2008-08-21 01:52:58 +02:00
|
|
|
/*
|
|
|
|
* BQ27x00 battery driver
|
|
|
|
*
|
|
|
|
* Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
|
|
|
|
* Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
|
|
|
|
*
|
|
|
|
* Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
|
|
|
|
*
|
|
|
|
* This package is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
|
|
|
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
|
|
|
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/param.h>
|
|
|
|
#include <linux/jiffies.h>
|
|
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/power_supply.h>
|
|
|
|
#include <linux/idr.h>
|
|
|
|
#include <linux/i2c.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 09:04:11 +01:00
|
|
|
#include <linux/slab.h>
|
2008-09-22 23:53:50 +02:00
|
|
|
#include <asm/unaligned.h>
|
2008-08-21 01:52:58 +02:00
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
#define DRIVER_VERSION "1.1.0"
|
2008-08-21 01:52:58 +02:00
|
|
|
|
|
|
|
#define BQ27x00_REG_TEMP 0x06
|
|
|
|
#define BQ27x00_REG_VOLT 0x08
|
|
|
|
#define BQ27x00_REG_AI 0x14
|
|
|
|
#define BQ27x00_REG_FLAGS 0x0A
|
2010-02-27 16:06:09 +01:00
|
|
|
#define BQ27x00_REG_TTE 0x16
|
|
|
|
#define BQ27x00_REG_TTF 0x18
|
|
|
|
#define BQ27x00_REG_TTECP 0x26
|
2008-08-21 01:52:58 +02:00
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
#define BQ27000_REG_RSOC 0x0B /* Relative State-of-Charge */
|
2010-02-27 16:06:09 +01:00
|
|
|
#define BQ27000_FLAG_CHGS BIT(7)
|
2010-02-12 22:57:23 +01:00
|
|
|
|
|
|
|
#define BQ27500_REG_SOC 0x2c
|
2010-02-27 16:06:09 +01:00
|
|
|
#define BQ27500_FLAG_DSC BIT(0)
|
|
|
|
#define BQ27500_FLAG_FC BIT(9)
|
2010-02-12 22:57:23 +01:00
|
|
|
|
2008-08-21 01:52:58 +02:00
|
|
|
/* If the system has several batteries we need a different name for each
|
|
|
|
* of them...
|
|
|
|
*/
|
|
|
|
static DEFINE_IDR(battery_id);
|
|
|
|
static DEFINE_MUTEX(battery_mutex);
|
|
|
|
|
|
|
|
struct bq27x00_device_info;
|
|
|
|
struct bq27x00_access_methods {
|
|
|
|
int (*read)(u8 reg, int *rt_value, int b_single,
|
|
|
|
struct bq27x00_device_info *di);
|
|
|
|
};
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
enum bq27x00_chip { BQ27000, BQ27500 };
|
|
|
|
|
2008-08-21 01:52:58 +02:00
|
|
|
struct bq27x00_device_info {
|
|
|
|
struct device *dev;
|
|
|
|
int id;
|
|
|
|
struct bq27x00_access_methods *bus;
|
|
|
|
struct power_supply bat;
|
2010-02-12 22:57:23 +01:00
|
|
|
enum bq27x00_chip chip;
|
2008-08-21 01:52:58 +02:00
|
|
|
|
|
|
|
struct i2c_client *client;
|
|
|
|
};
|
|
|
|
|
|
|
|
static enum power_supply_property bq27x00_battery_props[] = {
|
2010-02-27 16:06:09 +01:00
|
|
|
POWER_SUPPLY_PROP_STATUS,
|
2008-08-21 01:52:58 +02:00
|
|
|
POWER_SUPPLY_PROP_PRESENT,
|
|
|
|
POWER_SUPPLY_PROP_VOLTAGE_NOW,
|
|
|
|
POWER_SUPPLY_PROP_CURRENT_NOW,
|
|
|
|
POWER_SUPPLY_PROP_CAPACITY,
|
|
|
|
POWER_SUPPLY_PROP_TEMP,
|
2010-02-27 16:06:09 +01:00
|
|
|
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
|
|
|
|
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
|
|
|
|
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
|
2008-08-21 01:52:58 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Common code for BQ27x00 devices
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int bq27x00_read(u8 reg, int *rt_value, int b_single,
|
|
|
|
struct bq27x00_device_info *di)
|
|
|
|
{
|
2010-02-12 22:56:46 +01:00
|
|
|
return di->bus->read(reg, rt_value, b_single, di);
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2010-02-12 22:57:13 +01:00
|
|
|
* Return the battery temperature in tenths of degree Celsius
|
2008-08-21 01:52:58 +02:00
|
|
|
* Or < 0 if something fails.
|
|
|
|
*/
|
|
|
|
static int bq27x00_battery_temperature(struct bq27x00_device_info *di)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
int temp = 0;
|
|
|
|
|
|
|
|
ret = bq27x00_read(BQ27x00_REG_TEMP, &temp, 0, di);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(di->dev, "error reading temperature\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
if (di->chip == BQ27500)
|
|
|
|
return temp - 2731;
|
|
|
|
else
|
|
|
|
return ((temp >> 2) - 273) * 10;
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the battery Voltage in milivolts
|
|
|
|
* Or < 0 if something fails.
|
|
|
|
*/
|
|
|
|
static int bq27x00_battery_voltage(struct bq27x00_device_info *di)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
int volt = 0;
|
|
|
|
|
|
|
|
ret = bq27x00_read(BQ27x00_REG_VOLT, &volt, 0, di);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(di->dev, "error reading voltage\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2010-02-27 16:06:44 +01:00
|
|
|
return volt * 1000;
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the battery average current
|
|
|
|
* Note that current can be negative signed as well
|
|
|
|
* Or 0 if something fails.
|
|
|
|
*/
|
|
|
|
static int bq27x00_battery_current(struct bq27x00_device_info *di)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
int curr = 0;
|
|
|
|
int flags = 0;
|
|
|
|
|
|
|
|
ret = bq27x00_read(BQ27x00_REG_AI, &curr, 0, di);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(di->dev, "error reading current\n");
|
|
|
|
return 0;
|
|
|
|
}
|
2010-02-12 22:57:23 +01:00
|
|
|
|
|
|
|
if (di->chip == BQ27500) {
|
|
|
|
/* bq27500 returns signed value */
|
|
|
|
curr = (int)(s16)curr;
|
|
|
|
} else {
|
|
|
|
ret = bq27x00_read(BQ27x00_REG_FLAGS, &flags, 0, di);
|
|
|
|
if (ret < 0) {
|
|
|
|
dev_err(di->dev, "error reading flags\n");
|
|
|
|
return 0;
|
|
|
|
}
|
2010-02-27 16:06:09 +01:00
|
|
|
if (flags & BQ27000_FLAG_CHGS) {
|
2010-02-12 22:57:23 +01:00
|
|
|
dev_dbg(di->dev, "negative current!\n");
|
2010-02-27 16:06:44 +01:00
|
|
|
curr = -curr;
|
2010-02-12 22:57:23 +01:00
|
|
|
}
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
2010-02-12 22:57:23 +01:00
|
|
|
|
2010-02-27 16:06:44 +01:00
|
|
|
return curr * 1000;
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the battery Relative State-of-Charge
|
|
|
|
* Or < 0 if something fails.
|
|
|
|
*/
|
|
|
|
static int bq27x00_battery_rsoc(struct bq27x00_device_info *di)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
int rsoc = 0;
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
if (di->chip == BQ27500)
|
|
|
|
ret = bq27x00_read(BQ27500_REG_SOC, &rsoc, 0, di);
|
|
|
|
else
|
|
|
|
ret = bq27x00_read(BQ27000_REG_RSOC, &rsoc, 1, di);
|
2008-08-21 01:52:58 +02:00
|
|
|
if (ret) {
|
|
|
|
dev_err(di->dev, "error reading relative State-of-Charge\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2010-02-12 22:56:46 +01:00
|
|
|
return rsoc;
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
|
|
|
|
2010-02-27 16:06:09 +01:00
|
|
|
static int bq27x00_battery_status(struct bq27x00_device_info *di,
|
|
|
|
union power_supply_propval *val)
|
|
|
|
{
|
|
|
|
int flags = 0;
|
|
|
|
int status;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = bq27x00_read(BQ27x00_REG_FLAGS, &flags, 0, di);
|
|
|
|
if (ret < 0) {
|
|
|
|
dev_err(di->dev, "error reading flags\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (di->chip == BQ27500) {
|
|
|
|
if (flags & BQ27500_FLAG_FC)
|
|
|
|
status = POWER_SUPPLY_STATUS_FULL;
|
|
|
|
else if (flags & BQ27500_FLAG_DSC)
|
|
|
|
status = POWER_SUPPLY_STATUS_DISCHARGING;
|
|
|
|
else
|
|
|
|
status = POWER_SUPPLY_STATUS_CHARGING;
|
|
|
|
} else {
|
|
|
|
if (flags & BQ27000_FLAG_CHGS)
|
|
|
|
status = POWER_SUPPLY_STATUS_CHARGING;
|
|
|
|
else
|
|
|
|
status = POWER_SUPPLY_STATUS_DISCHARGING;
|
|
|
|
}
|
|
|
|
|
|
|
|
val->intval = status;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read a time register.
|
|
|
|
* Return < 0 if something fails.
|
|
|
|
*/
|
|
|
|
static int bq27x00_battery_time(struct bq27x00_device_info *di, int reg,
|
|
|
|
union power_supply_propval *val)
|
|
|
|
{
|
|
|
|
int tval = 0;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = bq27x00_read(reg, &tval, 0, di);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(di->dev, "error reading register %02x\n", reg);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tval == 65535)
|
|
|
|
return -ENODATA;
|
|
|
|
|
|
|
|
val->intval = tval * 60;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2008-08-21 01:52:58 +02:00
|
|
|
#define to_bq27x00_device_info(x) container_of((x), \
|
|
|
|
struct bq27x00_device_info, bat);
|
|
|
|
|
|
|
|
static int bq27x00_battery_get_property(struct power_supply *psy,
|
|
|
|
enum power_supply_property psp,
|
|
|
|
union power_supply_propval *val)
|
|
|
|
{
|
2010-02-27 16:06:09 +01:00
|
|
|
int ret = 0;
|
2008-08-21 01:52:58 +02:00
|
|
|
struct bq27x00_device_info *di = to_bq27x00_device_info(psy);
|
|
|
|
|
|
|
|
switch (psp) {
|
2010-02-27 16:06:09 +01:00
|
|
|
case POWER_SUPPLY_PROP_STATUS:
|
|
|
|
ret = bq27x00_battery_status(di, val);
|
|
|
|
break;
|
2008-08-21 01:52:58 +02:00
|
|
|
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
|
|
|
|
case POWER_SUPPLY_PROP_PRESENT:
|
|
|
|
val->intval = bq27x00_battery_voltage(di);
|
|
|
|
if (psp == POWER_SUPPLY_PROP_PRESENT)
|
|
|
|
val->intval = val->intval <= 0 ? 0 : 1;
|
|
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CURRENT_NOW:
|
|
|
|
val->intval = bq27x00_battery_current(di);
|
|
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_CAPACITY:
|
|
|
|
val->intval = bq27x00_battery_rsoc(di);
|
|
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_TEMP:
|
|
|
|
val->intval = bq27x00_battery_temperature(di);
|
|
|
|
break;
|
2010-02-27 16:06:09 +01:00
|
|
|
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
|
|
|
|
ret = bq27x00_battery_time(di, BQ27x00_REG_TTE, val);
|
|
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
|
|
|
|
ret = bq27x00_battery_time(di, BQ27x00_REG_TTECP, val);
|
|
|
|
break;
|
|
|
|
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
|
|
|
|
ret = bq27x00_battery_time(di, BQ27x00_REG_TTF, val);
|
|
|
|
break;
|
2008-08-21 01:52:58 +02:00
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2010-02-27 16:06:09 +01:00
|
|
|
return ret;
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void bq27x00_powersupply_init(struct bq27x00_device_info *di)
|
|
|
|
{
|
|
|
|
di->bat.type = POWER_SUPPLY_TYPE_BATTERY;
|
|
|
|
di->bat.properties = bq27x00_battery_props;
|
|
|
|
di->bat.num_properties = ARRAY_SIZE(bq27x00_battery_props);
|
|
|
|
di->bat.get_property = bq27x00_battery_get_property;
|
|
|
|
di->bat.external_power_changed = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2010-02-12 22:57:23 +01:00
|
|
|
* i2c specific code
|
2008-08-21 01:52:58 +02:00
|
|
|
*/
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
static int bq27x00_read_i2c(u8 reg, int *rt_value, int b_single,
|
2008-08-21 01:52:58 +02:00
|
|
|
struct bq27x00_device_info *di)
|
|
|
|
{
|
|
|
|
struct i2c_client *client = di->client;
|
|
|
|
struct i2c_msg msg[1];
|
|
|
|
unsigned char data[2];
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!client->adapter)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
msg->addr = client->addr;
|
|
|
|
msg->flags = 0;
|
|
|
|
msg->len = 1;
|
|
|
|
msg->buf = data;
|
|
|
|
|
|
|
|
data[0] = reg;
|
|
|
|
err = i2c_transfer(client->adapter, msg, 1);
|
|
|
|
|
|
|
|
if (err >= 0) {
|
|
|
|
if (!b_single)
|
|
|
|
msg->len = 2;
|
|
|
|
else
|
|
|
|
msg->len = 1;
|
|
|
|
|
|
|
|
msg->flags = I2C_M_RD;
|
|
|
|
err = i2c_transfer(client->adapter, msg, 1);
|
|
|
|
if (err >= 0) {
|
|
|
|
if (!b_single)
|
2010-02-12 22:56:46 +01:00
|
|
|
*rt_value = get_unaligned_le16(data);
|
2008-08-21 01:52:58 +02:00
|
|
|
else
|
|
|
|
*rt_value = data[0];
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
static int bq27x00_battery_probe(struct i2c_client *client,
|
2008-08-21 01:52:58 +02:00
|
|
|
const struct i2c_device_id *id)
|
|
|
|
{
|
|
|
|
char *name;
|
|
|
|
struct bq27x00_device_info *di;
|
|
|
|
struct bq27x00_access_methods *bus;
|
|
|
|
int num;
|
|
|
|
int retval = 0;
|
|
|
|
|
|
|
|
/* Get new ID for the new battery device */
|
|
|
|
retval = idr_pre_get(&battery_id, GFP_KERNEL);
|
|
|
|
if (retval == 0)
|
|
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&battery_mutex);
|
|
|
|
retval = idr_get_new(&battery_id, client, &num);
|
|
|
|
mutex_unlock(&battery_mutex);
|
|
|
|
if (retval < 0)
|
|
|
|
return retval;
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
name = kasprintf(GFP_KERNEL, "%s-%d", id->name, num);
|
2008-08-21 01:52:58 +02:00
|
|
|
if (!name) {
|
|
|
|
dev_err(&client->dev, "failed to allocate device name\n");
|
|
|
|
retval = -ENOMEM;
|
|
|
|
goto batt_failed_1;
|
|
|
|
}
|
|
|
|
|
|
|
|
di = kzalloc(sizeof(*di), GFP_KERNEL);
|
|
|
|
if (!di) {
|
|
|
|
dev_err(&client->dev, "failed to allocate device info data\n");
|
|
|
|
retval = -ENOMEM;
|
|
|
|
goto batt_failed_2;
|
|
|
|
}
|
|
|
|
di->id = num;
|
2010-02-12 22:57:23 +01:00
|
|
|
di->chip = id->driver_data;
|
2008-08-21 01:52:58 +02:00
|
|
|
|
|
|
|
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
|
|
|
|
if (!bus) {
|
|
|
|
dev_err(&client->dev, "failed to allocate access method "
|
|
|
|
"data\n");
|
|
|
|
retval = -ENOMEM;
|
|
|
|
goto batt_failed_3;
|
|
|
|
}
|
|
|
|
|
|
|
|
i2c_set_clientdata(client, di);
|
|
|
|
di->dev = &client->dev;
|
|
|
|
di->bat.name = name;
|
2010-02-12 22:57:23 +01:00
|
|
|
bus->read = &bq27x00_read_i2c;
|
2008-08-21 01:52:58 +02:00
|
|
|
di->bus = bus;
|
|
|
|
di->client = client;
|
|
|
|
|
|
|
|
bq27x00_powersupply_init(di);
|
|
|
|
|
|
|
|
retval = power_supply_register(&client->dev, &di->bat);
|
|
|
|
if (retval) {
|
|
|
|
dev_err(&client->dev, "failed to register battery\n");
|
|
|
|
goto batt_failed_4;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_info(&client->dev, "support ver. %s enabled\n", DRIVER_VERSION);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
batt_failed_4:
|
|
|
|
kfree(bus);
|
|
|
|
batt_failed_3:
|
|
|
|
kfree(di);
|
|
|
|
batt_failed_2:
|
|
|
|
kfree(name);
|
|
|
|
batt_failed_1:
|
|
|
|
mutex_lock(&battery_mutex);
|
|
|
|
idr_remove(&battery_id, num);
|
|
|
|
mutex_unlock(&battery_mutex);
|
|
|
|
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
static int bq27x00_battery_remove(struct i2c_client *client)
|
2008-08-21 01:52:58 +02:00
|
|
|
{
|
|
|
|
struct bq27x00_device_info *di = i2c_get_clientdata(client);
|
|
|
|
|
|
|
|
power_supply_unregister(&di->bat);
|
|
|
|
|
2010-10-05 04:05:34 +02:00
|
|
|
kfree(di->bus);
|
2008-08-21 01:52:58 +02:00
|
|
|
kfree(di->bat.name);
|
|
|
|
|
|
|
|
mutex_lock(&battery_mutex);
|
|
|
|
idr_remove(&battery_id, di->id);
|
|
|
|
mutex_unlock(&battery_mutex);
|
|
|
|
|
|
|
|
kfree(di);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Module stuff
|
|
|
|
*/
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
static const struct i2c_device_id bq27x00_id[] = {
|
|
|
|
{ "bq27200", BQ27000 }, /* bq27200 is same as bq27000, but with i2c */
|
|
|
|
{ "bq27500", BQ27500 },
|
2008-08-21 01:52:58 +02:00
|
|
|
{},
|
|
|
|
};
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
static struct i2c_driver bq27x00_battery_driver = {
|
2008-08-21 01:52:58 +02:00
|
|
|
.driver = {
|
2010-02-12 22:57:23 +01:00
|
|
|
.name = "bq27x00-battery",
|
2008-08-21 01:52:58 +02:00
|
|
|
},
|
2010-02-12 22:57:23 +01:00
|
|
|
.probe = bq27x00_battery_probe,
|
|
|
|
.remove = bq27x00_battery_remove,
|
|
|
|
.id_table = bq27x00_id,
|
2008-08-21 01:52:58 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
static int __init bq27x00_battery_init(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2010-02-12 22:57:23 +01:00
|
|
|
ret = i2c_add_driver(&bq27x00_battery_driver);
|
2008-08-21 01:52:58 +02:00
|
|
|
if (ret)
|
2010-02-12 22:57:23 +01:00
|
|
|
printk(KERN_ERR "Unable to register BQ27x00 driver\n");
|
2008-08-21 01:52:58 +02:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
module_init(bq27x00_battery_init);
|
|
|
|
|
|
|
|
static void __exit bq27x00_battery_exit(void)
|
|
|
|
{
|
2010-02-12 22:57:23 +01:00
|
|
|
i2c_del_driver(&bq27x00_battery_driver);
|
2008-08-21 01:52:58 +02:00
|
|
|
}
|
|
|
|
module_exit(bq27x00_battery_exit);
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
|
|
|
|
MODULE_DESCRIPTION("BQ27x00 battery monitor driver");
|
|
|
|
MODULE_LICENSE("GPL");
|