linux/fs/xfs/xfs_buf_item.h

131 lines
4.1 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __XFS_BUF_ITEM_H__
#define __XFS_BUF_ITEM_H__
extern kmem_zone_t *xfs_buf_item_zone;
/*
* This is the structure used to lay out a buf log item in the
* log. The data map describes which 128 byte chunks of the buffer
* have been logged.
* For 6.2 and beyond, this is XFS_LI_BUF. We use this to log everything.
*/
typedef struct xfs_buf_log_format {
unsigned short blf_type; /* buf log item type indicator */
unsigned short blf_size; /* size of this item */
ushort blf_flags; /* misc state */
ushort blf_len; /* number of blocks in this buf */
__int64_t blf_blkno; /* starting blkno of this buf */
unsigned int blf_map_size; /* size of data bitmap in words */
unsigned int blf_data_map[1];/* variable size bitmap of */
/* regions of buffer in this item */
} xfs_buf_log_format_t;
/*
* This flag indicates that the buffer contains on disk inodes
* and requires special recovery handling.
*/
#define XFS_BLF_INODE_BUF 0x1
/*
* This flag indicates that the buffer should not be replayed
* during recovery because its blocks are being freed.
*/
#define XFS_BLF_CANCEL 0x2
/*
* This flag indicates that the buffer contains on disk
* user or group dquots and may require special recovery handling.
*/
#define XFS_BLF_UDQUOT_BUF 0x4
#define XFS_BLF_PDQUOT_BUF 0x8
#define XFS_BLF_GDQUOT_BUF 0x10
#define XFS_BLF_CHUNK 128
#define XFS_BLF_SHIFT 7
#define BIT_TO_WORD_SHIFT 5
#define NBWORD (NBBY * sizeof(unsigned int))
/*
* buf log item flags
*/
#define XFS_BLI_HOLD 0x01
#define XFS_BLI_DIRTY 0x02
#define XFS_BLI_STALE 0x04
#define XFS_BLI_LOGGED 0x08
#define XFS_BLI_INODE_ALLOC_BUF 0x10
#define XFS_BLI_STALE_INODE 0x20
xfs: Ensure inode allocation buffers are fully replayed With delayed logging, we can get inode allocation buffers in the same transaction inode unlink buffers. We don't currently mark inode allocation buffers in the log, so inode unlink buffers take precedence over allocation buffers. The result is that when they are combined into the same checkpoint, only the unlinked inode chain fields are replayed, resulting in uninitialised inode buffers being detected when the next inode modification is replayed. To fix this, we need to ensure that we do not set the inode buffer flag in the buffer log item format flags if the inode allocation has not already hit the log. To avoid requiring a change to log recovery, we really need to make this a modification that relies only on in-memory sate. We can do this by checking during buffer log formatting (while the CIL cannot be flushed) if we are still in the same sequence when we commit the unlink transaction as the inode allocation transaction. If we are, then we do not add the inode buffer flag to the buffer log format item flags. This means the entire buffer will be replayed, not just the unlinked fields. We do this while CIL flusheѕ are locked out to ensure that we don't race with the sequence numbers changing and hence fail to put the inode buffer flag in the buffer format flags when we really need to. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-20 15:19:42 +02:00
#define XFS_BLI_INODE_BUF 0x40
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 00:14:59 +01:00
#define XFS_BLI_FLAGS \
{ XFS_BLI_HOLD, "HOLD" }, \
{ XFS_BLI_DIRTY, "DIRTY" }, \
{ XFS_BLI_STALE, "STALE" }, \
{ XFS_BLI_LOGGED, "LOGGED" }, \
{ XFS_BLI_INODE_ALLOC_BUF, "INODE_ALLOC" }, \
xfs: Ensure inode allocation buffers are fully replayed With delayed logging, we can get inode allocation buffers in the same transaction inode unlink buffers. We don't currently mark inode allocation buffers in the log, so inode unlink buffers take precedence over allocation buffers. The result is that when they are combined into the same checkpoint, only the unlinked inode chain fields are replayed, resulting in uninitialised inode buffers being detected when the next inode modification is replayed. To fix this, we need to ensure that we do not set the inode buffer flag in the buffer log item format flags if the inode allocation has not already hit the log. To avoid requiring a change to log recovery, we really need to make this a modification that relies only on in-memory sate. We can do this by checking during buffer log formatting (while the CIL cannot be flushed) if we are still in the same sequence when we commit the unlink transaction as the inode allocation transaction. If we are, then we do not add the inode buffer flag to the buffer log format item flags. This means the entire buffer will be replayed, not just the unlinked fields. We do this while CIL flusheѕ are locked out to ensure that we don't race with the sequence numbers changing and hence fail to put the inode buffer flag in the buffer format flags when we really need to. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-20 15:19:42 +02:00
{ XFS_BLI_STALE_INODE, "STALE_INODE" }, \
{ XFS_BLI_INODE_BUF, "INODE_BUF" }
xfs: event tracing support Convert the old xfs tracing support that could only be used with the out of tree kdb and xfsidbg patches to use the generic event tracer. To use it make sure CONFIG_EVENT_TRACING is enabled and then enable all xfs trace channels by: echo 1 > /sys/kernel/debug/tracing/events/xfs/enable or alternatively enable single events by just doing the same in one event subdirectory, e.g. echo 1 > /sys/kernel/debug/tracing/events/xfs/xfs_ihold/enable or set more complex filters, etc. In Documentation/trace/events.txt all this is desctribed in more detail. To reads the events do a cat /sys/kernel/debug/tracing/trace Compared to the last posting this patch converts the tracing mostly to the one tracepoint per callsite model that other users of the new tracing facility also employ. This allows a very fine-grained control of the tracing, a cleaner output of the traces and also enables the perf tool to use each tracepoint as a virtual performance counter, allowing us to e.g. count how often certain workloads git various spots in XFS. Take a look at http://lwn.net/Articles/346470/ for some examples. Also the btree tracing isn't included at all yet, as it will require additional core tracing features not in mainline yet, I plan to deliver it later. And the really nice thing about this patch is that it actually removes many lines of code while adding this nice functionality: fs/xfs/Makefile | 8 fs/xfs/linux-2.6/xfs_acl.c | 1 fs/xfs/linux-2.6/xfs_aops.c | 52 - fs/xfs/linux-2.6/xfs_aops.h | 2 fs/xfs/linux-2.6/xfs_buf.c | 117 +-- fs/xfs/linux-2.6/xfs_buf.h | 33 fs/xfs/linux-2.6/xfs_fs_subr.c | 3 fs/xfs/linux-2.6/xfs_ioctl.c | 1 fs/xfs/linux-2.6/xfs_ioctl32.c | 1 fs/xfs/linux-2.6/xfs_iops.c | 1 fs/xfs/linux-2.6/xfs_linux.h | 1 fs/xfs/linux-2.6/xfs_lrw.c | 87 -- fs/xfs/linux-2.6/xfs_lrw.h | 45 - fs/xfs/linux-2.6/xfs_super.c | 104 --- fs/xfs/linux-2.6/xfs_super.h | 7 fs/xfs/linux-2.6/xfs_sync.c | 1 fs/xfs/linux-2.6/xfs_trace.c | 75 ++ fs/xfs/linux-2.6/xfs_trace.h | 1369 +++++++++++++++++++++++++++++++++++++++++ fs/xfs/linux-2.6/xfs_vnode.h | 4 fs/xfs/quota/xfs_dquot.c | 110 --- fs/xfs/quota/xfs_dquot.h | 21 fs/xfs/quota/xfs_qm.c | 40 - fs/xfs/quota/xfs_qm_syscalls.c | 4 fs/xfs/support/ktrace.c | 323 --------- fs/xfs/support/ktrace.h | 85 -- fs/xfs/xfs.h | 16 fs/xfs/xfs_ag.h | 14 fs/xfs/xfs_alloc.c | 230 +----- fs/xfs/xfs_alloc.h | 27 fs/xfs/xfs_alloc_btree.c | 1 fs/xfs/xfs_attr.c | 107 --- fs/xfs/xfs_attr.h | 10 fs/xfs/xfs_attr_leaf.c | 14 fs/xfs/xfs_attr_sf.h | 40 - fs/xfs/xfs_bmap.c | 507 +++------------ fs/xfs/xfs_bmap.h | 49 - fs/xfs/xfs_bmap_btree.c | 6 fs/xfs/xfs_btree.c | 5 fs/xfs/xfs_btree_trace.h | 17 fs/xfs/xfs_buf_item.c | 87 -- fs/xfs/xfs_buf_item.h | 20 fs/xfs/xfs_da_btree.c | 3 fs/xfs/xfs_da_btree.h | 7 fs/xfs/xfs_dfrag.c | 2 fs/xfs/xfs_dir2.c | 8 fs/xfs/xfs_dir2_block.c | 20 fs/xfs/xfs_dir2_leaf.c | 21 fs/xfs/xfs_dir2_node.c | 27 fs/xfs/xfs_dir2_sf.c | 26 fs/xfs/xfs_dir2_trace.c | 216 ------ fs/xfs/xfs_dir2_trace.h | 72 -- fs/xfs/xfs_filestream.c | 8 fs/xfs/xfs_fsops.c | 2 fs/xfs/xfs_iget.c | 111 --- fs/xfs/xfs_inode.c | 67 -- fs/xfs/xfs_inode.h | 76 -- fs/xfs/xfs_inode_item.c | 5 fs/xfs/xfs_iomap.c | 85 -- fs/xfs/xfs_iomap.h | 8 fs/xfs/xfs_log.c | 181 +---- fs/xfs/xfs_log_priv.h | 20 fs/xfs/xfs_log_recover.c | 1 fs/xfs/xfs_mount.c | 2 fs/xfs/xfs_quota.h | 8 fs/xfs/xfs_rename.c | 1 fs/xfs/xfs_rtalloc.c | 1 fs/xfs/xfs_rw.c | 3 fs/xfs/xfs_trans.h | 47 + fs/xfs/xfs_trans_buf.c | 62 - fs/xfs/xfs_vnodeops.c | 8 70 files changed, 2151 insertions(+), 2592 deletions(-) Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
2009-12-15 00:14:59 +01:00
#ifdef __KERNEL__
struct xfs_buf;
struct xfs_mount;
struct xfs_buf_log_item;
/*
* This is the in core log item structure used to track information
* needed to log buffers. It tracks how many times the lock has been
* locked, and which 128 byte chunks of the buffer are dirty.
*/
typedef struct xfs_buf_log_item {
xfs_log_item_t bli_item; /* common item structure */
struct xfs_buf *bli_buf; /* real buffer pointer */
unsigned int bli_flags; /* misc flags */
unsigned int bli_recur; /* lock recursion count */
atomic_t bli_refcount; /* cnt of tp refs */
#ifdef XFS_TRANS_DEBUG
char *bli_orig; /* original buffer copy */
char *bli_logged; /* bytes logged (bitmap) */
#endif
xfs_buf_log_format_t bli_format; /* in-log header */
} xfs_buf_log_item_t;
void xfs_buf_item_init(struct xfs_buf *, struct xfs_mount *);
void xfs_buf_item_relse(struct xfs_buf *);
void xfs_buf_item_log(xfs_buf_log_item_t *, uint, uint);
uint xfs_buf_item_dirty(xfs_buf_log_item_t *);
void xfs_buf_attach_iodone(struct xfs_buf *,
void(*)(struct xfs_buf *, xfs_log_item_t *),
xfs_log_item_t *);
void xfs_buf_iodone_callbacks(struct xfs_buf *);
void xfs_buf_iodone(struct xfs_buf *, struct xfs_log_item *);
#ifdef XFS_TRANS_DEBUG
void
xfs_buf_item_flush_log_debug(
struct xfs_buf *bp,
uint first,
uint last);
#else
#define xfs_buf_item_flush_log_debug(bp, first, last)
#endif
#endif /* __KERNEL__ */
#endif /* __XFS_BUF_ITEM_H__ */