2006-06-26 00:25:12 -07:00
|
|
|
#include <linux/clocksource.h>
|
2007-02-16 01:28:04 -08:00
|
|
|
#include <linux/clockchips.h>
|
2006-06-26 00:25:12 -07:00
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/hpet.h>
|
|
|
|
#include <linux/init.h>
|
2007-03-29 15:46:48 +02:00
|
|
|
#include <linux/sysdev.h>
|
|
|
|
#include <linux/pm.h>
|
2007-07-21 17:10:16 +02:00
|
|
|
#include <linux/delay.h>
|
2006-06-26 00:25:12 -07:00
|
|
|
|
|
|
|
#include <asm/hpet.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
|
2007-02-16 01:28:04 -08:00
|
|
|
extern struct clock_event_device *global_clock_event;
|
|
|
|
|
2006-06-26 00:25:15 -07:00
|
|
|
#define HPET_MASK CLOCKSOURCE_MASK(32)
|
2006-06-26 00:25:12 -07:00
|
|
|
#define HPET_SHIFT 22
|
|
|
|
|
|
|
|
/* FSEC = 10^-15 NSEC = 10^-9 */
|
|
|
|
#define FSEC_PER_NSEC 1000000
|
|
|
|
|
2007-02-16 01:28:04 -08:00
|
|
|
/*
|
|
|
|
* HPET address is set in acpi/boot.c, when an ACPI entry exists
|
|
|
|
*/
|
|
|
|
unsigned long hpet_address;
|
|
|
|
static void __iomem * hpet_virt_address;
|
|
|
|
|
|
|
|
static inline unsigned long hpet_readl(unsigned long a)
|
|
|
|
{
|
|
|
|
return readl(hpet_virt_address + a);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void hpet_writel(unsigned long d, unsigned long a)
|
|
|
|
{
|
|
|
|
writel(d, hpet_virt_address + a);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HPET command line enable / disable
|
|
|
|
*/
|
|
|
|
static int boot_hpet_disable;
|
|
|
|
|
|
|
|
static int __init hpet_setup(char* str)
|
|
|
|
{
|
|
|
|
if (str) {
|
|
|
|
if (!strncmp("disable", str, 7))
|
|
|
|
boot_hpet_disable = 1;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("hpet=", hpet_setup);
|
|
|
|
|
|
|
|
static inline int is_hpet_capable(void)
|
|
|
|
{
|
|
|
|
return (!boot_hpet_disable && hpet_address);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HPET timer interrupt enable / disable
|
|
|
|
*/
|
|
|
|
static int hpet_legacy_int_enabled;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_hpet_enabled - check whether the hpet timer interrupt is enabled
|
|
|
|
*/
|
|
|
|
int is_hpet_enabled(void)
|
|
|
|
{
|
|
|
|
return is_hpet_capable() && hpet_legacy_int_enabled;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When the hpet driver (/dev/hpet) is enabled, we need to reserve
|
|
|
|
* timer 0 and timer 1 in case of RTC emulation.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_HPET
|
|
|
|
static void hpet_reserve_platform_timers(unsigned long id)
|
|
|
|
{
|
|
|
|
struct hpet __iomem *hpet = hpet_virt_address;
|
|
|
|
struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
|
|
|
|
unsigned int nrtimers, i;
|
|
|
|
struct hpet_data hd;
|
|
|
|
|
|
|
|
nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
|
|
|
|
|
|
|
|
memset(&hd, 0, sizeof (hd));
|
|
|
|
hd.hd_phys_address = hpet_address;
|
|
|
|
hd.hd_address = hpet_virt_address;
|
|
|
|
hd.hd_nirqs = nrtimers;
|
|
|
|
hd.hd_flags = HPET_DATA_PLATFORM;
|
|
|
|
hpet_reserve_timer(&hd, 0);
|
|
|
|
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
hpet_reserve_timer(&hd, 1);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
hd.hd_irq[0] = HPET_LEGACY_8254;
|
|
|
|
hd.hd_irq[1] = HPET_LEGACY_RTC;
|
|
|
|
|
|
|
|
for (i = 2; i < nrtimers; timer++, i++)
|
|
|
|
hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
|
|
|
|
Tn_INT_ROUTE_CNF_SHIFT;
|
|
|
|
|
|
|
|
hpet_alloc(&hd);
|
|
|
|
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void hpet_reserve_platform_timers(unsigned long id) { }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Common hpet info
|
|
|
|
*/
|
|
|
|
static unsigned long hpet_period;
|
|
|
|
|
|
|
|
static void hpet_set_mode(enum clock_event_mode mode,
|
|
|
|
struct clock_event_device *evt);
|
|
|
|
static int hpet_next_event(unsigned long delta,
|
|
|
|
struct clock_event_device *evt);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The hpet clock event device
|
|
|
|
*/
|
|
|
|
static struct clock_event_device hpet_clockevent = {
|
|
|
|
.name = "hpet",
|
|
|
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
|
|
|
.set_mode = hpet_set_mode,
|
|
|
|
.set_next_event = hpet_next_event,
|
|
|
|
.shift = 32,
|
|
|
|
.irq = 0,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void hpet_start_counter(void)
|
|
|
|
{
|
|
|
|
unsigned long cfg = hpet_readl(HPET_CFG);
|
|
|
|
|
|
|
|
cfg &= ~HPET_CFG_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
hpet_writel(0, HPET_COUNTER);
|
|
|
|
hpet_writel(0, HPET_COUNTER + 4);
|
|
|
|
cfg |= HPET_CFG_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hpet_enable_int(void)
|
|
|
|
{
|
|
|
|
unsigned long cfg = hpet_readl(HPET_CFG);
|
|
|
|
|
|
|
|
cfg |= HPET_CFG_LEGACY;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
hpet_legacy_int_enabled = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hpet_set_mode(enum clock_event_mode mode,
|
|
|
|
struct clock_event_device *evt)
|
|
|
|
{
|
|
|
|
unsigned long cfg, cmp, now;
|
|
|
|
uint64_t delta;
|
|
|
|
|
|
|
|
switch(mode) {
|
|
|
|
case CLOCK_EVT_MODE_PERIODIC:
|
|
|
|
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
|
|
|
|
delta >>= hpet_clockevent.shift;
|
|
|
|
now = hpet_readl(HPET_COUNTER);
|
|
|
|
cmp = now + (unsigned long) delta;
|
|
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
|
|
|
|
HPET_TN_SETVAL | HPET_TN_32BIT;
|
|
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
|
|
|
/*
|
|
|
|
* The first write after writing TN_SETVAL to the
|
|
|
|
* config register sets the counter value, the second
|
|
|
|
* write sets the period.
|
|
|
|
*/
|
|
|
|
hpet_writel(cmp, HPET_T0_CMP);
|
|
|
|
udelay(1);
|
|
|
|
hpet_writel((unsigned long) delta, HPET_T0_CMP);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
|
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
|
|
|
break;
|
2007-07-21 04:37:34 -07:00
|
|
|
|
|
|
|
case CLOCK_EVT_MODE_RESUME:
|
|
|
|
hpet_enable_int();
|
|
|
|
break;
|
2007-02-16 01:28:04 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hpet_next_event(unsigned long delta,
|
|
|
|
struct clock_event_device *evt)
|
|
|
|
{
|
|
|
|
unsigned long cnt;
|
|
|
|
|
|
|
|
cnt = hpet_readl(HPET_COUNTER);
|
|
|
|
cnt += delta;
|
|
|
|
hpet_writel(cnt, HPET_T0_CMP);
|
|
|
|
|
2007-03-27 09:08:26 +02:00
|
|
|
return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
|
2007-02-16 01:28:04 -08:00
|
|
|
}
|
|
|
|
|
2007-03-05 00:30:50 -08:00
|
|
|
/*
|
|
|
|
* Clock source related code
|
|
|
|
*/
|
|
|
|
static cycle_t read_hpet(void)
|
|
|
|
{
|
|
|
|
return (cycle_t)hpet_readl(HPET_COUNTER);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct clocksource clocksource_hpet = {
|
|
|
|
.name = "hpet",
|
|
|
|
.rating = 250,
|
|
|
|
.read = read_hpet,
|
|
|
|
.mask = HPET_MASK,
|
|
|
|
.shift = HPET_SHIFT,
|
|
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
2007-07-21 04:37:34 -07:00
|
|
|
.resume = hpet_start_counter,
|
2007-03-05 00:30:50 -08:00
|
|
|
};
|
|
|
|
|
2007-02-16 01:28:04 -08:00
|
|
|
/*
|
|
|
|
* Try to setup the HPET timer
|
|
|
|
*/
|
|
|
|
int __init hpet_enable(void)
|
|
|
|
{
|
|
|
|
unsigned long id;
|
|
|
|
uint64_t hpet_freq;
|
2007-07-21 17:11:12 +02:00
|
|
|
u64 tmp, start, now;
|
|
|
|
cycle_t t1;
|
2007-02-16 01:28:04 -08:00
|
|
|
|
|
|
|
if (!is_hpet_capable())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the period and check for a sane value:
|
|
|
|
*/
|
|
|
|
hpet_period = hpet_readl(HPET_PERIOD);
|
|
|
|
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
|
|
|
|
goto out_nohpet;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The period is a femto seconds value. We need to calculate the
|
|
|
|
* scaled math multiplication factor for nanosecond to hpet tick
|
|
|
|
* conversion.
|
|
|
|
*/
|
|
|
|
hpet_freq = 1000000000000000ULL;
|
|
|
|
do_div(hpet_freq, hpet_period);
|
|
|
|
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
|
|
|
|
NSEC_PER_SEC, 32);
|
|
|
|
/* Calculate the min / max delta */
|
|
|
|
hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
|
|
|
|
&hpet_clockevent);
|
|
|
|
hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
|
|
|
|
&hpet_clockevent);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read the HPET ID register to retrieve the IRQ routing
|
|
|
|
* information and the number of channels
|
|
|
|
*/
|
|
|
|
id = hpet_readl(HPET_ID);
|
|
|
|
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
/*
|
|
|
|
* The legacy routing mode needs at least two channels, tick timer
|
|
|
|
* and the rtc emulation channel.
|
|
|
|
*/
|
|
|
|
if (!(id & HPET_ID_NUMBER))
|
|
|
|
goto out_nohpet;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Start the counter */
|
|
|
|
hpet_start_counter();
|
|
|
|
|
2007-07-21 17:11:12 +02:00
|
|
|
/* Verify whether hpet counter works */
|
|
|
|
t1 = read_hpet();
|
|
|
|
rdtscll(start);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We don't know the TSC frequency yet, but waiting for
|
|
|
|
* 200000 TSC cycles is safe:
|
|
|
|
* 4 GHz == 50us
|
|
|
|
* 1 GHz == 200us
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
rep_nop();
|
|
|
|
rdtscll(now);
|
|
|
|
} while ((now - start) < 200000UL);
|
|
|
|
|
|
|
|
if (t1 == read_hpet()) {
|
|
|
|
printk(KERN_WARNING
|
|
|
|
"HPET counter not counting. HPET disabled\n");
|
|
|
|
goto out_nohpet;
|
|
|
|
}
|
|
|
|
|
2007-03-05 00:30:50 -08:00
|
|
|
/* Initialize and register HPET clocksource
|
|
|
|
*
|
|
|
|
* hpet period is in femto seconds per cycle
|
|
|
|
* so we need to convert this to ns/cyc units
|
|
|
|
* aproximated by mult/2^shift
|
|
|
|
*
|
|
|
|
* fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
|
|
|
|
* fsec/cyc * 1ns/1000000fsec * 2^shift = mult
|
|
|
|
* fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
|
|
|
|
* (fsec/cyc << shift)/1000000 = mult
|
|
|
|
* (hpet_period << shift)/FSEC_PER_NSEC = mult
|
|
|
|
*/
|
|
|
|
tmp = (u64)hpet_period << HPET_SHIFT;
|
|
|
|
do_div(tmp, FSEC_PER_NSEC);
|
|
|
|
clocksource_hpet.mult = (u32)tmp;
|
|
|
|
|
|
|
|
clocksource_register(&clocksource_hpet);
|
|
|
|
|
2007-02-16 01:28:04 -08:00
|
|
|
if (id & HPET_ID_LEGSUP) {
|
|
|
|
hpet_enable_int();
|
|
|
|
hpet_reserve_platform_timers(id);
|
|
|
|
/*
|
|
|
|
* Start hpet with the boot cpu mask and make it
|
|
|
|
* global after the IO_APIC has been initialized.
|
|
|
|
*/
|
2007-07-21 17:11:33 +02:00
|
|
|
hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
|
2007-02-16 01:28:04 -08:00
|
|
|
clockevents_register_device(&hpet_clockevent);
|
|
|
|
global_clock_event = &hpet_clockevent;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
2006-06-26 00:25:12 -07:00
|
|
|
|
2007-02-16 01:28:04 -08:00
|
|
|
out_nohpet:
|
|
|
|
iounmap(hpet_virt_address);
|
|
|
|
hpet_virt_address = NULL;
|
2007-03-29 15:46:48 +02:00
|
|
|
boot_hpet_disable = 1;
|
2007-02-16 01:28:04 -08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
|
|
|
|
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
|
|
|
|
* is enabled, we support RTC interrupt functionality in software.
|
|
|
|
* RTC has 3 kinds of interrupts:
|
|
|
|
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
|
|
|
|
* is updated
|
|
|
|
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
|
|
|
|
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
|
|
|
|
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
|
|
|
|
* (1) and (2) above are implemented using polling at a frequency of
|
|
|
|
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
|
|
|
|
* overhead. (DEFAULT_RTC_INT_FREQ)
|
|
|
|
* For (3), we use interrupts at 64Hz or user specified periodic
|
|
|
|
* frequency, whichever is higher.
|
|
|
|
*/
|
|
|
|
#include <linux/mc146818rtc.h>
|
|
|
|
#include <linux/rtc.h>
|
|
|
|
|
|
|
|
#define DEFAULT_RTC_INT_FREQ 64
|
|
|
|
#define DEFAULT_RTC_SHIFT 6
|
|
|
|
#define RTC_NUM_INTS 1
|
|
|
|
|
|
|
|
static unsigned long hpet_rtc_flags;
|
|
|
|
static unsigned long hpet_prev_update_sec;
|
|
|
|
static struct rtc_time hpet_alarm_time;
|
|
|
|
static unsigned long hpet_pie_count;
|
|
|
|
static unsigned long hpet_t1_cmp;
|
|
|
|
static unsigned long hpet_default_delta;
|
|
|
|
static unsigned long hpet_pie_delta;
|
|
|
|
static unsigned long hpet_pie_limit;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Timer 1 for RTC emulation. We use one shot mode, as periodic mode
|
|
|
|
* is not supported by all HPET implementations for timer 1.
|
|
|
|
*
|
|
|
|
* hpet_rtc_timer_init() is called when the rtc is initialized.
|
|
|
|
*/
|
|
|
|
int hpet_rtc_timer_init(void)
|
|
|
|
{
|
|
|
|
unsigned long cfg, cnt, delta, flags;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!hpet_default_delta) {
|
|
|
|
uint64_t clc;
|
|
|
|
|
|
|
|
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
|
|
|
|
clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
|
|
|
|
hpet_default_delta = (unsigned long) clc;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
|
|
|
|
delta = hpet_default_delta;
|
|
|
|
else
|
|
|
|
delta = hpet_pie_delta;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
|
|
|
|
|
|
|
cnt = delta + hpet_readl(HPET_COUNTER);
|
|
|
|
hpet_writel(cnt, HPET_T1_CMP);
|
|
|
|
hpet_t1_cmp = cnt;
|
|
|
|
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
|
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
|
|
|
|
|
|
local_irq_restore(flags);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The functions below are called from rtc driver.
|
|
|
|
* Return 0 if HPET is not being used.
|
|
|
|
* Otherwise do the necessary changes and return 1.
|
|
|
|
*/
|
|
|
|
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_rtc_flags &= ~bit_mask;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
|
|
|
|
{
|
|
|
|
unsigned long oldbits = hpet_rtc_flags;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_rtc_flags |= bit_mask;
|
|
|
|
|
|
|
|
if (!oldbits)
|
|
|
|
hpet_rtc_timer_init();
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
|
|
|
|
unsigned char sec)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
hpet_alarm_time.tm_hour = hrs;
|
|
|
|
hpet_alarm_time.tm_min = min;
|
|
|
|
hpet_alarm_time.tm_sec = sec;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_set_periodic_freq(unsigned long freq)
|
|
|
|
{
|
|
|
|
uint64_t clc;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (freq <= DEFAULT_RTC_INT_FREQ)
|
|
|
|
hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
|
|
|
|
else {
|
|
|
|
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
|
|
|
|
do_div(clc, freq);
|
|
|
|
clc >>= hpet_clockevent.shift;
|
|
|
|
hpet_pie_delta = (unsigned long) clc;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_rtc_dropped_irq(void)
|
|
|
|
{
|
|
|
|
return is_hpet_enabled();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hpet_rtc_timer_reinit(void)
|
|
|
|
{
|
|
|
|
unsigned long cfg, delta;
|
|
|
|
int lost_ints = -1;
|
|
|
|
|
|
|
|
if (unlikely(!hpet_rtc_flags)) {
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
|
|
|
|
delta = hpet_default_delta;
|
|
|
|
else
|
|
|
|
delta = hpet_pie_delta;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Increment the comparator value until we are ahead of the
|
|
|
|
* current count.
|
|
|
|
*/
|
|
|
|
do {
|
|
|
|
hpet_t1_cmp += delta;
|
|
|
|
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
|
|
|
|
lost_ints++;
|
|
|
|
} while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
|
|
|
|
|
|
|
|
if (lost_ints) {
|
|
|
|
if (hpet_rtc_flags & RTC_PIE)
|
|
|
|
hpet_pie_count += lost_ints;
|
|
|
|
if (printk_ratelimit())
|
|
|
|
printk(KERN_WARNING "rtc: lost %d interrupts\n",
|
|
|
|
lost_ints);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
|
|
|
|
{
|
|
|
|
struct rtc_time curr_time;
|
|
|
|
unsigned long rtc_int_flag = 0;
|
|
|
|
|
|
|
|
hpet_rtc_timer_reinit();
|
|
|
|
|
|
|
|
if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
|
|
|
|
rtc_get_rtc_time(&curr_time);
|
|
|
|
|
|
|
|
if (hpet_rtc_flags & RTC_UIE &&
|
|
|
|
curr_time.tm_sec != hpet_prev_update_sec) {
|
|
|
|
rtc_int_flag = RTC_UF;
|
|
|
|
hpet_prev_update_sec = curr_time.tm_sec;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hpet_rtc_flags & RTC_PIE &&
|
|
|
|
++hpet_pie_count >= hpet_pie_limit) {
|
|
|
|
rtc_int_flag |= RTC_PF;
|
|
|
|
hpet_pie_count = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hpet_rtc_flags & RTC_PIE &&
|
|
|
|
(curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
|
|
|
|
(curr_time.tm_min == hpet_alarm_time.tm_min) &&
|
|
|
|
(curr_time.tm_hour == hpet_alarm_time.tm_hour))
|
|
|
|
rtc_int_flag |= RTC_AF;
|
|
|
|
|
|
|
|
if (rtc_int_flag) {
|
|
|
|
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
|
|
|
|
rtc_interrupt(rtc_int_flag, dev_id);
|
|
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
#endif
|