums;
nums = snd_hdac_get_sub_nodes(codec, codec->afg, &start_nid);
if (!start_nid || nums <= 0 || nums >= 0xff) {
dev_err(&codec->dev, "cannot read sub nodes for FG 0x%02x\n",
codec->afg);
return -EINVAL;
}
codec->num_nodes = nums;
codec->start_nid = start_nid;
codec->end_nid = start_nid + nums;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_refresh_widgets);
/**
* snd_hdac_refresh_widget_sysfs - Reset the codec widgets and reinit the
* codec sysfs
* @codec: the codec object
*
* first we need to remove sysfs, then refresh widgets and lastly
* recreate it
*/
int snd_hdac_refresh_widget_sysfs(struct hdac_device *codec)
{
int ret;
if (device_is_registered(&codec->dev))
hda_widget_sysfs_exit(codec);
ret = snd_hdac_refresh_widgets(codec);
if (ret) {
dev_err(&codec->dev, "failed to refresh widget: %d\n", ret);
return ret;
}
if (device_is_registered(&codec->dev)) {
ret = hda_widget_sysfs_init(codec);
if (ret) {
dev_err(&codec->dev, "failed to init sysfs: %d\n", ret);
return ret;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_hdac_refresh_widget_sysfs);
/* return CONNLIST_LEN parameter of the given widget */
static unsigned int get_num_conns(struct hdac_device *codec, hda_nid_t nid)
{
unsigned int wcaps = get_wcaps(codec, nid);
unsigned int parm;
if (!(wcaps & AC_WCAP_CONN_LIST) &&
get_wcaps_type(wcaps) != AC_WID_VOL_KNB)
return 0;
parm = snd_hdac_read_parm(codec, nid, AC_PAR_CONNLIST_LEN);
if (parm == -1)
parm = 0;
return parm;
}
/**
* snd_hdac_get_connections - get a widget connection list
* @codec: the codec object
* @nid: NID
* @conn_list: the array to store the results, can be NULL
* @max_conns: the max size of the given array
*
* Returns the number of connected widgets, zero for no connection, or a
* negative error code. When the number of elements don't fit with the
* given array size, it returns -ENOSPC.
*
* When @conn_list is NULL, it just checks the number of connections.
*/
int snd_hdac_get_connections(struct hdac_device *codec, hda_nid_t nid,
hda_nid_t *conn_list, int max_conns)
{
unsigned int parm;
int i, conn_len, conns, err;
unsigned int shift, num_elems, mask;
hda_nid_t prev_nid;
int null_count = 0;
parm = get_num_conns(codec, nid);
if (!parm)
return 0;
if (parm & AC_CLIST_LONG) {
/* long form */
shift = 16;
num_elems = 2;
} else {
/* short form */
shift = 8;
num_elems = 4;
}
conn_len = parm & AC_CLIST_LENGTH;
mask = (1 << (shift-1)) - 1;
if (!conn_len)
return 0; /* no connection */
if (conn_len == 1) {
/* single connection */
err = snd_hdac_read(codec, nid, AC_VERB_GET_CONNECT_LIST, 0,
&parm);
if (err < 0)
return err;
if (conn_list)
conn_list[0] = parm & mask;
return 1;
}
/* multi connection */
conns = 0;
prev_nid = 0;
for (i = 0; i < conn_len; i++) {
int range_val;
hda_nid_t val, n;
if (i % num_elems == 0) {
err = snd_hdac_read(codec, nid,
AC_VERB_GET_CONNECT_LIST, i,
&parm);
if (err < 0)
return -EIO;
}
range_val = !!(parm & (1 << (shift-1))); /* ranges */
val = parm & mask;
if (val == 0 && null_count++) { /* no second chance */
dev_dbg(&codec->dev,
"invalid CONNECT_LIST verb %x[%i]:%x\n",
nid, i, parm);
return 0;
}
parm >>= shift;
if (range_val) {
/* ranges between the previous and this one */
if (!prev_nid || prev_nid >= val) {
dev_warn(&codec->dev,
"invalid dep_range_val %x:%x\n",
prev_nid, val);
continue;
}
for (n = prev_nid + 1; n <= val; n++) {
if (conn_list) {
if (conns >= max_conns)
return -ENOSPC;
conn_list[conns] = n;
}
conns++;
}
} else {
if (conn_list) {
if (conns >= max_conns)
return -ENOSPC;
conn_list[conns] = val;
}
conns++;
}
prev_nid = val;
}
return conns;
}
EXPORT_SYMBOL_GPL(snd_hdac_get_connections);
#ifdef CONFIG_PM
/**
ALSA: hda - Work around races of power up/down with runtime PM Currently, snd_hdac_power_up()/down() helpers checks whether the codec is being in pm (suspend/resume), and skips the call of runtime get/put during it. This is needed as there are lots of power up/down sequences called in the paths that are also used in the PM itself. An example is found in hda_codec.c::codec_exec_verb(), where this can power up the codec while it may be called again in its power up sequence, too. The above works in most cases, but sometimes we really want to wait for the real power up. For example, the control element get/put may want explicit power up so that the value change is assured to reach to the hardware. Using the current snd_hdac_power_up(), however, results in a race, e.g. when it's called during the runtime suspend is being performed. In the worst case, as found in patch_ca0132.c, it can even lead to the deadlock because the code assumes the power up while it was skipped due to the check above. For dealing with such cases, this patch makes snd_hdac_power_up() and _down() to two variants: with and without in_pm flag check. The version with pm flag check is named as snd_hdac_power_up_pm() while the version without pm flag check is still kept as snd_hdac_power_up(). (Just because the usage of the former is fewer.) Then finally, the patch replaces each call potentially done in PM with the new _pm() variant. In theory, we can implement a unified version -- if we can distinguish the current context whether it's in the pm path. But such an implementation is cumbersome, so leave the code like this a bit messy way for now... Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=96271 Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-04-08 11:43:14 +02:00
* snd_hdac_power_up - power up the codec
* @codec: the codec object
ALSA: hda - Work around races of power up/down with runtime PM Currently, snd_hdac_power_up()/down() helpers checks whether the codec is being in pm (suspend/resume), and skips the call of runtime get/put during it. This is needed as there are lots of power up/down sequences called in the paths that are also used in the PM itself. An example is found in hda_codec.c::codec_exec_verb(), where this can power up the codec while it may be called again in its power up sequence, too. The above works in most cases, but sometimes we really want to wait for the real power up. For example, the control element get/put may want explicit power up so that the value change is assured to reach to the hardware. Using the current snd_hdac_power_up(), however, results in a race, e.g. when it's called during the runtime suspend is being performed. In the worst case, as found in patch_ca0132.c, it can even lead to the deadlock because the code assumes the power up while it was skipped due to the check above. For dealing with such cases, this patch makes snd_hdac_power_up() and _down() to two variants: with and without in_pm flag check. The version with pm flag check is named as snd_hdac_power_up_pm() while the version without pm flag check is still kept as snd_hdac_power_up(). (Just because the usage of the former is fewer.) Then finally, the patch replaces each call potentially done in PM with the new _pm() variant. In theory, we can implement a unified version -- if we can distinguish the current context whether it's in the pm path. But such an implementation is cumbersome, so leave the code like this a bit messy way for now... Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=96271 Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-04-08 11:43:14 +02:00
*
* This function calls the runtime PM helper to power up the given codec.
* Unlike snd_hdac_power_up_pm(), you should call this only for the code
* path that isn't included in PM path. Otherwise it gets stuck.
*
* Returns zero if successful, or a negative error code.
*/
int snd_hdac_power_up(struct hdac_device *codec)
{
return pm_runtime_get_sync(&codec->dev);
}
EXPORT_SYMBOL_GPL(snd_hdac_power_up);
/**
ALSA: hda - Work around races of power up/down with runtime PM Currently, snd_hdac_power_up()/down() helpers checks whether the codec is being in pm (suspend/resume), and skips the call of runtime get/put during it. This is needed as there are lots of power up/down sequences called in the paths that are also used in the PM itself. An example is found in hda_codec.c::codec_exec_verb(), where this can power up the codec while it may be called again in its power up sequence, too. The above works in most cases, but sometimes we really want to wait for the real power up. For example, the control element get/put may want explicit power up so that the value change is assured to reach to the hardware. Using the current snd_hdac_power_up(), however, results in a race, e.g. when it's called during the runtime suspend is being performed. In the worst case, as found in patch_ca0132.c, it can even lead to the deadlock because the code assumes the power up while it was skipped due to the check above. For dealing with such cases, this patch makes snd_hdac_power_up() and _down() to two variants: with and without in_pm flag check. The version with pm flag check is named as snd_hdac_power_up_pm() while the version without pm flag check is still kept as snd_hdac_power_up(). (Just because the usage of the former is fewer.) Then finally, the patch replaces each call potentially done in PM with the new _pm() variant. In theory, we can implement a unified version -- if we can distinguish the current context whether it's in the pm path. But such an implementation is cumbersome, so leave the code like this a bit messy way for now... Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=96271 Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-04-08 11:43:14 +02:00
* snd_hdac_power_down - power down the codec
* @codec: the codec object
*
* Returns zero if successful, or a negative error code.
*/
int snd_hdac_power_down(struct hdac_device *codec)
{
struct device *dev = &codec->dev;
pm_runtime_mark_last_busy(dev);
return pm_runtime_put_autosuspend(dev);
}
EXPORT_SYMBOL_GPL(snd_hdac_power_down);
/**
* snd_hdac_power_up_pm - power up the codec
* @codec: the codec object
*
* This function can be called in a recursive code path like init code
* which may be called by PM suspend/resume again. OTOH, if a power-up
* call must wake up the sleeper (e.g. in a kctl callback), use
* snd_hdac_power_up() instead.
*
* Returns zero if successful, or a negative error code.
*/
int snd_hdac_power_up_pm(struct hdac_device *codec)
{
if (!atomic_inc_not_zero(&codec->in_pm))
return snd_hdac_power_up(codec);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_power_up_pm);
/**
* snd_hdac_power_down_pm - power down the codec
* @codec: the codec object
*
* Like snd_hdac_power_up_pm(), this function is used in a recursive
* code path like init code which may be called by PM suspend/resume again.
*
* Returns zero if successful, or a negative error code.
*/
int snd_hdac_power_down_pm(struct hdac_device *codec)
{
if (atomic_dec_if_positive(&codec->in_pm) < 0)
return snd_hdac_power_down(codec);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_power_down_pm);
#endif
/**
* snd_hdac_link_power - Enable/disable the link power for a codec
* @codec: the codec object
* @bool: enable or disable the link power
*/
int snd_hdac_link_power(struct hdac_device *codec, bool enable)
{
if (!codec->link_power_control)
return 0;
if (codec->bus->ops->link_power)
return codec->bus->ops->link_power(codec->bus, enable);
else
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_hdac_link_power);
/* codec vendor labels */
struct hda_vendor_id {
unsigned int id;
const char *name;
};
static struct hda_vendor_id hda_vendor_ids[] = {
{ 0x1002, "ATI" },
{ 0x1013, "Cirrus Logic" },
{ 0x1057, "Motorola" },
{ 0x1095, "Silicon Image" },
{ 0x10de, "Nvidia" },
{ 0x10ec, "Realtek" },
{ 0x1102, "Creative" },
{ 0x1106, "VIA" },
{ 0x111d, "IDT" },
{ 0x11c1, "LSI" },
{ 0x11d4, "Analog Devices" },
{ 0x13f6, "C-Media" },
{ 0x14f1, "Conexant" },
{ 0x17e8, "Chrontel" },
{ 0x1854, "LG" },
{ 0x1aec, "Wolfson Microelectronics" },
{ 0x1af4, "QEMU" },
{ 0x434d, "C-Media" },
{ 0x8086, "Intel" },
{ 0x8384, "SigmaTel" },
{} /* terminator */
};
/* store the codec vendor name */
static int get_codec_vendor_name(struct hdac_device *codec)
{
const struct hda_vendor_id *c;
u16 vendor_id = codec->vendor_id >> 16;
for (c = hda_vendor_ids; c->id; c++) {
if (c->id == vendor_id) {
codec->vendor_name = kstrdup(c->name, GFP_KERNEL);
return codec->vendor_name ? 0 : -ENOMEM;
}
}
codec->vendor_name = kasprintf(GFP_KERNEL, "Generic %04x", vendor_id);
return codec->vendor_name ? 0 : -ENOMEM;
}
/*
* stream formats
*/
struct hda_rate_tbl {
unsigned int hz;
unsigned int alsa_bits;
unsigned int hda_fmt;
};
/* rate = base * mult / div */
#define HDA_RATE(base, mult, div) \
(AC_FMT_BASE_##base##K | (((mult) - 1) << AC_FMT_MULT_SHIFT) | \
(((div) - 1) << AC_FMT_DIV_SHIFT))
static struct hda_rate_tbl rate_bits[] = {
/* rate in Hz, ALSA rate bitmask, HDA format value */
/* autodetected value used in snd_hda_query_supported_pcm */
{ 8000, SNDRV_PCM_RATE_8000, HDA_RATE(48, 1, 6) },
{ 11025, SNDRV_PCM_RATE_11025, HDA_RATE(44, 1, 4) },
{ 16000, SNDRV_PCM_RATE_16000, HDA_RATE(48, 1, 3) },
{ 22050, SNDRV_PCM_RATE_22050, HDA_RATE(44, 1, 2) },
{ 32000, SNDRV_PCM_RATE_32000, HDA_RATE(48, 2, 3) },
{ 44100, SNDRV_PCM_RATE_44100, HDA_RATE(44, 1, 1) },
{ 48000, SNDRV_PCM_RATE_48000, HDA_RATE(48, 1, 1) },
{ 88200, SNDRV_PCM_RATE_88200, HDA_RATE(44, 2, 1) },
{ 96000, SNDRV_PCM_RATE_96000, HDA_RATE(48, 2, 1) },
{ 176400, SNDRV_PCM_RATE_176400, HDA_RATE(44, 4, 1) },
{ 192000, SNDRV_PCM_RATE_192000, HDA_RATE(48, 4, 1) },
#define AC_PAR_PCM_RATE_BITS 11
/* up to bits 10, 384kHZ isn't supported properly */
/* not autodetected value */
{ 9600, SNDRV_PCM_RATE_KNOT, HDA_RATE(48, 1, 5) },
{ 0 } /* terminator */
};
/**
* snd_hdac_calc_stream_format - calculate the format bitset
* @rate: the sample rate
* @channels: the number of channels
* @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
* @maxbps: the max. bps
* @spdif_ctls: HD-audio SPDIF status bits (0 if irrelevant)
*
* Calculate the format bitset from the given rate, channels and th PCM format.
*
* Return zero if invalid.
*/
unsigned int snd_hdac_calc_stream_format(unsigned int rate,
unsigned int channels,
unsigned int format,
unsigned int maxbps,
unsigned short spdif_ctls)
{
int i;
unsigned int val = 0;
for (i = 0; rate_bits[i].hz; i++)
if (rate_bits[i].hz == rate) {
val = rate_bits[i].hda_fmt;
break;
}
if (!rate_bits[i].hz)
return 0;
if (channels == 0 || channels > 8)
return 0;
val |= channels - 1;
switch (snd_pcm_format_width(format)) {
case 8:
val |= AC_FMT_BITS_8;
break;
case 16:
val |= AC_FMT_BITS_16;
break;
case 20:
case 24:
case 32:
if (maxbps >= 32 || format == SNDRV_PCM_FORMAT_FLOAT_LE)
val |= AC_FMT_BITS_32;
else if (maxbps >= 24)
val |= AC_FMT_BITS_24;
else
val |= AC_FMT_BITS_20;
break;
default:
return 0;
}
if (spdif_ctls & AC_DIG1_NONAUDIO)
val |= AC_FMT_TYPE_NON_PCM;
return val;
}
EXPORT_SYMBOL_GPL(snd_hdac_calc_stream_format);
static unsigned int query_pcm_param(struct hdac_device *codec, hda_nid_t nid)
{
unsigned int val = 0;
if (nid != codec->afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD))
val = snd_hdac_read_parm(codec, nid, AC_PAR_PCM);
if (!val || val == -1)
val = snd_hdac_read_parm(codec, codec->afg, AC_PAR_PCM);
if (!val || val == -1)
return 0;
return val;
}
static unsigned int query_stream_param(struct hdac_device *codec, hda_nid_t nid)
{
unsigned int streams = snd_hdac_read_parm(codec, nid, AC_PAR_STREAM);
if (!streams || streams == -1)
streams = snd_hdac_read_parm(codec, codec->afg, AC_PAR_STREAM);
if (!streams || streams == -1)
return 0;
return streams;
}
/**
* snd_hdac_query_supported_pcm - query the supported PCM rates and formats
* @codec: the codec object
* @nid: NID to query
* @ratesp: the pointer to store the detected rate bitflags
* @formatsp: the pointer to store the detected formats
* @bpsp: the pointer to store the detected format widths
*
* Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
* or @bsps argument is ignored.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int snd_hdac_query_supported_pcm(struct hdac_device *codec, hda_nid_t nid,
u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
{
unsigned int i, val, wcaps;
wcaps = get_wcaps(codec, nid);
val = query_pcm_param(codec, nid);
if (ratesp) {
u32 rates = 0;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
if (val & (1 << i))
rates |= rate_bits[i].alsa_bits;
}
if (rates == 0) {
dev_err(&codec->dev,
"rates == 0 (nid=0x%x, val=0x%x, ovrd=%i)\n",
nid, val,
(wcaps & AC_WCAP_FORMAT_OVRD) ? 1 : 0);
return -EIO;
}
*ratesp = rates;
}
if (formatsp || bpsp) {
u64 formats = 0;
unsigned int streams, bps;
streams = query_stream_param(codec, nid);
if (!streams)
return -EIO;
bps = 0;
if (streams & AC_SUPFMT_PCM) {
if (val & AC_SUPPCM_BITS_8) {
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (val & AC_SUPPCM_BITS_16) {
formats |= SNDRV_PCM_FMTBIT_S16_LE;
bps = 16;
}
if (wcaps & AC_WCAP_DIGITAL) {
if (val & AC_SUPPCM_BITS_32)
formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
AC_SUPPCM_BITS_32)) {
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_32)
bps = 32;
else if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
}
}
#if 0 /* FIXME: CS4206 doesn't work, which is the only codec supporting float */
if (streams & AC_SUPFMT_FLOAT32) {
formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
if (!bps)
bps = 32;
}
#endif
if (streams == AC_SUPFMT_AC3) {
/* should be exclusive */
/* temporary hack: we have still no proper support
* for the direct AC3 stream...
*/
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (formats == 0) {
dev_err(&codec->dev,
"formats == 0 (nid=0x%x, val=0x%x, ovrd=%i, streams=0x%x)\n",
nid, val,
(wcaps & AC_WCAP_FORMAT_OVRD) ? 1 : 0,
streams);
return -EIO;
}
if (formatsp)
*formatsp = formats;
if (bpsp)
*bpsp = bps;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hdac_query_supported_pcm);
/**
* snd_hdac_is_supported_format - Check the validity of the format
* @codec: the codec object
* @nid: NID to check
* @format: the HD-audio format value to check
*
* Check whether the given node supports the format value.
*
* Returns true if supported, false if not.
*/
bool snd_hdac_is_supported_format(struct hdac_device *codec, hda_nid_t nid,
unsigned int format)
{
int i;
unsigned int val = 0, rate, stream;
val = query_pcm_param(codec, nid);
if (!val)
return false;
rate = format & 0xff00;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
if (rate_bits[i].hda_fmt == rate) {
if (val & (1 << i))
break;
return false;
}
if (i >= AC_PAR_PCM_RATE_BITS)
return false;
stream = query_stream_param(codec, nid);
if (!stream)
return false;
if (stream & AC_SUPFMT_PCM) {
switch (format & 0xf0) {
case 0x00:
if (!(val & AC_SUPPCM_BITS_8))
return false;
break;
case 0x10:
if (!(val & AC_SUPPCM_BITS_16))
return false;
break;
case 0x20:
if (!(val & AC_SUPPCM_BITS_20))
return false;
break;
case 0x30:
if (!(val & AC_SUPPCM_BITS_24))
return false;
break;
case 0x40:
if (!(val & AC_SUPPCM_BITS_32))
return false;
break;
default:
return false;
}
} else {
/* FIXME: check for float32 and AC3? */
}
return true;
}
EXPORT_SYMBOL_GPL(snd_hdac_is_supported_format);
static unsigned int codec_read(struct hdac_device *hdac, hda_nid_t nid,
int flags, unsigned int verb, unsigned int parm)
{
unsigned int cmd = snd_hdac_make_cmd(hdac, nid, verb, parm);
unsigned int res;
if (snd_hdac_exec_verb(hdac, cmd, flags, &res))
return -1;
return res;
}
static int codec_write(struct hdac_device *hdac, hda_nid_t nid,
int flags, unsigned int verb, unsigned int parm)
{
unsigned int cmd = snd_hdac_make_cmd(hdac, nid, verb, parm);
return snd_hdac_exec_verb(hdac, cmd, flags, NULL);
}
/**
* snd_hdac_codec_read - send a command and get the response
* @hdac: the HDAC device
* @nid: NID to send the command
* @flags: optional bit flags
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command and read the corresponding response.
*
* Returns the obtained response value, or -1 for an error.
*/
int snd_hdac_codec_read(struct hdac_device *hdac, hda_nid_t nid,
int flags, unsigned int verb, unsigned int parm)
{
return codec_read(hdac, nid, flags, verb, parm);
}
EXPORT_SYMBOL_GPL(snd_hdac_codec_read);
/**
* snd_hdac_codec_write - send a single command without waiting for response
* @hdac: the HDAC device
* @nid: NID to send the command
* @flags: optional bit flags
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hdac_codec_write(struct hdac_device *hdac, hda_nid_t nid,
int flags, unsigned int verb, unsigned int parm)
{
return codec_write(hdac, nid, flags, verb, parm);
}
EXPORT_SYMBOL_GPL(snd_hdac_codec_write);
/**
* snd_hdac_check_power_state - check whether the actual power state matches
* with the target state
*
* @hdac: the HDAC device
* @nid: NID to send the command
* @target_state: target state to check for
*
* Return true if state matches, false if not
*/
bool snd_hdac_check_power_state(struct hdac_device *hdac,
hda_nid_t nid, unsigned int target_state)
{
unsigned int state = codec_read(hdac, nid, 0,
AC_VERB_GET_POWER_STATE, 0);
if (state & AC_PWRST_ERROR)
return true;
state = (state >> 4) & 0x0f;
return (state == target_state);
}
EXPORT_SYMBOL_GPL(snd_hdac_check_power_state);