License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2005-04-17 00:20:36 +02:00
|
|
|
/*
|
|
|
|
* linux/fs/readdir.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
|
|
*/
|
|
|
|
|
2010-08-10 02:20:22 +02:00
|
|
|
#include <linux/stddef.h>
|
2007-05-08 09:29:02 +02:00
|
|
|
#include <linux/kernel.h>
|
2011-11-17 05:57:37 +01:00
|
|
|
#include <linux/export.h>
|
2005-04-17 00:20:36 +02:00
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/stat.h>
|
|
|
|
#include <linux/file.h>
|
|
|
|
#include <linux/fs.h>
|
2014-06-05 01:05:41 +02:00
|
|
|
#include <linux/fsnotify.h>
|
2005-04-17 00:20:36 +02:00
|
|
|
#include <linux/dirent.h>
|
|
|
|
#include <linux/security.h>
|
|
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <linux/unistd.h>
|
2017-04-09 00:10:08 +02:00
|
|
|
#include <linux/compat.h>
|
2016-12-24 20:46:01 +01:00
|
|
|
#include <linux/uaccess.h>
|
2005-04-17 00:20:36 +02:00
|
|
|
|
Convert filldir[64]() from __put_user() to unsafe_put_user()
We really should avoid the "__{get,put}_user()" functions entirely,
because they can easily be mis-used and the original intent of being
used for simple direct user accesses no longer holds in a post-SMAP/PAN
world.
Manually optimizing away the user access range check makes no sense any
more, when the range check is generally much cheaper than the "enable
user accesses" code that the __{get,put}_user() functions still need.
So instead of __put_user(), use the unsafe_put_user() interface with
user_access_{begin,end}() that really does generate better code these
days, and which is generally a nicer interface. Under some loads, the
multiple user writes that filldir() does are actually quite noticeable.
This also makes the dirent name copy use unsafe_put_user() with a couple
of macros. We do not want to make function calls with SMAP/PAN
disabled, and the code this generates is quite good when the
architecture uses "asm goto" for unsafe_put_user() like x86 does.
Note that this doesn't bother with the legacy cases. Nobody should use
them anyway, so performance doesn't really matter there.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-22 06:59:07 +02:00
|
|
|
#include <asm/unaligned.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note the "unsafe_put_user() semantics: we goto a
|
|
|
|
* label for errors.
|
|
|
|
*
|
|
|
|
* Also note how we use a "while()" loop here, even though
|
|
|
|
* only the biggest size needs to loop. The compiler (well,
|
|
|
|
* at least gcc) is smart enough to turn the smaller sizes
|
|
|
|
* into just if-statements, and this way we don't need to
|
|
|
|
* care whether 'u64' or 'u32' is the biggest size.
|
|
|
|
*/
|
|
|
|
#define unsafe_copy_loop(dst, src, len, type, label) \
|
|
|
|
while (len >= sizeof(type)) { \
|
|
|
|
unsafe_put_user(get_unaligned((type *)src), \
|
|
|
|
(type __user *)dst, label); \
|
|
|
|
dst += sizeof(type); \
|
|
|
|
src += sizeof(type); \
|
|
|
|
len -= sizeof(type); \
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We avoid doing 64-bit copies on 32-bit architectures. They
|
|
|
|
* might be better, but the component names are mostly small,
|
|
|
|
* and the 64-bit cases can end up being much more complex and
|
|
|
|
* put much more register pressure on the code, so it's likely
|
|
|
|
* not worth the pain of unaligned accesses etc.
|
|
|
|
*
|
|
|
|
* So limit the copies to "unsigned long" size. I did verify
|
|
|
|
* that at least the x86-32 case is ok without this limiting,
|
|
|
|
* but I worry about random other legacy 32-bit cases that
|
|
|
|
* might not do as well.
|
|
|
|
*/
|
|
|
|
#define unsafe_copy_type(dst, src, len, type, label) do { \
|
|
|
|
if (sizeof(type) <= sizeof(unsigned long)) \
|
|
|
|
unsafe_copy_loop(dst, src, len, type, label); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy the dirent name to user space, and NUL-terminate
|
|
|
|
* it. This should not be a function call, since we're doing
|
|
|
|
* the copy inside a "user_access_begin/end()" section.
|
|
|
|
*/
|
|
|
|
#define unsafe_copy_dirent_name(_dst, _src, _len, label) do { \
|
|
|
|
char __user *dst = (_dst); \
|
|
|
|
const char *src = (_src); \
|
|
|
|
size_t len = (_len); \
|
|
|
|
unsafe_copy_type(dst, src, len, u64, label); \
|
|
|
|
unsafe_copy_type(dst, src, len, u32, label); \
|
|
|
|
unsafe_copy_type(dst, src, len, u16, label); \
|
|
|
|
unsafe_copy_type(dst, src, len, u8, label); \
|
|
|
|
unsafe_put_user(0, dst, label); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
2013-05-15 19:52:59 +02:00
|
|
|
int iterate_dir(struct file *file, struct dir_context *ctx)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2013-01-23 23:07:38 +01:00
|
|
|
struct inode *inode = file_inode(file);
|
2016-04-21 05:08:32 +02:00
|
|
|
bool shared = false;
|
2005-04-17 00:20:36 +02:00
|
|
|
int res = -ENOTDIR;
|
2016-04-21 05:08:32 +02:00
|
|
|
if (file->f_op->iterate_shared)
|
|
|
|
shared = true;
|
|
|
|
else if (!file->f_op->iterate)
|
2005-04-17 00:20:36 +02:00
|
|
|
goto out;
|
|
|
|
|
|
|
|
res = security_file_permission(file, MAY_READ);
|
|
|
|
if (res)
|
|
|
|
goto out;
|
|
|
|
|
2017-09-29 18:06:48 +02:00
|
|
|
if (shared)
|
|
|
|
res = down_read_killable(&inode->i_rwsem);
|
|
|
|
else
|
2016-05-26 06:05:12 +02:00
|
|
|
res = down_write_killable(&inode->i_rwsem);
|
2017-09-29 18:06:48 +02:00
|
|
|
if (res)
|
|
|
|
goto out;
|
2007-12-06 23:39:54 +01:00
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
res = -ENOENT;
|
|
|
|
if (!IS_DEADDIR(inode)) {
|
2013-05-23 03:44:23 +02:00
|
|
|
ctx->pos = file->f_pos;
|
2016-04-21 05:08:32 +02:00
|
|
|
if (shared)
|
|
|
|
res = file->f_op->iterate_shared(file, ctx);
|
|
|
|
else
|
|
|
|
res = file->f_op->iterate(file, ctx);
|
2013-05-23 03:44:23 +02:00
|
|
|
file->f_pos = ctx->pos;
|
2014-06-05 01:05:41 +02:00
|
|
|
fsnotify_access(file);
|
2005-04-17 00:20:36 +02:00
|
|
|
file_accessed(file);
|
|
|
|
}
|
2016-04-21 05:08:32 +02:00
|
|
|
if (shared)
|
|
|
|
inode_unlock_shared(inode);
|
|
|
|
else
|
|
|
|
inode_unlock(inode);
|
2005-04-17 00:20:36 +02:00
|
|
|
out:
|
|
|
|
return res;
|
|
|
|
}
|
2013-05-15 19:52:59 +02:00
|
|
|
EXPORT_SYMBOL(iterate_dir);
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Traditional linux readdir() handling..
|
|
|
|
*
|
|
|
|
* "count=1" is a special case, meaning that the buffer is one
|
|
|
|
* dirent-structure in size and that the code can't handle more
|
|
|
|
* anyway. Thus the special "fillonedir()" function for that
|
|
|
|
* case (the low-level handlers don't need to care about this).
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef __ARCH_WANT_OLD_READDIR
|
|
|
|
|
|
|
|
struct old_linux_dirent {
|
|
|
|
unsigned long d_ino;
|
|
|
|
unsigned long d_offset;
|
|
|
|
unsigned short d_namlen;
|
|
|
|
char d_name[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct readdir_callback {
|
2013-05-15 19:52:59 +02:00
|
|
|
struct dir_context ctx;
|
2005-04-17 00:20:36 +02:00
|
|
|
struct old_linux_dirent __user * dirent;
|
|
|
|
int result;
|
|
|
|
};
|
|
|
|
|
2014-10-30 17:37:34 +01:00
|
|
|
static int fillonedir(struct dir_context *ctx, const char *name, int namlen,
|
|
|
|
loff_t offset, u64 ino, unsigned int d_type)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2014-10-30 17:37:34 +01:00
|
|
|
struct readdir_callback *buf =
|
|
|
|
container_of(ctx, struct readdir_callback, ctx);
|
2005-04-17 00:20:36 +02:00
|
|
|
struct old_linux_dirent __user * dirent;
|
2006-10-03 10:13:46 +02:00
|
|
|
unsigned long d_ino;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
if (buf->result)
|
|
|
|
return -EINVAL;
|
2006-10-03 10:13:46 +02:00
|
|
|
d_ino = ino;
|
2008-08-12 06:28:24 +02:00
|
|
|
if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) {
|
|
|
|
buf->result = -EOVERFLOW;
|
2006-10-03 10:13:46 +02:00
|
|
|
return -EOVERFLOW;
|
2008-08-12 06:28:24 +02:00
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
buf->result++;
|
|
|
|
dirent = buf->dirent;
|
Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 03:57:57 +01:00
|
|
|
if (!access_ok(dirent,
|
2005-04-17 00:20:36 +02:00
|
|
|
(unsigned long)(dirent->d_name + namlen + 1) -
|
|
|
|
(unsigned long)dirent))
|
|
|
|
goto efault;
|
2006-10-03 10:13:46 +02:00
|
|
|
if ( __put_user(d_ino, &dirent->d_ino) ||
|
2005-04-17 00:20:36 +02:00
|
|
|
__put_user(offset, &dirent->d_offset) ||
|
|
|
|
__put_user(namlen, &dirent->d_namlen) ||
|
|
|
|
__copy_to_user(dirent->d_name, name, namlen) ||
|
|
|
|
__put_user(0, dirent->d_name + namlen))
|
|
|
|
goto efault;
|
|
|
|
return 0;
|
|
|
|
efault:
|
|
|
|
buf->result = -EFAULT;
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
2009-01-14 14:14:34 +01:00
|
|
|
SYSCALL_DEFINE3(old_readdir, unsigned int, fd,
|
|
|
|
struct old_linux_dirent __user *, dirent, unsigned int, count)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
|
|
|
int error;
|
2016-04-20 23:08:21 +02:00
|
|
|
struct fd f = fdget_pos(fd);
|
2013-05-23 04:22:04 +02:00
|
|
|
struct readdir_callback buf = {
|
|
|
|
.ctx.actor = fillonedir,
|
|
|
|
.dirent = dirent
|
|
|
|
};
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2012-08-28 18:52:22 +02:00
|
|
|
if (!f.file)
|
2012-04-22 00:40:32 +02:00
|
|
|
return -EBADF;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2013-05-15 19:52:59 +02:00
|
|
|
error = iterate_dir(f.file, &buf.ctx);
|
2008-08-24 13:29:52 +02:00
|
|
|
if (buf.result)
|
2005-04-17 00:20:36 +02:00
|
|
|
error = buf.result;
|
|
|
|
|
2016-04-20 23:08:21 +02:00
|
|
|
fdput_pos(f);
|
2005-04-17 00:20:36 +02:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* __ARCH_WANT_OLD_READDIR */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* New, all-improved, singing, dancing, iBCS2-compliant getdents()
|
|
|
|
* interface.
|
|
|
|
*/
|
|
|
|
struct linux_dirent {
|
|
|
|
unsigned long d_ino;
|
|
|
|
unsigned long d_off;
|
|
|
|
unsigned short d_reclen;
|
|
|
|
char d_name[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct getdents_callback {
|
2013-05-15 19:52:59 +02:00
|
|
|
struct dir_context ctx;
|
2005-04-17 00:20:36 +02:00
|
|
|
struct linux_dirent __user * current_dir;
|
|
|
|
struct linux_dirent __user * previous;
|
|
|
|
int count;
|
|
|
|
int error;
|
|
|
|
};
|
|
|
|
|
2014-10-30 17:37:34 +01:00
|
|
|
static int filldir(struct dir_context *ctx, const char *name, int namlen,
|
|
|
|
loff_t offset, u64 ino, unsigned int d_type)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
|
|
|
struct linux_dirent __user * dirent;
|
2014-10-30 17:37:34 +01:00
|
|
|
struct getdents_callback *buf =
|
|
|
|
container_of(ctx, struct getdents_callback, ctx);
|
2006-10-03 10:13:46 +02:00
|
|
|
unsigned long d_ino;
|
2010-08-10 02:20:22 +02:00
|
|
|
int reclen = ALIGN(offsetof(struct linux_dirent, d_name) + namlen + 2,
|
|
|
|
sizeof(long));
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
buf->error = -EINVAL; /* only used if we fail.. */
|
|
|
|
if (reclen > buf->count)
|
|
|
|
return -EINVAL;
|
2006-10-03 10:13:46 +02:00
|
|
|
d_ino = ino;
|
2008-08-12 06:28:24 +02:00
|
|
|
if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) {
|
|
|
|
buf->error = -EOVERFLOW;
|
2006-10-03 10:13:46 +02:00
|
|
|
return -EOVERFLOW;
|
2008-08-12 06:28:24 +02:00
|
|
|
}
|
2005-04-17 00:20:36 +02:00
|
|
|
dirent = buf->previous;
|
Convert filldir[64]() from __put_user() to unsafe_put_user()
We really should avoid the "__{get,put}_user()" functions entirely,
because they can easily be mis-used and the original intent of being
used for simple direct user accesses no longer holds in a post-SMAP/PAN
world.
Manually optimizing away the user access range check makes no sense any
more, when the range check is generally much cheaper than the "enable
user accesses" code that the __{get,put}_user() functions still need.
So instead of __put_user(), use the unsafe_put_user() interface with
user_access_{begin,end}() that really does generate better code these
days, and which is generally a nicer interface. Under some loads, the
multiple user writes that filldir() does are actually quite noticeable.
This also makes the dirent name copy use unsafe_put_user() with a couple
of macros. We do not want to make function calls with SMAP/PAN
disabled, and the code this generates is quite good when the
architecture uses "asm goto" for unsafe_put_user() like x86 does.
Note that this doesn't bother with the legacy cases. Nobody should use
them anyway, so performance doesn't really matter there.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-22 06:59:07 +02:00
|
|
|
if (dirent && signal_pending(current))
|
|
|
|
return -EINTR;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note! This range-checks 'previous' (which may be NULL).
|
|
|
|
* The real range was checked in getdents
|
|
|
|
*/
|
|
|
|
if (!user_access_begin(dirent, sizeof(*dirent)))
|
2005-04-17 00:20:36 +02:00
|
|
|
goto efault;
|
Convert filldir[64]() from __put_user() to unsafe_put_user()
We really should avoid the "__{get,put}_user()" functions entirely,
because they can easily be mis-used and the original intent of being
used for simple direct user accesses no longer holds in a post-SMAP/PAN
world.
Manually optimizing away the user access range check makes no sense any
more, when the range check is generally much cheaper than the "enable
user accesses" code that the __{get,put}_user() functions still need.
So instead of __put_user(), use the unsafe_put_user() interface with
user_access_{begin,end}() that really does generate better code these
days, and which is generally a nicer interface. Under some loads, the
multiple user writes that filldir() does are actually quite noticeable.
This also makes the dirent name copy use unsafe_put_user() with a couple
of macros. We do not want to make function calls with SMAP/PAN
disabled, and the code this generates is quite good when the
architecture uses "asm goto" for unsafe_put_user() like x86 does.
Note that this doesn't bother with the legacy cases. Nobody should use
them anyway, so performance doesn't really matter there.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-22 06:59:07 +02:00
|
|
|
if (dirent)
|
|
|
|
unsafe_put_user(offset, &dirent->d_off, efault_end);
|
|
|
|
dirent = buf->current_dir;
|
|
|
|
unsafe_put_user(d_ino, &dirent->d_ino, efault_end);
|
|
|
|
unsafe_put_user(reclen, &dirent->d_reclen, efault_end);
|
|
|
|
unsafe_put_user(d_type, (char __user *) dirent + reclen - 1, efault_end);
|
|
|
|
unsafe_copy_dirent_name(dirent->d_name, name, namlen, efault_end);
|
|
|
|
user_access_end();
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
buf->previous = dirent;
|
|
|
|
dirent = (void __user *)dirent + reclen;
|
|
|
|
buf->current_dir = dirent;
|
|
|
|
buf->count -= reclen;
|
|
|
|
return 0;
|
Convert filldir[64]() from __put_user() to unsafe_put_user()
We really should avoid the "__{get,put}_user()" functions entirely,
because they can easily be mis-used and the original intent of being
used for simple direct user accesses no longer holds in a post-SMAP/PAN
world.
Manually optimizing away the user access range check makes no sense any
more, when the range check is generally much cheaper than the "enable
user accesses" code that the __{get,put}_user() functions still need.
So instead of __put_user(), use the unsafe_put_user() interface with
user_access_{begin,end}() that really does generate better code these
days, and which is generally a nicer interface. Under some loads, the
multiple user writes that filldir() does are actually quite noticeable.
This also makes the dirent name copy use unsafe_put_user() with a couple
of macros. We do not want to make function calls with SMAP/PAN
disabled, and the code this generates is quite good when the
architecture uses "asm goto" for unsafe_put_user() like x86 does.
Note that this doesn't bother with the legacy cases. Nobody should use
them anyway, so performance doesn't really matter there.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-22 06:59:07 +02:00
|
|
|
efault_end:
|
|
|
|
user_access_end();
|
2005-04-17 00:20:36 +02:00
|
|
|
efault:
|
|
|
|
buf->error = -EFAULT;
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
2009-01-14 14:14:23 +01:00
|
|
|
SYSCALL_DEFINE3(getdents, unsigned int, fd,
|
|
|
|
struct linux_dirent __user *, dirent, unsigned int, count)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2012-08-28 18:52:22 +02:00
|
|
|
struct fd f;
|
2005-04-17 00:20:36 +02:00
|
|
|
struct linux_dirent __user * lastdirent;
|
2013-05-23 04:22:04 +02:00
|
|
|
struct getdents_callback buf = {
|
|
|
|
.ctx.actor = filldir,
|
|
|
|
.count = count,
|
|
|
|
.current_dir = dirent
|
|
|
|
};
|
2005-04-17 00:20:36 +02:00
|
|
|
int error;
|
|
|
|
|
Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 03:57:57 +01:00
|
|
|
if (!access_ok(dirent, count))
|
2012-04-22 00:40:32 +02:00
|
|
|
return -EFAULT;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2016-04-20 23:08:21 +02:00
|
|
|
f = fdget_pos(fd);
|
2012-08-28 18:52:22 +02:00
|
|
|
if (!f.file)
|
2012-04-22 00:40:32 +02:00
|
|
|
return -EBADF;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2013-05-15 19:52:59 +02:00
|
|
|
error = iterate_dir(f.file, &buf.ctx);
|
2008-08-24 13:29:52 +02:00
|
|
|
if (error >= 0)
|
|
|
|
error = buf.error;
|
2005-04-17 00:20:36 +02:00
|
|
|
lastdirent = buf.previous;
|
|
|
|
if (lastdirent) {
|
2013-05-16 00:49:12 +02:00
|
|
|
if (put_user(buf.ctx.pos, &lastdirent->d_off))
|
2005-04-17 00:20:36 +02:00
|
|
|
error = -EFAULT;
|
|
|
|
else
|
|
|
|
error = count - buf.count;
|
|
|
|
}
|
2016-04-20 23:08:21 +02:00
|
|
|
fdput_pos(f);
|
2005-04-17 00:20:36 +02:00
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct getdents_callback64 {
|
2013-05-15 19:52:59 +02:00
|
|
|
struct dir_context ctx;
|
2005-04-17 00:20:36 +02:00
|
|
|
struct linux_dirent64 __user * current_dir;
|
|
|
|
struct linux_dirent64 __user * previous;
|
|
|
|
int count;
|
|
|
|
int error;
|
|
|
|
};
|
|
|
|
|
2014-10-30 17:37:34 +01:00
|
|
|
static int filldir64(struct dir_context *ctx, const char *name, int namlen,
|
|
|
|
loff_t offset, u64 ino, unsigned int d_type)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
|
|
|
struct linux_dirent64 __user *dirent;
|
2014-10-30 17:37:34 +01:00
|
|
|
struct getdents_callback64 *buf =
|
|
|
|
container_of(ctx, struct getdents_callback64, ctx);
|
2010-08-10 02:20:22 +02:00
|
|
|
int reclen = ALIGN(offsetof(struct linux_dirent64, d_name) + namlen + 1,
|
|
|
|
sizeof(u64));
|
2005-04-17 00:20:36 +02:00
|
|
|
|
|
|
|
buf->error = -EINVAL; /* only used if we fail.. */
|
|
|
|
if (reclen > buf->count)
|
|
|
|
return -EINVAL;
|
|
|
|
dirent = buf->previous;
|
Convert filldir[64]() from __put_user() to unsafe_put_user()
We really should avoid the "__{get,put}_user()" functions entirely,
because they can easily be mis-used and the original intent of being
used for simple direct user accesses no longer holds in a post-SMAP/PAN
world.
Manually optimizing away the user access range check makes no sense any
more, when the range check is generally much cheaper than the "enable
user accesses" code that the __{get,put}_user() functions still need.
So instead of __put_user(), use the unsafe_put_user() interface with
user_access_{begin,end}() that really does generate better code these
days, and which is generally a nicer interface. Under some loads, the
multiple user writes that filldir() does are actually quite noticeable.
This also makes the dirent name copy use unsafe_put_user() with a couple
of macros. We do not want to make function calls with SMAP/PAN
disabled, and the code this generates is quite good when the
architecture uses "asm goto" for unsafe_put_user() like x86 does.
Note that this doesn't bother with the legacy cases. Nobody should use
them anyway, so performance doesn't really matter there.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-22 06:59:07 +02:00
|
|
|
if (dirent && signal_pending(current))
|
|
|
|
return -EINTR;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note! This range-checks 'previous' (which may be NULL).
|
|
|
|
* The real range was checked in getdents
|
|
|
|
*/
|
|
|
|
if (!user_access_begin(dirent, sizeof(*dirent)))
|
2005-04-17 00:20:36 +02:00
|
|
|
goto efault;
|
Convert filldir[64]() from __put_user() to unsafe_put_user()
We really should avoid the "__{get,put}_user()" functions entirely,
because they can easily be mis-used and the original intent of being
used for simple direct user accesses no longer holds in a post-SMAP/PAN
world.
Manually optimizing away the user access range check makes no sense any
more, when the range check is generally much cheaper than the "enable
user accesses" code that the __{get,put}_user() functions still need.
So instead of __put_user(), use the unsafe_put_user() interface with
user_access_{begin,end}() that really does generate better code these
days, and which is generally a nicer interface. Under some loads, the
multiple user writes that filldir() does are actually quite noticeable.
This also makes the dirent name copy use unsafe_put_user() with a couple
of macros. We do not want to make function calls with SMAP/PAN
disabled, and the code this generates is quite good when the
architecture uses "asm goto" for unsafe_put_user() like x86 does.
Note that this doesn't bother with the legacy cases. Nobody should use
them anyway, so performance doesn't really matter there.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-22 06:59:07 +02:00
|
|
|
if (dirent)
|
|
|
|
unsafe_put_user(offset, &dirent->d_off, efault_end);
|
|
|
|
dirent = buf->current_dir;
|
|
|
|
unsafe_put_user(ino, &dirent->d_ino, efault_end);
|
|
|
|
unsafe_put_user(reclen, &dirent->d_reclen, efault_end);
|
|
|
|
unsafe_put_user(d_type, &dirent->d_type, efault_end);
|
|
|
|
unsafe_copy_dirent_name(dirent->d_name, name, namlen, efault_end);
|
|
|
|
user_access_end();
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
buf->previous = dirent;
|
|
|
|
dirent = (void __user *)dirent + reclen;
|
|
|
|
buf->current_dir = dirent;
|
|
|
|
buf->count -= reclen;
|
|
|
|
return 0;
|
Convert filldir[64]() from __put_user() to unsafe_put_user()
We really should avoid the "__{get,put}_user()" functions entirely,
because they can easily be mis-used and the original intent of being
used for simple direct user accesses no longer holds in a post-SMAP/PAN
world.
Manually optimizing away the user access range check makes no sense any
more, when the range check is generally much cheaper than the "enable
user accesses" code that the __{get,put}_user() functions still need.
So instead of __put_user(), use the unsafe_put_user() interface with
user_access_{begin,end}() that really does generate better code these
days, and which is generally a nicer interface. Under some loads, the
multiple user writes that filldir() does are actually quite noticeable.
This also makes the dirent name copy use unsafe_put_user() with a couple
of macros. We do not want to make function calls with SMAP/PAN
disabled, and the code this generates is quite good when the
architecture uses "asm goto" for unsafe_put_user() like x86 does.
Note that this doesn't bother with the legacy cases. Nobody should use
them anyway, so performance doesn't really matter there.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-22 06:59:07 +02:00
|
|
|
efault_end:
|
|
|
|
user_access_end();
|
2005-04-17 00:20:36 +02:00
|
|
|
efault:
|
|
|
|
buf->error = -EFAULT;
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
2018-03-13 21:34:04 +01:00
|
|
|
int ksys_getdents64(unsigned int fd, struct linux_dirent64 __user *dirent,
|
|
|
|
unsigned int count)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
2012-08-28 18:52:22 +02:00
|
|
|
struct fd f;
|
2005-04-17 00:20:36 +02:00
|
|
|
struct linux_dirent64 __user * lastdirent;
|
2013-05-23 04:22:04 +02:00
|
|
|
struct getdents_callback64 buf = {
|
|
|
|
.ctx.actor = filldir64,
|
|
|
|
.count = count,
|
|
|
|
.current_dir = dirent
|
|
|
|
};
|
2005-04-17 00:20:36 +02:00
|
|
|
int error;
|
|
|
|
|
Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 03:57:57 +01:00
|
|
|
if (!access_ok(dirent, count))
|
2012-04-22 00:40:32 +02:00
|
|
|
return -EFAULT;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2016-04-20 23:08:21 +02:00
|
|
|
f = fdget_pos(fd);
|
2012-08-28 18:52:22 +02:00
|
|
|
if (!f.file)
|
2012-04-22 00:40:32 +02:00
|
|
|
return -EBADF;
|
2005-04-17 00:20:36 +02:00
|
|
|
|
2013-05-15 19:52:59 +02:00
|
|
|
error = iterate_dir(f.file, &buf.ctx);
|
2008-08-24 13:29:52 +02:00
|
|
|
if (error >= 0)
|
|
|
|
error = buf.error;
|
2005-04-17 00:20:36 +02:00
|
|
|
lastdirent = buf.previous;
|
|
|
|
if (lastdirent) {
|
2013-05-16 00:49:12 +02:00
|
|
|
typeof(lastdirent->d_off) d_off = buf.ctx.pos;
|
2005-04-17 00:20:36 +02:00
|
|
|
if (__put_user(d_off, &lastdirent->d_off))
|
2008-08-24 13:29:52 +02:00
|
|
|
error = -EFAULT;
|
|
|
|
else
|
|
|
|
error = count - buf.count;
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
2016-04-20 23:08:21 +02:00
|
|
|
fdput_pos(f);
|
2005-04-17 00:20:36 +02:00
|
|
|
return error;
|
|
|
|
}
|
2017-04-09 00:10:08 +02:00
|
|
|
|
2018-03-13 21:34:04 +01:00
|
|
|
|
|
|
|
SYSCALL_DEFINE3(getdents64, unsigned int, fd,
|
|
|
|
struct linux_dirent64 __user *, dirent, unsigned int, count)
|
|
|
|
{
|
|
|
|
return ksys_getdents64(fd, dirent, count);
|
|
|
|
}
|
|
|
|
|
2017-04-09 00:10:08 +02:00
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
struct compat_old_linux_dirent {
|
|
|
|
compat_ulong_t d_ino;
|
|
|
|
compat_ulong_t d_offset;
|
|
|
|
unsigned short d_namlen;
|
|
|
|
char d_name[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct compat_readdir_callback {
|
|
|
|
struct dir_context ctx;
|
|
|
|
struct compat_old_linux_dirent __user *dirent;
|
|
|
|
int result;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int compat_fillonedir(struct dir_context *ctx, const char *name,
|
|
|
|
int namlen, loff_t offset, u64 ino,
|
|
|
|
unsigned int d_type)
|
|
|
|
{
|
|
|
|
struct compat_readdir_callback *buf =
|
|
|
|
container_of(ctx, struct compat_readdir_callback, ctx);
|
|
|
|
struct compat_old_linux_dirent __user *dirent;
|
|
|
|
compat_ulong_t d_ino;
|
|
|
|
|
|
|
|
if (buf->result)
|
|
|
|
return -EINVAL;
|
|
|
|
d_ino = ino;
|
|
|
|
if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) {
|
|
|
|
buf->result = -EOVERFLOW;
|
|
|
|
return -EOVERFLOW;
|
|
|
|
}
|
|
|
|
buf->result++;
|
|
|
|
dirent = buf->dirent;
|
Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 03:57:57 +01:00
|
|
|
if (!access_ok(dirent,
|
2017-04-09 00:10:08 +02:00
|
|
|
(unsigned long)(dirent->d_name + namlen + 1) -
|
|
|
|
(unsigned long)dirent))
|
|
|
|
goto efault;
|
|
|
|
if ( __put_user(d_ino, &dirent->d_ino) ||
|
|
|
|
__put_user(offset, &dirent->d_offset) ||
|
|
|
|
__put_user(namlen, &dirent->d_namlen) ||
|
|
|
|
__copy_to_user(dirent->d_name, name, namlen) ||
|
|
|
|
__put_user(0, dirent->d_name + namlen))
|
|
|
|
goto efault;
|
|
|
|
return 0;
|
|
|
|
efault:
|
|
|
|
buf->result = -EFAULT;
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
|
|
|
COMPAT_SYSCALL_DEFINE3(old_readdir, unsigned int, fd,
|
|
|
|
struct compat_old_linux_dirent __user *, dirent, unsigned int, count)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
struct fd f = fdget_pos(fd);
|
|
|
|
struct compat_readdir_callback buf = {
|
|
|
|
.ctx.actor = compat_fillonedir,
|
|
|
|
.dirent = dirent
|
|
|
|
};
|
|
|
|
|
|
|
|
if (!f.file)
|
|
|
|
return -EBADF;
|
|
|
|
|
|
|
|
error = iterate_dir(f.file, &buf.ctx);
|
|
|
|
if (buf.result)
|
|
|
|
error = buf.result;
|
|
|
|
|
|
|
|
fdput_pos(f);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct compat_linux_dirent {
|
|
|
|
compat_ulong_t d_ino;
|
|
|
|
compat_ulong_t d_off;
|
|
|
|
unsigned short d_reclen;
|
|
|
|
char d_name[1];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct compat_getdents_callback {
|
|
|
|
struct dir_context ctx;
|
|
|
|
struct compat_linux_dirent __user *current_dir;
|
|
|
|
struct compat_linux_dirent __user *previous;
|
|
|
|
int count;
|
|
|
|
int error;
|
|
|
|
};
|
|
|
|
|
|
|
|
static int compat_filldir(struct dir_context *ctx, const char *name, int namlen,
|
|
|
|
loff_t offset, u64 ino, unsigned int d_type)
|
|
|
|
{
|
|
|
|
struct compat_linux_dirent __user * dirent;
|
|
|
|
struct compat_getdents_callback *buf =
|
|
|
|
container_of(ctx, struct compat_getdents_callback, ctx);
|
|
|
|
compat_ulong_t d_ino;
|
|
|
|
int reclen = ALIGN(offsetof(struct compat_linux_dirent, d_name) +
|
|
|
|
namlen + 2, sizeof(compat_long_t));
|
|
|
|
|
|
|
|
buf->error = -EINVAL; /* only used if we fail.. */
|
|
|
|
if (reclen > buf->count)
|
|
|
|
return -EINVAL;
|
|
|
|
d_ino = ino;
|
|
|
|
if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) {
|
|
|
|
buf->error = -EOVERFLOW;
|
|
|
|
return -EOVERFLOW;
|
|
|
|
}
|
|
|
|
dirent = buf->previous;
|
|
|
|
if (dirent) {
|
|
|
|
if (signal_pending(current))
|
|
|
|
return -EINTR;
|
|
|
|
if (__put_user(offset, &dirent->d_off))
|
|
|
|
goto efault;
|
|
|
|
}
|
|
|
|
dirent = buf->current_dir;
|
|
|
|
if (__put_user(d_ino, &dirent->d_ino))
|
|
|
|
goto efault;
|
|
|
|
if (__put_user(reclen, &dirent->d_reclen))
|
|
|
|
goto efault;
|
|
|
|
if (copy_to_user(dirent->d_name, name, namlen))
|
|
|
|
goto efault;
|
|
|
|
if (__put_user(0, dirent->d_name + namlen))
|
|
|
|
goto efault;
|
|
|
|
if (__put_user(d_type, (char __user *) dirent + reclen - 1))
|
|
|
|
goto efault;
|
|
|
|
buf->previous = dirent;
|
|
|
|
dirent = (void __user *)dirent + reclen;
|
|
|
|
buf->current_dir = dirent;
|
|
|
|
buf->count -= reclen;
|
|
|
|
return 0;
|
|
|
|
efault:
|
|
|
|
buf->error = -EFAULT;
|
|
|
|
return -EFAULT;
|
|
|
|
}
|
|
|
|
|
|
|
|
COMPAT_SYSCALL_DEFINE3(getdents, unsigned int, fd,
|
|
|
|
struct compat_linux_dirent __user *, dirent, unsigned int, count)
|
|
|
|
{
|
|
|
|
struct fd f;
|
|
|
|
struct compat_linux_dirent __user * lastdirent;
|
|
|
|
struct compat_getdents_callback buf = {
|
|
|
|
.ctx.actor = compat_filldir,
|
|
|
|
.current_dir = dirent,
|
|
|
|
.count = count
|
|
|
|
};
|
|
|
|
int error;
|
|
|
|
|
Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 03:57:57 +01:00
|
|
|
if (!access_ok(dirent, count))
|
2017-04-09 00:10:08 +02:00
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
f = fdget_pos(fd);
|
|
|
|
if (!f.file)
|
|
|
|
return -EBADF;
|
|
|
|
|
|
|
|
error = iterate_dir(f.file, &buf.ctx);
|
|
|
|
if (error >= 0)
|
|
|
|
error = buf.error;
|
|
|
|
lastdirent = buf.previous;
|
|
|
|
if (lastdirent) {
|
|
|
|
if (put_user(buf.ctx.pos, &lastdirent->d_off))
|
|
|
|
error = -EFAULT;
|
|
|
|
else
|
|
|
|
error = count - buf.count;
|
|
|
|
}
|
|
|
|
fdput_pos(f);
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
#endif
|