linux/drivers/media/i2c/bt866.c

244 lines
6.1 KiB
C
Raw Normal View History

/*
bt866 - BT866 Digital Video Encoder (Rockwell Part)
Copyright (C) 1999 Mike Bernson <mike@mlb.org>
Copyright (C) 1998 Dave Perks <dperks@ibm.net>
Modifications for LML33/DC10plus unified driver
Copyright (C) 2000 Serguei Miridonov <mirsev@cicese.mx>
This code was modify/ported from the saa7111 driver written
by Dave Perks.
This code was adapted for the bt866 by Christer Weinigel and ported
to 2.6 by Martin Samuelsson.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 09:04:11 +01:00
#include <linux/slab.h>
#include <linux/ioctl.h>
#include <asm/uaccess.h>
#include <linux/i2c.h>
#include <linux/videodev2.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
MODULE_DESCRIPTION("Brooktree-866 video encoder driver");
MODULE_AUTHOR("Mike Bernson & Dave Perks");
MODULE_LICENSE("GPL");
static int debug;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
/* ----------------------------------------------------------------------- */
struct bt866 {
struct v4l2_subdev sd;
u8 reg[256];
};
static inline struct bt866 *to_bt866(struct v4l2_subdev *sd)
{
return container_of(sd, struct bt866, sd);
}
static int bt866_write(struct bt866 *encoder, u8 subaddr, u8 data)
{
struct i2c_client *client = v4l2_get_subdevdata(&encoder->sd);
u8 buffer[2];
int err;
buffer[0] = subaddr;
buffer[1] = data;
encoder->reg[subaddr] = data;
v4l_dbg(1, debug, client, "write 0x%02x = 0x%02x\n", subaddr, data);
for (err = 0; err < 3;) {
if (i2c_master_send(client, buffer, 2) == 2)
break;
err++;
v4l_warn(client, "error #%d writing to 0x%02x\n",
err, subaddr);
schedule_timeout_interruptible(msecs_to_jiffies(100));
}
if (err == 3) {
v4l_warn(client, "giving up\n");
return -1;
}
return 0;
}
static int bt866_s_std_output(struct v4l2_subdev *sd, v4l2_std_id std)
{
v4l2_dbg(1, debug, sd, "set norm %llx\n", (unsigned long long)std);
/* Only PAL supported by this driver at the moment! */
if (!(std & V4L2_STD_NTSC))
return -EINVAL;
return 0;
}
static int bt866_s_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
static const __u8 init[] = {
0xc8, 0xcc, /* CRSCALE */
0xca, 0x91, /* CBSCALE */
0xcc, 0x24, /* YC16 | OSDNUM */
0xda, 0x00, /* */
0xdc, 0x24, /* SETMODE | PAL */
0xde, 0x02, /* EACTIVE */
/* overlay colors */
0x70, 0xEB, 0x90, 0x80, 0xB0, 0x80, /* white */
0x72, 0xA2, 0x92, 0x8E, 0xB2, 0x2C, /* yellow */
0x74, 0x83, 0x94, 0x2C, 0xB4, 0x9C, /* cyan */
0x76, 0x70, 0x96, 0x3A, 0xB6, 0x48, /* green */
0x78, 0x54, 0x98, 0xC6, 0xB8, 0xB8, /* magenta */
0x7A, 0x41, 0x9A, 0xD4, 0xBA, 0x64, /* red */
0x7C, 0x23, 0x9C, 0x72, 0xBC, 0xD4, /* blue */
0x7E, 0x10, 0x9E, 0x80, 0xBE, 0x80, /* black */
0x60, 0xEB, 0x80, 0x80, 0xc0, 0x80, /* white */
0x62, 0xA2, 0x82, 0x8E, 0xc2, 0x2C, /* yellow */
0x64, 0x83, 0x84, 0x2C, 0xc4, 0x9C, /* cyan */
0x66, 0x70, 0x86, 0x3A, 0xc6, 0x48, /* green */
0x68, 0x54, 0x88, 0xC6, 0xc8, 0xB8, /* magenta */
0x6A, 0x41, 0x8A, 0xD4, 0xcA, 0x64, /* red */
0x6C, 0x23, 0x8C, 0x72, 0xcC, 0xD4, /* blue */
0x6E, 0x10, 0x8E, 0x80, 0xcE, 0x80, /* black */
};
struct bt866 *encoder = to_bt866(sd);
u8 val;
int i;
for (i = 0; i < ARRAY_SIZE(init) / 2; i += 2)
bt866_write(encoder, init[i], init[i+1]);
val = encoder->reg[0xdc];
if (input == 0)
val |= 0x40; /* CBSWAP */
else
val &= ~0x40; /* !CBSWAP */
bt866_write(encoder, 0xdc, val);
val = encoder->reg[0xcc];
if (input == 2)
val |= 0x01; /* OSDBAR */
else
val &= ~0x01; /* !OSDBAR */
bt866_write(encoder, 0xcc, val);
v4l2_dbg(1, debug, sd, "set input %d\n", input);
switch (input) {
case 0:
case 1:
case 2:
break;
default:
return -EINVAL;
}
return 0;
}
#if 0
/* Code to setup square pixels, might be of some use in the future,
but is currently unused. */
val = encoder->reg[0xdc];
if (*iarg)
val |= 1; /* SQUARE */
else
val &= ~1; /* !SQUARE */
bt866_write(client, 0xdc, val);
#endif
static int bt866_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_BT866, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops bt866_core_ops = {
.g_chip_ident = bt866_g_chip_ident,
};
static const struct v4l2_subdev_video_ops bt866_video_ops = {
.s_std_output = bt866_s_std_output,
.s_routing = bt866_s_routing,
};
static const struct v4l2_subdev_ops bt866_ops = {
.core = &bt866_core_ops,
.video = &bt866_video_ops,
};
static int bt866_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct bt866 *encoder;
struct v4l2_subdev *sd;
v4l_info(client, "chip found @ 0x%x (%s)\n",
client->addr << 1, client->adapter->name);
encoder = kzalloc(sizeof(*encoder), GFP_KERNEL);
if (encoder == NULL)
return -ENOMEM;
sd = &encoder->sd;
v4l2_i2c_subdev_init(sd, client, &bt866_ops);
return 0;
}
static int bt866_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_device_unregister_subdev(sd);
kfree(to_bt866(sd));
return 0;
}
static const struct i2c_device_id bt866_id[] = {
{ "bt866", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, bt866_id);
static struct i2c_driver bt866_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "bt866",
},
.probe = bt866_probe,
.remove = bt866_remove,
.id_table = bt866_id,
};
module_i2c_driver(bt866_driver);