2009-04-14 14:18:14 +02:00
|
|
|
/*
|
|
|
|
* EDMA3 support for DaVinci
|
|
|
|
*
|
|
|
|
* Copyright (C) 2006-2009 Texas Instruments.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
2013-06-17 16:57:58 +02:00
|
|
|
#include <linux/err.h>
|
2009-04-14 14:18:14 +02:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/io.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 09:04:11 +01:00
|
|
|
#include <linux/slab.h>
|
2013-06-20 23:06:38 +02:00
|
|
|
#include <linux/edma.h>
|
|
|
|
#include <linux/of_address.h>
|
|
|
|
#include <linux/of_device.h>
|
|
|
|
#include <linux/of_dma.h>
|
|
|
|
#include <linux/of_irq.h>
|
|
|
|
#include <linux/pm_runtime.h>
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2013-03-06 17:15:31 +01:00
|
|
|
#include <linux/platform_data/edma.h>
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* Offsets matching "struct edmacc_param" */
|
|
|
|
#define PARM_OPT 0x00
|
|
|
|
#define PARM_SRC 0x04
|
|
|
|
#define PARM_A_B_CNT 0x08
|
|
|
|
#define PARM_DST 0x0c
|
|
|
|
#define PARM_SRC_DST_BIDX 0x10
|
|
|
|
#define PARM_LINK_BCNTRLD 0x14
|
|
|
|
#define PARM_SRC_DST_CIDX 0x18
|
|
|
|
#define PARM_CCNT 0x1c
|
|
|
|
|
|
|
|
#define PARM_SIZE 0x20
|
|
|
|
|
|
|
|
/* Offsets for EDMA CC global channel registers and their shadows */
|
|
|
|
#define SH_ER 0x00 /* 64 bits */
|
|
|
|
#define SH_ECR 0x08 /* 64 bits */
|
|
|
|
#define SH_ESR 0x10 /* 64 bits */
|
|
|
|
#define SH_CER 0x18 /* 64 bits */
|
|
|
|
#define SH_EER 0x20 /* 64 bits */
|
|
|
|
#define SH_EECR 0x28 /* 64 bits */
|
|
|
|
#define SH_EESR 0x30 /* 64 bits */
|
|
|
|
#define SH_SER 0x38 /* 64 bits */
|
|
|
|
#define SH_SECR 0x40 /* 64 bits */
|
|
|
|
#define SH_IER 0x50 /* 64 bits */
|
|
|
|
#define SH_IECR 0x58 /* 64 bits */
|
|
|
|
#define SH_IESR 0x60 /* 64 bits */
|
|
|
|
#define SH_IPR 0x68 /* 64 bits */
|
|
|
|
#define SH_ICR 0x70 /* 64 bits */
|
|
|
|
#define SH_IEVAL 0x78
|
|
|
|
#define SH_QER 0x80
|
|
|
|
#define SH_QEER 0x84
|
|
|
|
#define SH_QEECR 0x88
|
|
|
|
#define SH_QEESR 0x8c
|
|
|
|
#define SH_QSER 0x90
|
|
|
|
#define SH_QSECR 0x94
|
|
|
|
#define SH_SIZE 0x200
|
|
|
|
|
|
|
|
/* Offsets for EDMA CC global registers */
|
|
|
|
#define EDMA_REV 0x0000
|
|
|
|
#define EDMA_CCCFG 0x0004
|
|
|
|
#define EDMA_QCHMAP 0x0200 /* 8 registers */
|
|
|
|
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
|
|
|
|
#define EDMA_QDMAQNUM 0x0260
|
|
|
|
#define EDMA_QUETCMAP 0x0280
|
|
|
|
#define EDMA_QUEPRI 0x0284
|
|
|
|
#define EDMA_EMR 0x0300 /* 64 bits */
|
|
|
|
#define EDMA_EMCR 0x0308 /* 64 bits */
|
|
|
|
#define EDMA_QEMR 0x0310
|
|
|
|
#define EDMA_QEMCR 0x0314
|
|
|
|
#define EDMA_CCERR 0x0318
|
|
|
|
#define EDMA_CCERRCLR 0x031c
|
|
|
|
#define EDMA_EEVAL 0x0320
|
|
|
|
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
|
|
|
|
#define EDMA_QRAE 0x0380 /* 4 registers */
|
|
|
|
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
|
|
|
|
#define EDMA_QSTAT 0x0600 /* 2 registers */
|
|
|
|
#define EDMA_QWMTHRA 0x0620
|
|
|
|
#define EDMA_QWMTHRB 0x0624
|
|
|
|
#define EDMA_CCSTAT 0x0640
|
|
|
|
|
|
|
|
#define EDMA_M 0x1000 /* global channel registers */
|
|
|
|
#define EDMA_ECR 0x1008
|
|
|
|
#define EDMA_ECRH 0x100C
|
|
|
|
#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
|
|
|
|
#define EDMA_PARM 0x4000 /* 128 param entries */
|
|
|
|
|
|
|
|
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
#define EDMA_DCHMAP 0x0100 /* 64 registers */
|
|
|
|
#define CHMAP_EXIST BIT(24)
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
#define EDMA_MAX_DMACH 64
|
|
|
|
#define EDMA_MAX_PARAMENTRY 512
|
|
|
|
|
|
|
|
/*****************************************************************************/
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline unsigned int edma_read(unsigned ctlr, int offset)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_write(unsigned ctlr, int offset, int val)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
__raw_writel(val, edmacc_regs_base[ctlr] + offset);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
|
|
|
|
unsigned or)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned val = edma_read(ctlr, offset);
|
2009-04-14 14:18:14 +02:00
|
|
|
val &= and;
|
|
|
|
val |= or;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, offset, val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_and(unsigned ctlr, int offset, unsigned and)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned val = edma_read(ctlr, offset);
|
2009-04-14 14:18:14 +02:00
|
|
|
val &= and;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, offset, val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_or(unsigned ctlr, int offset, unsigned or)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned val = edma_read(ctlr, offset);
|
2009-04-14 14:18:14 +02:00
|
|
|
val |= or;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, offset, val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
return edma_read(ctlr, offset + (i << 2));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_write_array(unsigned ctlr, int offset, int i,
|
|
|
|
unsigned val)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, offset + (i << 2), val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_modify_array(unsigned ctlr, int offset, int i,
|
2009-04-14 14:18:14 +02:00
|
|
|
unsigned and, unsigned or)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_modify(ctlr, offset + (i << 2), and, or);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_or(ctlr, offset + (i << 2), or);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
|
|
|
|
unsigned or)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_or(ctlr, offset + ((i*2 + j) << 2), or);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
|
|
|
|
unsigned val)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, offset + ((i*2 + j) << 2), val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
return edma_read(ctlr, EDMA_SHADOW0 + offset);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
|
|
|
|
int i)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, EDMA_SHADOW0 + offset, val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
|
|
|
|
unsigned val)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
|
|
|
|
int param_no)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
|
|
|
|
unsigned val)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
|
2009-04-14 14:18:14 +02:00
|
|
|
unsigned and, unsigned or)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
|
|
|
|
unsigned and)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
|
|
|
|
unsigned or)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
|
2010-06-29 08:05:13 +02:00
|
|
|
static inline void set_bits(int offset, int len, unsigned long *p)
|
|
|
|
{
|
|
|
|
for (; len > 0; len--)
|
|
|
|
set_bit(offset + (len - 1), p);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void clear_bits(int offset, int len, unsigned long *p)
|
|
|
|
{
|
|
|
|
for (; len > 0; len--)
|
|
|
|
clear_bit(offset + (len - 1), p);
|
|
|
|
}
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
/*****************************************************************************/
|
|
|
|
|
|
|
|
/* actual number of DMA channels and slots on this silicon */
|
2009-05-21 13:41:35 +02:00
|
|
|
struct edma {
|
|
|
|
/* how many dma resources of each type */
|
|
|
|
unsigned num_channels;
|
|
|
|
unsigned num_region;
|
|
|
|
unsigned num_slots;
|
|
|
|
unsigned num_tc;
|
|
|
|
unsigned num_cc;
|
2009-07-27 15:57:07 +02:00
|
|
|
enum dma_event_q default_queue;
|
2009-05-21 13:41:35 +02:00
|
|
|
|
|
|
|
/* list of channels with no even trigger; terminated by "-1" */
|
|
|
|
const s8 *noevent;
|
|
|
|
|
|
|
|
/* The edma_inuse bit for each PaRAM slot is clear unless the
|
|
|
|
* channel is in use ... by ARM or DSP, for QDMA, or whatever.
|
|
|
|
*/
|
|
|
|
DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2010-01-06 12:59:49 +01:00
|
|
|
/* The edma_unused bit for each channel is clear unless
|
|
|
|
* it is not being used on this platform. It uses a bit
|
|
|
|
* of SOC-specific initialization code.
|
2009-05-21 13:41:35 +02:00
|
|
|
*/
|
2010-01-06 12:59:49 +01:00
|
|
|
DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned irq_res_start;
|
|
|
|
unsigned irq_res_end;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
struct dma_interrupt_data {
|
|
|
|
void (*callback)(unsigned channel, unsigned short ch_status,
|
|
|
|
void *data);
|
|
|
|
void *data;
|
|
|
|
} intr_data[EDMA_MAX_DMACH];
|
|
|
|
};
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
static struct edma *edma_cc[EDMA_MAX_CC];
|
2010-01-06 12:58:44 +01:00
|
|
|
static int arch_num_cc;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* dummy param set used to (re)initialize parameter RAM slots */
|
|
|
|
static const struct edmacc_param dummy_paramset = {
|
|
|
|
.link_bcntrld = 0xffff,
|
|
|
|
.ccnt = 1,
|
|
|
|
};
|
|
|
|
|
2013-09-26 23:55:46 +02:00
|
|
|
static const struct of_device_id edma_of_ids[] = {
|
|
|
|
{ .compatible = "ti,edma3", },
|
|
|
|
{}
|
|
|
|
};
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
/*****************************************************************************/
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
|
|
|
|
enum dma_event_q queue_no)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
|
|
|
int bit = (ch_no & 0x7) * 4;
|
|
|
|
|
|
|
|
/* default to low priority queue */
|
|
|
|
if (queue_no == EVENTQ_DEFAULT)
|
2010-05-04 10:41:35 +02:00
|
|
|
queue_no = edma_cc[ctlr]->default_queue;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
queue_no &= 7;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
|
2009-04-14 14:18:14 +02:00
|
|
|
~(0x7 << bit), queue_no << bit);
|
|
|
|
}
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
|
|
|
int bit = queue_no * 4;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
|
|
|
|
int priority)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
|
|
|
int bit = queue_no * 4;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
|
|
|
|
((priority & 0x7) << bit));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* map_dmach_param - Maps channel number to param entry number
|
|
|
|
*
|
|
|
|
* This maps the dma channel number to param entry numberter. In
|
|
|
|
* other words using the DMA channel mapping registers a param entry
|
|
|
|
* can be mapped to any channel
|
|
|
|
*
|
|
|
|
* Callers are responsible for ensuring the channel mapping logic is
|
|
|
|
* included in that particular EDMA variant (Eg : dm646x)
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static void __init map_dmach_param(unsigned ctlr)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < EDMA_MAX_DMACH; i++)
|
|
|
|
edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
setup_dma_interrupt(unsigned lch,
|
|
|
|
void (*callback)(unsigned channel, u16 ch_status, void *data),
|
|
|
|
void *data)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(lch);
|
|
|
|
lch = EDMA_CHAN_SLOT(lch);
|
|
|
|
|
2010-05-04 10:41:36 +02:00
|
|
|
if (!callback)
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
|
2010-05-10 09:11:18 +02:00
|
|
|
BIT(lch & 0x1f));
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
edma_cc[ctlr]->intr_data[lch].callback = callback;
|
|
|
|
edma_cc[ctlr]->intr_data[lch].data = data;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
if (callback) {
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
|
2010-05-10 09:11:18 +02:00
|
|
|
BIT(lch & 0x1f));
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
|
2010-05-10 09:11:18 +02:00
|
|
|
BIT(lch & 0x1f));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
static int irq2ctlr(int irq)
|
|
|
|
{
|
2010-05-04 10:41:35 +02:00
|
|
|
if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
|
2009-05-21 13:41:35 +02:00
|
|
|
return 0;
|
2010-05-04 10:41:35 +02:00
|
|
|
else if (irq >= edma_cc[1]->irq_res_start &&
|
|
|
|
irq <= edma_cc[1]->irq_res_end)
|
2009-05-21 13:41:35 +02:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* DMA interrupt handler
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
static irqreturn_t dma_irq_handler(int irq, void *data)
|
|
|
|
{
|
2010-07-17 17:19:07 +02:00
|
|
|
int ctlr;
|
ARM: davinci: optimize the DMA ISR
The ISR does quiete a lot of hw access which could be avoided. First it
checks for a pending interrupt by reading alteast one register. Then it
checks for the "activated" slots by reading another register. This is
more or a less a must.
Now, once it found an active slot it does the same two reads again.
After that it "knows" that there must be a pending transfer however it
cross checks with the other register. There are 32 bit in an interger
which are polled instead of considering only the set bits and ignoring
those which are zero. This performs atleast 32 reads which could be
avoided. In case of a first match it does another read.
This patch reorganizes the access by re-using the register which have
been read and then uses ffs() to find the matching slot instead looping
over it. By doing this we get rid of the last (32 + 2 + hits) reads.
It is possible however that by really busy bank0 we never get to handle
bank1. If this is a problem, we could try to handle bank1 after we are
done with bank0 to check if there are any outstanding transfers.
To put some numbers on this, this is from spi transfer via spidev. The
first column is the number of total transfers, the time stamp is taken
before and after the ioctl():
|10000, min: 542us avg: 591us
|20000, min: 542us avg: 592us
|30000, min: 542us avg: 592us
|40000, min: 542us avg: 585us
|50000, min: 542us avg: 593us
The same test case with the patch applied
|10000, min: 444us avg: 493us
|20000, min: 444us avg: 491us
|30000, min: 444us avg: 489us
|40000, min: 444us avg: 491us
|50000, min: 444us avg: 492us
that is almost 100us that just went away.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
2012-02-09 13:28:26 +01:00
|
|
|
u32 sh_ier;
|
|
|
|
u32 sh_ipr;
|
|
|
|
u32 bank;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
ctlr = irq2ctlr(irq);
|
2010-07-17 17:19:07 +02:00
|
|
|
if (ctlr < 0)
|
|
|
|
return IRQ_NONE;
|
2009-05-21 13:41:35 +02:00
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
dev_dbg(data, "dma_irq_handler\n");
|
|
|
|
|
ARM: davinci: optimize the DMA ISR
The ISR does quiete a lot of hw access which could be avoided. First it
checks for a pending interrupt by reading alteast one register. Then it
checks for the "activated" slots by reading another register. This is
more or a less a must.
Now, once it found an active slot it does the same two reads again.
After that it "knows" that there must be a pending transfer however it
cross checks with the other register. There are 32 bit in an interger
which are polled instead of considering only the set bits and ignoring
those which are zero. This performs atleast 32 reads which could be
avoided. In case of a first match it does another read.
This patch reorganizes the access by re-using the register which have
been read and then uses ffs() to find the matching slot instead looping
over it. By doing this we get rid of the last (32 + 2 + hits) reads.
It is possible however that by really busy bank0 we never get to handle
bank1. If this is a problem, we could try to handle bank1 after we are
done with bank0 to check if there are any outstanding transfers.
To put some numbers on this, this is from spi transfer via spidev. The
first column is the number of total transfers, the time stamp is taken
before and after the ioctl():
|10000, min: 542us avg: 591us
|20000, min: 542us avg: 592us
|30000, min: 542us avg: 592us
|40000, min: 542us avg: 585us
|50000, min: 542us avg: 593us
The same test case with the patch applied
|10000, min: 444us avg: 493us
|20000, min: 444us avg: 491us
|30000, min: 444us avg: 489us
|40000, min: 444us avg: 491us
|50000, min: 444us avg: 492us
that is almost 100us that just went away.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
2012-02-09 13:28:26 +01:00
|
|
|
sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
|
|
|
|
if (!sh_ipr) {
|
|
|
|
sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
|
|
|
|
if (!sh_ipr)
|
|
|
|
return IRQ_NONE;
|
|
|
|
sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
|
|
|
|
bank = 1;
|
|
|
|
} else {
|
|
|
|
sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
|
|
|
|
bank = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
do {
|
|
|
|
u32 slot;
|
|
|
|
u32 channel;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
ARM: davinci: optimize the DMA ISR
The ISR does quiete a lot of hw access which could be avoided. First it
checks for a pending interrupt by reading alteast one register. Then it
checks for the "activated" slots by reading another register. This is
more or a less a must.
Now, once it found an active slot it does the same two reads again.
After that it "knows" that there must be a pending transfer however it
cross checks with the other register. There are 32 bit in an interger
which are polled instead of considering only the set bits and ignoring
those which are zero. This performs atleast 32 reads which could be
avoided. In case of a first match it does another read.
This patch reorganizes the access by re-using the register which have
been read and then uses ffs() to find the matching slot instead looping
over it. By doing this we get rid of the last (32 + 2 + hits) reads.
It is possible however that by really busy bank0 we never get to handle
bank1. If this is a problem, we could try to handle bank1 after we are
done with bank0 to check if there are any outstanding transfers.
To put some numbers on this, this is from spi transfer via spidev. The
first column is the number of total transfers, the time stamp is taken
before and after the ioctl():
|10000, min: 542us avg: 591us
|20000, min: 542us avg: 592us
|30000, min: 542us avg: 592us
|40000, min: 542us avg: 585us
|50000, min: 542us avg: 593us
The same test case with the patch applied
|10000, min: 444us avg: 493us
|20000, min: 444us avg: 491us
|30000, min: 444us avg: 489us
|40000, min: 444us avg: 491us
|50000, min: 444us avg: 492us
that is almost 100us that just went away.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
2012-02-09 13:28:26 +01:00
|
|
|
dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
|
|
|
|
|
|
|
|
slot = __ffs(sh_ipr);
|
|
|
|
sh_ipr &= ~(BIT(slot));
|
|
|
|
|
|
|
|
if (sh_ier & BIT(slot)) {
|
|
|
|
channel = (bank << 5) | slot;
|
|
|
|
/* Clear the corresponding IPR bits */
|
|
|
|
edma_shadow0_write_array(ctlr, SH_ICR, bank,
|
|
|
|
BIT(slot));
|
|
|
|
if (edma_cc[ctlr]->intr_data[channel].callback)
|
|
|
|
edma_cc[ctlr]->intr_data[channel].callback(
|
2013-10-30 13:52:30 +01:00
|
|
|
channel, EDMA_DMA_COMPLETE,
|
ARM: davinci: optimize the DMA ISR
The ISR does quiete a lot of hw access which could be avoided. First it
checks for a pending interrupt by reading alteast one register. Then it
checks for the "activated" slots by reading another register. This is
more or a less a must.
Now, once it found an active slot it does the same two reads again.
After that it "knows" that there must be a pending transfer however it
cross checks with the other register. There are 32 bit in an interger
which are polled instead of considering only the set bits and ignoring
those which are zero. This performs atleast 32 reads which could be
avoided. In case of a first match it does another read.
This patch reorganizes the access by re-using the register which have
been read and then uses ffs() to find the matching slot instead looping
over it. By doing this we get rid of the last (32 + 2 + hits) reads.
It is possible however that by really busy bank0 we never get to handle
bank1. If this is a problem, we could try to handle bank1 after we are
done with bank0 to check if there are any outstanding transfers.
To put some numbers on this, this is from spi transfer via spidev. The
first column is the number of total transfers, the time stamp is taken
before and after the ioctl():
|10000, min: 542us avg: 591us
|20000, min: 542us avg: 592us
|30000, min: 542us avg: 592us
|40000, min: 542us avg: 585us
|50000, min: 542us avg: 593us
The same test case with the patch applied
|10000, min: 444us avg: 493us
|20000, min: 444us avg: 491us
|30000, min: 444us avg: 489us
|40000, min: 444us avg: 491us
|50000, min: 444us avg: 492us
that is almost 100us that just went away.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
2012-02-09 13:28:26 +01:00
|
|
|
edma_cc[ctlr]->intr_data[channel].data);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
ARM: davinci: optimize the DMA ISR
The ISR does quiete a lot of hw access which could be avoided. First it
checks for a pending interrupt by reading alteast one register. Then it
checks for the "activated" slots by reading another register. This is
more or a less a must.
Now, once it found an active slot it does the same two reads again.
After that it "knows" that there must be a pending transfer however it
cross checks with the other register. There are 32 bit in an interger
which are polled instead of considering only the set bits and ignoring
those which are zero. This performs atleast 32 reads which could be
avoided. In case of a first match it does another read.
This patch reorganizes the access by re-using the register which have
been read and then uses ffs() to find the matching slot instead looping
over it. By doing this we get rid of the last (32 + 2 + hits) reads.
It is possible however that by really busy bank0 we never get to handle
bank1. If this is a problem, we could try to handle bank1 after we are
done with bank0 to check if there are any outstanding transfers.
To put some numbers on this, this is from spi transfer via spidev. The
first column is the number of total transfers, the time stamp is taken
before and after the ioctl():
|10000, min: 542us avg: 591us
|20000, min: 542us avg: 592us
|30000, min: 542us avg: 592us
|40000, min: 542us avg: 585us
|50000, min: 542us avg: 593us
The same test case with the patch applied
|10000, min: 444us avg: 493us
|20000, min: 444us avg: 491us
|30000, min: 444us avg: 489us
|40000, min: 444us avg: 491us
|50000, min: 444us avg: 492us
that is almost 100us that just went away.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
2012-02-09 13:28:26 +01:00
|
|
|
} while (sh_ipr);
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write(ctlr, SH_IEVAL, 1);
|
2009-04-14 14:18:14 +02:00
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* DMA error interrupt handler
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
static irqreturn_t dma_ccerr_handler(int irq, void *data)
|
|
|
|
{
|
|
|
|
int i;
|
2010-07-17 17:19:07 +02:00
|
|
|
int ctlr;
|
2009-04-14 14:18:14 +02:00
|
|
|
unsigned int cnt = 0;
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
ctlr = irq2ctlr(irq);
|
2010-07-17 17:19:07 +02:00
|
|
|
if (ctlr < 0)
|
|
|
|
return IRQ_NONE;
|
2009-05-21 13:41:35 +02:00
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
dev_dbg(data, "dma_ccerr_handler\n");
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
|
|
|
|
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
|
|
|
|
(edma_read(ctlr, EDMA_QEMR) == 0) &&
|
|
|
|
(edma_read(ctlr, EDMA_CCERR) == 0))
|
2009-04-14 14:18:14 +02:00
|
|
|
return IRQ_NONE;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
int j = -1;
|
2009-05-21 13:41:35 +02:00
|
|
|
if (edma_read_array(ctlr, EDMA_EMR, 0))
|
2009-04-14 14:18:14 +02:00
|
|
|
j = 0;
|
2009-05-21 13:41:35 +02:00
|
|
|
else if (edma_read_array(ctlr, EDMA_EMR, 1))
|
2009-04-14 14:18:14 +02:00
|
|
|
j = 1;
|
|
|
|
if (j >= 0) {
|
|
|
|
dev_dbg(data, "EMR%d %08x\n", j,
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_read_array(ctlr, EDMA_EMR, j));
|
2009-04-14 14:18:14 +02:00
|
|
|
for (i = 0; i < 32; i++) {
|
|
|
|
int k = (j << 5) + i;
|
2009-05-21 13:41:35 +02:00
|
|
|
if (edma_read_array(ctlr, EDMA_EMR, j) &
|
2010-05-10 09:11:18 +02:00
|
|
|
BIT(i)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Clear the corresponding EMR bits */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write_array(ctlr, EDMA_EMCR, j,
|
2010-05-10 09:11:18 +02:00
|
|
|
BIT(i));
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Clear any SER */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_SECR,
|
2010-05-10 09:11:18 +02:00
|
|
|
j, BIT(i));
|
2010-05-04 10:41:35 +02:00
|
|
|
if (edma_cc[ctlr]->intr_data[k].
|
2009-05-21 13:41:35 +02:00
|
|
|
callback) {
|
2010-05-04 10:41:35 +02:00
|
|
|
edma_cc[ctlr]->intr_data[k].
|
2009-05-21 13:41:35 +02:00
|
|
|
callback(k,
|
2013-10-30 13:52:30 +01:00
|
|
|
EDMA_DMA_CC_ERROR,
|
2010-05-04 10:41:35 +02:00
|
|
|
edma_cc[ctlr]->intr_data
|
2009-05-21 13:41:35 +02:00
|
|
|
[k].data);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
} else if (edma_read(ctlr, EDMA_QEMR)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
dev_dbg(data, "QEMR %02x\n",
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_read(ctlr, EDMA_QEMR));
|
2009-04-14 14:18:14 +02:00
|
|
|
for (i = 0; i < 8; i++) {
|
2010-05-10 09:11:18 +02:00
|
|
|
if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Clear the corresponding IPR bits */
|
2010-05-10 09:11:18 +02:00
|
|
|
edma_write(ctlr, EDMA_QEMCR, BIT(i));
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write(ctlr, SH_QSECR,
|
2010-05-10 09:11:18 +02:00
|
|
|
BIT(i));
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* NOTE: not reported!! */
|
|
|
|
}
|
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
} else if (edma_read(ctlr, EDMA_CCERR)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
dev_dbg(data, "CCERR %08x\n",
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_read(ctlr, EDMA_CCERR));
|
2009-04-14 14:18:14 +02:00
|
|
|
/* FIXME: CCERR.BIT(16) ignored! much better
|
|
|
|
* to just write CCERRCLR with CCERR value...
|
|
|
|
*/
|
|
|
|
for (i = 0; i < 8; i++) {
|
2010-05-10 09:11:18 +02:00
|
|
|
if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Clear the corresponding IPR bits */
|
2010-05-10 09:11:18 +02:00
|
|
|
edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* NOTE: not reported!! */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2010-05-10 09:11:19 +02:00
|
|
|
if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
|
|
|
|
(edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
|
|
|
|
(edma_read(ctlr, EDMA_QEMR) == 0) &&
|
|
|
|
(edma_read(ctlr, EDMA_CCERR) == 0))
|
2009-04-14 14:18:14 +02:00
|
|
|
break;
|
|
|
|
cnt++;
|
|
|
|
if (cnt > 10)
|
|
|
|
break;
|
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write(ctlr, EDMA_EEVAL, 1);
|
2009-04-14 14:18:14 +02:00
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
2009-09-20 20:06:33 +02:00
|
|
|
static int reserve_contiguous_slots(int ctlr, unsigned int id,
|
|
|
|
unsigned int num_slots,
|
|
|
|
unsigned int start_slot)
|
2009-07-27 21:10:36 +02:00
|
|
|
{
|
|
|
|
int i, j;
|
2009-09-20 20:06:33 +02:00
|
|
|
unsigned int count = num_slots;
|
|
|
|
int stop_slot = start_slot;
|
2009-09-20 19:47:03 +02:00
|
|
|
DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
|
2009-07-27 21:10:36 +02:00
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
|
2009-07-27 21:10:36 +02:00
|
|
|
j = EDMA_CHAN_SLOT(i);
|
2010-05-04 10:41:35 +02:00
|
|
|
if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
|
2009-09-20 19:47:03 +02:00
|
|
|
/* Record our current beginning slot */
|
2009-09-20 20:06:33 +02:00
|
|
|
if (count == num_slots)
|
|
|
|
stop_slot = i;
|
2009-09-20 19:47:03 +02:00
|
|
|
|
2009-07-27 21:10:36 +02:00
|
|
|
count--;
|
2009-09-20 19:47:03 +02:00
|
|
|
set_bit(j, tmp_inuse);
|
|
|
|
|
2009-07-27 21:10:36 +02:00
|
|
|
if (count == 0)
|
|
|
|
break;
|
2009-09-20 19:47:03 +02:00
|
|
|
} else {
|
|
|
|
clear_bit(j, tmp_inuse);
|
|
|
|
|
|
|
|
if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
|
2009-09-20 20:06:33 +02:00
|
|
|
stop_slot = i;
|
2009-09-20 19:47:03 +02:00
|
|
|
break;
|
2010-05-04 10:41:36 +02:00
|
|
|
} else {
|
2009-09-20 20:06:33 +02:00
|
|
|
count = num_slots;
|
2010-05-04 10:41:36 +02:00
|
|
|
}
|
2009-09-20 19:47:03 +02:00
|
|
|
}
|
2009-07-27 21:10:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We have to clear any bits that we set
|
2009-09-20 20:06:33 +02:00
|
|
|
* if we run out parameter RAM slots, i.e we do find a set
|
|
|
|
* of contiguous parameter RAM slots but do not find the exact number
|
|
|
|
* requested as we may reach the total number of parameter RAM slots
|
2009-07-27 21:10:36 +02:00
|
|
|
*/
|
2010-05-04 10:41:35 +02:00
|
|
|
if (i == edma_cc[ctlr]->num_slots)
|
2009-09-20 20:06:33 +02:00
|
|
|
stop_slot = i;
|
2009-09-20 19:47:03 +02:00
|
|
|
|
2012-04-11 13:36:53 +02:00
|
|
|
j = start_slot;
|
|
|
|
for_each_set_bit_from(j, tmp_inuse, stop_slot)
|
|
|
|
clear_bit(j, edma_cc[ctlr]->edma_inuse);
|
2009-07-27 21:10:36 +02:00
|
|
|
|
2009-09-20 19:47:03 +02:00
|
|
|
if (count)
|
2009-07-27 21:10:36 +02:00
|
|
|
return -EBUSY;
|
|
|
|
|
2009-09-20 20:06:33 +02:00
|
|
|
for (j = i - num_slots + 1; j <= i; ++j)
|
2009-07-27 21:10:36 +02:00
|
|
|
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
|
|
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
|
2009-09-20 20:06:33 +02:00
|
|
|
return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
|
2009-07-27 21:10:36 +02:00
|
|
|
}
|
|
|
|
|
2010-01-06 12:59:49 +01:00
|
|
|
static int prepare_unused_channel_list(struct device *dev, void *data)
|
|
|
|
{
|
|
|
|
struct platform_device *pdev = to_platform_device(dev);
|
2013-09-26 23:55:46 +02:00
|
|
|
int i, count, ctlr;
|
|
|
|
struct of_phandle_args dma_spec;
|
2010-01-06 12:59:49 +01:00
|
|
|
|
2013-09-26 23:55:46 +02:00
|
|
|
if (dev->of_node) {
|
|
|
|
count = of_property_count_strings(dev->of_node, "dma-names");
|
|
|
|
if (count < 0)
|
|
|
|
return 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
if (of_parse_phandle_with_args(dev->of_node, "dmas",
|
|
|
|
"#dma-cells", i,
|
|
|
|
&dma_spec))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (!of_match_node(edma_of_ids, dma_spec.np)) {
|
|
|
|
of_node_put(dma_spec.np);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
|
|
|
|
edma_cc[0]->edma_unused);
|
|
|
|
of_node_put(dma_spec.np);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* For non-OF case */
|
2010-01-06 12:59:49 +01:00
|
|
|
for (i = 0; i < pdev->num_resources; i++) {
|
|
|
|
if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
|
|
|
|
(int)pdev->resource[i].start >= 0) {
|
|
|
|
ctlr = EDMA_CTLR(pdev->resource[i].start);
|
|
|
|
clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
|
2013-09-26 23:55:46 +02:00
|
|
|
edma_cc[ctlr]->edma_unused);
|
2010-01-06 12:59:49 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
|
2010-01-06 12:59:49 +01:00
|
|
|
static bool unused_chan_list_done;
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Resource alloc/free: dma channels, parameter RAM slots */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_alloc_channel - allocate DMA channel and paired parameter RAM
|
|
|
|
* @channel: specific channel to allocate; negative for "any unmapped channel"
|
|
|
|
* @callback: optional; to be issued on DMA completion or errors
|
|
|
|
* @data: passed to callback
|
|
|
|
* @eventq_no: an EVENTQ_* constant, used to choose which Transfer
|
|
|
|
* Controller (TC) executes requests using this channel. Use
|
|
|
|
* EVENTQ_DEFAULT unless you really need a high priority queue.
|
|
|
|
*
|
|
|
|
* This allocates a DMA channel and its associated parameter RAM slot.
|
|
|
|
* The parameter RAM is initialized to hold a dummy transfer.
|
|
|
|
*
|
|
|
|
* Normal use is to pass a specific channel number as @channel, to make
|
|
|
|
* use of hardware events mapped to that channel. When the channel will
|
|
|
|
* be used only for software triggering or event chaining, channels not
|
|
|
|
* mapped to hardware events (or mapped to unused events) are preferable.
|
|
|
|
*
|
|
|
|
* DMA transfers start from a channel using edma_start(), or by
|
|
|
|
* chaining. When the transfer described in that channel's parameter RAM
|
|
|
|
* slot completes, that slot's data may be reloaded through a link.
|
|
|
|
*
|
|
|
|
* DMA errors are only reported to the @callback associated with the
|
|
|
|
* channel driving that transfer, but transfer completion callbacks can
|
|
|
|
* be sent to another channel under control of the TCC field in
|
|
|
|
* the option word of the transfer's parameter RAM set. Drivers must not
|
|
|
|
* use DMA transfer completion callbacks for channels they did not allocate.
|
|
|
|
* (The same applies to TCC codes used in transfer chaining.)
|
|
|
|
*
|
|
|
|
* Returns the number of the channel, else negative errno.
|
|
|
|
*/
|
|
|
|
int edma_alloc_channel(int channel,
|
|
|
|
void (*callback)(unsigned channel, u16 ch_status, void *data),
|
|
|
|
void *data,
|
|
|
|
enum dma_event_q eventq_no)
|
|
|
|
{
|
2010-01-06 12:59:11 +01:00
|
|
|
unsigned i, done = 0, ctlr = 0;
|
2010-01-06 12:59:49 +01:00
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!unused_chan_list_done) {
|
|
|
|
/*
|
|
|
|
* Scan all the platform devices to find out the EDMA channels
|
|
|
|
* used and clear them in the unused list, making the rest
|
|
|
|
* available for ARM usage.
|
|
|
|
*/
|
|
|
|
ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
|
|
|
|
prepare_unused_channel_list);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
unused_chan_list_done = true;
|
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
|
|
|
|
if (channel >= 0) {
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
}
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
if (channel < 0) {
|
2010-01-06 12:58:44 +01:00
|
|
|
for (i = 0; i < arch_num_cc; i++) {
|
2009-05-21 13:41:35 +02:00
|
|
|
channel = 0;
|
|
|
|
for (;;) {
|
2010-05-04 10:41:35 +02:00
|
|
|
channel = find_next_bit(edma_cc[i]->edma_unused,
|
|
|
|
edma_cc[i]->num_channels,
|
2009-05-21 13:41:35 +02:00
|
|
|
channel);
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel == edma_cc[i]->num_channels)
|
2010-01-06 12:59:11 +01:00
|
|
|
break;
|
2009-05-21 13:41:35 +02:00
|
|
|
if (!test_and_set_bit(channel,
|
2010-05-04 10:41:35 +02:00
|
|
|
edma_cc[i]->edma_inuse)) {
|
2009-05-21 13:41:35 +02:00
|
|
|
done = 1;
|
|
|
|
ctlr = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
channel++;
|
|
|
|
}
|
|
|
|
if (done)
|
2009-04-14 14:18:14 +02:00
|
|
|
break;
|
|
|
|
}
|
2010-01-06 12:59:11 +01:00
|
|
|
if (!done)
|
|
|
|
return -ENOMEM;
|
2010-05-04 10:41:35 +02:00
|
|
|
} else if (channel >= edma_cc[ctlr]->num_channels) {
|
2009-04-14 14:18:14 +02:00
|
|
|
return -EINVAL;
|
2010-05-04 10:41:35 +02:00
|
|
|
} else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ensure access through shadow region 0 */
|
2010-05-10 09:11:18 +02:00
|
|
|
edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* ensure no events are pending */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
|
|
|
|
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
|
2009-04-14 14:18:14 +02:00
|
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
|
|
|
|
if (callback)
|
2009-05-21 13:41:35 +02:00
|
|
|
setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
|
|
|
|
callback, data);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
map_dmach_queue(ctlr, channel, eventq_no);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2010-01-06 12:58:36 +01:00
|
|
|
return EDMA_CTLR_CHAN(ctlr, channel);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_alloc_channel);
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_free_channel - deallocate DMA channel
|
|
|
|
* @channel: dma channel returned from edma_alloc_channel()
|
|
|
|
*
|
|
|
|
* This deallocates the DMA channel and associated parameter RAM slot
|
|
|
|
* allocated by edma_alloc_channel().
|
|
|
|
*
|
|
|
|
* Callers are responsible for ensuring the channel is inactive, and
|
|
|
|
* will not be reactivated by linking, chaining, or software calls to
|
|
|
|
* edma_start().
|
|
|
|
*/
|
|
|
|
void edma_free_channel(unsigned channel)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel >= edma_cc[ctlr]->num_channels)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
|
|
|
|
|
|
|
setup_dma_interrupt(channel, NULL, NULL);
|
|
|
|
/* REVISIT should probably take out of shadow region 0 */
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
|
2009-04-14 14:18:14 +02:00
|
|
|
&dummy_paramset, PARM_SIZE);
|
2010-05-04 10:41:35 +02:00
|
|
|
clear_bit(channel, edma_cc[ctlr]->edma_inuse);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_free_channel);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_alloc_slot - allocate DMA parameter RAM
|
|
|
|
* @slot: specific slot to allocate; negative for "any unused slot"
|
|
|
|
*
|
|
|
|
* This allocates a parameter RAM slot, initializing it to hold a
|
|
|
|
* dummy transfer. Slots allocated using this routine have not been
|
|
|
|
* mapped to a hardware DMA channel, and will normally be used by
|
|
|
|
* linking to them from a slot associated with a DMA channel.
|
|
|
|
*
|
|
|
|
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
|
|
|
|
* slots may be allocated on behalf of DSP firmware.
|
|
|
|
*
|
|
|
|
* Returns the number of the slot, else negative errno.
|
|
|
|
*/
|
2009-05-21 13:41:35 +02:00
|
|
|
int edma_alloc_slot(unsigned ctlr, int slot)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2013-03-05 16:58:22 +01:00
|
|
|
if (!edma_cc[ctlr])
|
|
|
|
return -EINVAL;
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
if (slot >= 0)
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
if (slot < 0) {
|
2010-05-04 10:41:35 +02:00
|
|
|
slot = edma_cc[ctlr]->num_channels;
|
2009-04-14 14:18:14 +02:00
|
|
|
for (;;) {
|
2010-05-04 10:41:35 +02:00
|
|
|
slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
|
|
|
|
edma_cc[ctlr]->num_slots, slot);
|
|
|
|
if (slot == edma_cc[ctlr]->num_slots)
|
2009-04-14 14:18:14 +02:00
|
|
|
return -ENOMEM;
|
2010-05-04 10:41:35 +02:00
|
|
|
if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
|
2009-04-14 14:18:14 +02:00
|
|
|
break;
|
|
|
|
}
|
2010-05-04 10:41:35 +02:00
|
|
|
} else if (slot < edma_cc[ctlr]->num_channels ||
|
|
|
|
slot >= edma_cc[ctlr]->num_slots) {
|
2009-04-14 14:18:14 +02:00
|
|
|
return -EINVAL;
|
2010-05-04 10:41:35 +02:00
|
|
|
} else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
|
2009-04-14 14:18:14 +02:00
|
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
return EDMA_CTLR_CHAN(ctlr, slot);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_alloc_slot);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_free_slot - deallocate DMA parameter RAM
|
|
|
|
* @slot: parameter RAM slot returned from edma_alloc_slot()
|
|
|
|
*
|
|
|
|
* This deallocates the parameter RAM slot allocated by edma_alloc_slot().
|
|
|
|
* Callers are responsible for ensuring the slot is inactive, and will
|
|
|
|
* not be activated.
|
|
|
|
*/
|
|
|
|
void edma_free_slot(unsigned slot)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot < edma_cc[ctlr]->num_channels ||
|
|
|
|
slot >= edma_cc[ctlr]->num_slots)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
|
2009-04-14 14:18:14 +02:00
|
|
|
&dummy_paramset, PARM_SIZE);
|
2010-05-04 10:41:35 +02:00
|
|
|
clear_bit(slot, edma_cc[ctlr]->edma_inuse);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_free_slot);
|
|
|
|
|
2009-07-27 21:10:36 +02:00
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_alloc_cont_slots- alloc contiguous parameter RAM slots
|
|
|
|
* The API will return the starting point of a set of
|
2009-09-20 20:06:33 +02:00
|
|
|
* contiguous parameter RAM slots that have been requested
|
2009-07-27 21:10:36 +02:00
|
|
|
*
|
|
|
|
* @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
|
|
|
|
* or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
|
2009-09-20 20:06:33 +02:00
|
|
|
* @count: number of contiguous Paramter RAM slots
|
|
|
|
* @slot - the start value of Parameter RAM slot that should be passed if id
|
2009-07-27 21:10:36 +02:00
|
|
|
* is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
|
|
|
|
*
|
|
|
|
* If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
|
2009-09-20 20:06:33 +02:00
|
|
|
* contiguous Parameter RAM slots from parameter RAM 64 in the case of
|
|
|
|
* DaVinci SOCs and 32 in the case of DA8xx SOCs.
|
2009-07-27 21:10:36 +02:00
|
|
|
*
|
|
|
|
* If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
|
2009-09-20 20:06:33 +02:00
|
|
|
* set of contiguous parameter RAM slots from the "slot" that is passed as an
|
2009-07-27 21:10:36 +02:00
|
|
|
* argument to the API.
|
|
|
|
*
|
|
|
|
* If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
|
2009-09-20 20:06:33 +02:00
|
|
|
* starts looking for a set of contiguous parameter RAMs from the "slot"
|
2009-07-27 21:10:36 +02:00
|
|
|
* that is passed as an argument to the API. On failure the API will try to
|
2009-09-20 20:06:33 +02:00
|
|
|
* find a set of contiguous Parameter RAM slots from the remaining Parameter
|
|
|
|
* RAM slots
|
2009-07-27 21:10:36 +02:00
|
|
|
*/
|
|
|
|
int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The start slot requested should be greater than
|
|
|
|
* the number of channels and lesser than the total number
|
|
|
|
* of slots
|
|
|
|
*/
|
2009-09-17 00:17:43 +02:00
|
|
|
if ((id != EDMA_CONT_PARAMS_ANY) &&
|
2010-05-04 10:41:35 +02:00
|
|
|
(slot < edma_cc[ctlr]->num_channels ||
|
|
|
|
slot >= edma_cc[ctlr]->num_slots))
|
2009-07-27 21:10:36 +02:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
2009-09-20 20:06:33 +02:00
|
|
|
* The number of parameter RAM slots requested cannot be less than 1
|
2009-07-27 21:10:36 +02:00
|
|
|
* and cannot be more than the number of slots minus the number of
|
|
|
|
* channels
|
|
|
|
*/
|
|
|
|
if (count < 1 || count >
|
2010-05-04 10:41:35 +02:00
|
|
|
(edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
|
2009-07-27 21:10:36 +02:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
switch (id) {
|
|
|
|
case EDMA_CONT_PARAMS_ANY:
|
2009-09-20 20:06:33 +02:00
|
|
|
return reserve_contiguous_slots(ctlr, id, count,
|
2010-05-04 10:41:35 +02:00
|
|
|
edma_cc[ctlr]->num_channels);
|
2009-07-27 21:10:36 +02:00
|
|
|
case EDMA_CONT_PARAMS_FIXED_EXACT:
|
|
|
|
case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
|
2009-09-20 20:06:33 +02:00
|
|
|
return reserve_contiguous_slots(ctlr, id, count, slot);
|
2009-07-27 21:10:36 +02:00
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_alloc_cont_slots);
|
|
|
|
|
|
|
|
/**
|
2009-09-20 20:06:33 +02:00
|
|
|
* edma_free_cont_slots - deallocate DMA parameter RAM slots
|
|
|
|
* @slot: first parameter RAM of a set of parameter RAM slots to be freed
|
|
|
|
* @count: the number of contiguous parameter RAM slots to be freed
|
2009-07-27 21:10:36 +02:00
|
|
|
*
|
|
|
|
* This deallocates the parameter RAM slots allocated by
|
|
|
|
* edma_alloc_cont_slots.
|
|
|
|
* Callers/applications need to keep track of sets of contiguous
|
2009-09-20 20:06:33 +02:00
|
|
|
* parameter RAM slots that have been allocated using the edma_alloc_cont_slots
|
2009-07-27 21:10:36 +02:00
|
|
|
* API.
|
|
|
|
* Callers are responsible for ensuring the slots are inactive, and will
|
|
|
|
* not be activated.
|
|
|
|
*/
|
|
|
|
int edma_free_cont_slots(unsigned slot, int count)
|
|
|
|
{
|
2009-09-17 00:09:59 +02:00
|
|
|
unsigned ctlr, slot_to_free;
|
2009-07-27 21:10:36 +02:00
|
|
|
int i;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot < edma_cc[ctlr]->num_channels ||
|
|
|
|
slot >= edma_cc[ctlr]->num_slots ||
|
2009-07-27 21:10:36 +02:00
|
|
|
count < 1)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
for (i = slot; i < slot + count; ++i) {
|
|
|
|
ctlr = EDMA_CTLR(i);
|
2009-09-17 00:09:59 +02:00
|
|
|
slot_to_free = EDMA_CHAN_SLOT(i);
|
2009-07-27 21:10:36 +02:00
|
|
|
|
2009-09-17 00:09:59 +02:00
|
|
|
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
|
2009-07-27 21:10:36 +02:00
|
|
|
&dummy_paramset, PARM_SIZE);
|
2010-05-04 10:41:35 +02:00
|
|
|
clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
|
2009-07-27 21:10:36 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_free_cont_slots);
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* Parameter RAM operations (i) -- read/write partial slots */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_set_src - set initial DMA source address in parameter RAM slot
|
|
|
|
* @slot: parameter RAM slot being configured
|
|
|
|
* @src_port: physical address of source (memory, controller FIFO, etc)
|
|
|
|
* @addressMode: INCR, except in very rare cases
|
|
|
|
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
|
|
|
|
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
|
|
|
|
*
|
|
|
|
* Note that the source address is modified during the DMA transfer
|
|
|
|
* according to edma_set_src_index().
|
|
|
|
*/
|
|
|
|
void edma_set_src(unsigned slot, dma_addr_t src_port,
|
|
|
|
enum address_mode mode, enum fifo_width width)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
if (mode) {
|
|
|
|
/* set SAM and program FWID */
|
|
|
|
i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
|
|
|
|
} else {
|
|
|
|
/* clear SAM */
|
|
|
|
i &= ~SAM;
|
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_write(ctlr, PARM_OPT, slot, i);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* set the source port address
|
|
|
|
in source register of param structure */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_write(ctlr, PARM_SRC, slot, src_port);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_set_src);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_set_dest - set initial DMA destination address in parameter RAM slot
|
|
|
|
* @slot: parameter RAM slot being configured
|
|
|
|
* @dest_port: physical address of destination (memory, controller FIFO, etc)
|
|
|
|
* @addressMode: INCR, except in very rare cases
|
|
|
|
* @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
|
|
|
|
* width to use when addressing the fifo (e.g. W8BIT, W32BIT)
|
|
|
|
*
|
|
|
|
* Note that the destination address is modified during the DMA transfer
|
|
|
|
* according to edma_set_dest_index().
|
|
|
|
*/
|
|
|
|
void edma_set_dest(unsigned slot, dma_addr_t dest_port,
|
|
|
|
enum address_mode mode, enum fifo_width width)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
if (mode) {
|
|
|
|
/* set DAM and program FWID */
|
|
|
|
i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
|
|
|
|
} else {
|
|
|
|
/* clear DAM */
|
|
|
|
i &= ~DAM;
|
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_write(ctlr, PARM_OPT, slot, i);
|
2009-04-14 14:18:14 +02:00
|
|
|
/* set the destination port address
|
|
|
|
in dest register of param structure */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_write(ctlr, PARM_DST, slot, dest_port);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_set_dest);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_get_position - returns the current transfer points
|
|
|
|
* @slot: parameter RAM slot being examined
|
|
|
|
* @src: pointer to source port position
|
|
|
|
* @dst: pointer to destination port position
|
|
|
|
*
|
|
|
|
* Returns current source and destination addresses for a particular
|
|
|
|
* parameter RAM slot. Its channel should not be active when this is called.
|
|
|
|
*/
|
|
|
|
void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
|
|
|
|
{
|
|
|
|
struct edmacc_param temp;
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
|
2009-04-14 14:18:14 +02:00
|
|
|
if (src != NULL)
|
|
|
|
*src = temp.src;
|
|
|
|
if (dst != NULL)
|
|
|
|
*dst = temp.dst;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_get_position);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_set_src_index - configure DMA source address indexing
|
|
|
|
* @slot: parameter RAM slot being configured
|
|
|
|
* @src_bidx: byte offset between source arrays in a frame
|
|
|
|
* @src_cidx: byte offset between source frames in a block
|
|
|
|
*
|
|
|
|
* Offsets are specified to support either contiguous or discontiguous
|
|
|
|
* memory transfers, or repeated access to a hardware register, as needed.
|
|
|
|
* When accessing hardware registers, both offsets are normally zero.
|
|
|
|
*/
|
|
|
|
void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
|
2009-04-14 14:18:14 +02:00
|
|
|
0xffff0000, src_bidx);
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
|
2009-04-14 14:18:14 +02:00
|
|
|
0xffff0000, src_cidx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_set_src_index);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_set_dest_index - configure DMA destination address indexing
|
|
|
|
* @slot: parameter RAM slot being configured
|
|
|
|
* @dest_bidx: byte offset between destination arrays in a frame
|
|
|
|
* @dest_cidx: byte offset between destination frames in a block
|
|
|
|
*
|
|
|
|
* Offsets are specified to support either contiguous or discontiguous
|
|
|
|
* memory transfers, or repeated access to a hardware register, as needed.
|
|
|
|
* When accessing hardware registers, both offsets are normally zero.
|
|
|
|
*/
|
|
|
|
void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
|
2009-04-14 14:18:14 +02:00
|
|
|
0x0000ffff, dest_bidx << 16);
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
|
2009-04-14 14:18:14 +02:00
|
|
|
0x0000ffff, dest_cidx << 16);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_set_dest_index);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_set_transfer_params - configure DMA transfer parameters
|
|
|
|
* @slot: parameter RAM slot being configured
|
|
|
|
* @acnt: how many bytes per array (at least one)
|
|
|
|
* @bcnt: how many arrays per frame (at least one)
|
|
|
|
* @ccnt: how many frames per block (at least one)
|
|
|
|
* @bcnt_rld: used only for A-Synchronized transfers; this specifies
|
|
|
|
* the value to reload into bcnt when it decrements to zero
|
|
|
|
* @sync_mode: ASYNC or ABSYNC
|
|
|
|
*
|
|
|
|
* See the EDMA3 documentation to understand how to configure and link
|
|
|
|
* transfers using the fields in PaRAM slots. If you are not doing it
|
|
|
|
* all at once with edma_write_slot(), you will use this routine
|
|
|
|
* plus two calls each for source and destination, setting the initial
|
|
|
|
* address and saying how to index that address.
|
|
|
|
*
|
|
|
|
* An example of an A-Synchronized transfer is a serial link using a
|
|
|
|
* single word shift register. In that case, @acnt would be equal to
|
|
|
|
* that word size; the serial controller issues a DMA synchronization
|
|
|
|
* event to transfer each word, and memory access by the DMA transfer
|
|
|
|
* controller will be word-at-a-time.
|
|
|
|
*
|
|
|
|
* An example of an AB-Synchronized transfer is a device using a FIFO.
|
|
|
|
* In that case, @acnt equals the FIFO width and @bcnt equals its depth.
|
|
|
|
* The controller with the FIFO issues DMA synchronization events when
|
|
|
|
* the FIFO threshold is reached, and the DMA transfer controller will
|
|
|
|
* transfer one frame to (or from) the FIFO. It will probably use
|
|
|
|
* efficient burst modes to access memory.
|
|
|
|
*/
|
|
|
|
void edma_set_transfer_params(unsigned slot,
|
|
|
|
u16 acnt, u16 bcnt, u16 ccnt,
|
|
|
|
u16 bcnt_rld, enum sync_dimension sync_mode)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot < edma_cc[ctlr]->num_slots) {
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
|
2009-04-14 14:18:14 +02:00
|
|
|
0x0000ffff, bcnt_rld << 16);
|
|
|
|
if (sync_mode == ASYNC)
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
|
2009-04-14 14:18:14 +02:00
|
|
|
else
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Set the acount, bcount, ccount registers */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
|
|
|
|
edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_set_transfer_params);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_link - link one parameter RAM slot to another
|
|
|
|
* @from: parameter RAM slot originating the link
|
|
|
|
* @to: parameter RAM slot which is the link target
|
|
|
|
*
|
|
|
|
* The originating slot should not be part of any active DMA transfer.
|
|
|
|
*/
|
|
|
|
void edma_link(unsigned from, unsigned to)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr_from, ctlr_to;
|
|
|
|
|
|
|
|
ctlr_from = EDMA_CTLR(from);
|
|
|
|
from = EDMA_CHAN_SLOT(from);
|
|
|
|
ctlr_to = EDMA_CTLR(to);
|
|
|
|
to = EDMA_CHAN_SLOT(to);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (from >= edma_cc[ctlr_from]->num_slots)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
2010-05-04 10:41:35 +02:00
|
|
|
if (to >= edma_cc[ctlr_to]->num_slots)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
|
|
|
|
PARM_OFFSET(to));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_link);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_unlink - cut link from one parameter RAM slot
|
|
|
|
* @from: parameter RAM slot originating the link
|
|
|
|
*
|
|
|
|
* The originating slot should not be part of any active DMA transfer.
|
|
|
|
* Its link is set to 0xffff.
|
|
|
|
*/
|
|
|
|
void edma_unlink(unsigned from)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(from);
|
|
|
|
from = EDMA_CHAN_SLOT(from);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (from >= edma_cc[ctlr]->num_slots)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_unlink);
|
|
|
|
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* Parameter RAM operations (ii) -- read/write whole parameter sets */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_write_slot - write parameter RAM data for slot
|
|
|
|
* @slot: number of parameter RAM slot being modified
|
|
|
|
* @param: data to be written into parameter RAM slot
|
|
|
|
*
|
|
|
|
* Use this to assign all parameters of a transfer at once. This
|
|
|
|
* allows more efficient setup of transfers than issuing multiple
|
|
|
|
* calls to set up those parameters in small pieces, and provides
|
|
|
|
* complete control over all transfer options.
|
|
|
|
*/
|
|
|
|
void edma_write_slot(unsigned slot, const struct edmacc_param *param)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot >= edma_cc[ctlr]->num_slots)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
2009-05-21 13:41:35 +02:00
|
|
|
memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
|
|
|
|
PARM_SIZE);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_write_slot);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_read_slot - read parameter RAM data from slot
|
|
|
|
* @slot: number of parameter RAM slot being copied
|
|
|
|
* @param: where to store copy of parameter RAM data
|
|
|
|
*
|
|
|
|
* Use this to read data from a parameter RAM slot, perhaps to
|
|
|
|
* save them as a template for later reuse.
|
|
|
|
*/
|
|
|
|
void edma_read_slot(unsigned slot, struct edmacc_param *param)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(slot);
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (slot >= edma_cc[ctlr]->num_slots)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
2009-05-21 13:41:35 +02:00
|
|
|
memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
|
|
|
|
PARM_SIZE);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_read_slot);
|
|
|
|
|
|
|
|
/*-----------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* Various EDMA channel control operations */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_pause - pause dma on a channel
|
|
|
|
* @channel: on which edma_start() has been called
|
|
|
|
*
|
|
|
|
* This temporarily disables EDMA hardware events on the specified channel,
|
|
|
|
* preventing them from triggering new transfers on its behalf
|
|
|
|
*/
|
|
|
|
void edma_pause(unsigned channel)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
2010-05-10 09:11:18 +02:00
|
|
|
unsigned int mask = BIT(channel & 0x1f);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_pause);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_resume - resumes dma on a paused channel
|
|
|
|
* @channel: on which edma_pause() has been called
|
|
|
|
*
|
|
|
|
* This re-enables EDMA hardware events on the specified channel.
|
|
|
|
*/
|
|
|
|
void edma_resume(unsigned channel)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
2010-05-10 09:11:18 +02:00
|
|
|
unsigned int mask = BIT(channel & 0x1f);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_resume);
|
|
|
|
|
2013-08-30 01:05:42 +02:00
|
|
|
int edma_trigger_channel(unsigned channel)
|
|
|
|
{
|
|
|
|
unsigned ctlr;
|
|
|
|
unsigned int mask;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
mask = BIT(channel & 0x1f);
|
|
|
|
|
|
|
|
edma_shadow0_write_array(ctlr, SH_ESR, (channel >> 5), mask);
|
|
|
|
|
|
|
|
pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
|
|
|
|
edma_shadow0_read_array(ctlr, SH_ESR, (channel >> 5)));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_trigger_channel);
|
|
|
|
|
2009-04-14 14:18:14 +02:00
|
|
|
/**
|
|
|
|
* edma_start - start dma on a channel
|
|
|
|
* @channel: channel being activated
|
|
|
|
*
|
|
|
|
* Channels with event associations will be triggered by their hardware
|
|
|
|
* events, and channels without such associations will be triggered by
|
|
|
|
* software. (At this writing there is no interface for using software
|
|
|
|
* triggers except with channels that don't support hardware triggers.)
|
|
|
|
*
|
|
|
|
* Returns zero on success, else negative errno.
|
|
|
|
*/
|
|
|
|
int edma_start(unsigned channel)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
2009-04-14 14:18:14 +02:00
|
|
|
int j = channel >> 5;
|
2010-05-10 09:11:18 +02:00
|
|
|
unsigned int mask = BIT(channel & 0x1f);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* EDMA channels without event association */
|
2010-05-04 10:41:35 +02:00
|
|
|
if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
|
2009-04-14 14:18:14 +02:00
|
|
|
pr_debug("EDMA: ESR%d %08x\n", j,
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_read_array(ctlr, SH_ESR, j));
|
|
|
|
edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* EDMA channel with event association */
|
|
|
|
pr_debug("EDMA: ER%d %08x\n", j,
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_read_array(ctlr, SH_ER, j));
|
2010-03-09 23:48:03 +01:00
|
|
|
/* Clear any pending event or error */
|
|
|
|
edma_write_array(ctlr, EDMA_ECR, j, mask);
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write_array(ctlr, EDMA_EMCR, j, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Clear any SER */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
|
|
|
|
edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
pr_debug("EDMA: EER%d %08x\n", j,
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_read_array(ctlr, SH_EER, j));
|
2009-04-14 14:18:14 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_start);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* edma_stop - stops dma on the channel passed
|
|
|
|
* @channel: channel being deactivated
|
|
|
|
*
|
|
|
|
* When @lch is a channel, any active transfer is paused and
|
|
|
|
* all pending hardware events are cleared. The current transfer
|
|
|
|
* may not be resumed, and the channel's Parameter RAM should be
|
|
|
|
* reinitialized before being reused.
|
|
|
|
*/
|
|
|
|
void edma_stop(unsigned channel)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
2009-04-14 14:18:14 +02:00
|
|
|
int j = channel >> 5;
|
2010-05-10 09:11:18 +02:00
|
|
|
unsigned int mask = BIT(channel & 0x1f);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
|
|
|
|
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
|
|
|
|
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
|
|
|
|
edma_write_array(ctlr, EDMA_EMCR, j, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
pr_debug("EDMA: EER%d %08x\n", j,
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_read_array(ctlr, SH_EER, j));
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
/* REVISIT: consider guarding against inappropriate event
|
|
|
|
* chaining by overwriting with dummy_paramset.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_stop);
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* It cleans ParamEntry qand bring back EDMA to initial state if media has
|
|
|
|
* been removed before EDMA has finished.It is usedful for removable media.
|
|
|
|
* Arguments:
|
|
|
|
* ch_no - channel no
|
|
|
|
*
|
|
|
|
* Return: zero on success, or corresponding error no on failure
|
|
|
|
*
|
|
|
|
* FIXME this should not be needed ... edma_stop() should suffice.
|
|
|
|
*
|
|
|
|
*****************************************************************************/
|
|
|
|
|
|
|
|
void edma_clean_channel(unsigned channel)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel < edma_cc[ctlr]->num_channels) {
|
2009-04-14 14:18:14 +02:00
|
|
|
int j = (channel >> 5);
|
2010-05-10 09:11:18 +02:00
|
|
|
unsigned int mask = BIT(channel & 0x1f);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
pr_debug("EDMA: EMR%d %08x\n", j,
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_read_array(ctlr, EDMA_EMR, j));
|
|
|
|
edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Clear the corresponding EMR bits */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write_array(ctlr, EDMA_EMCR, j, mask);
|
2009-04-14 14:18:14 +02:00
|
|
|
/* Clear any SER */
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
|
2010-05-10 09:11:18 +02:00
|
|
|
edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_clean_channel);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* edma_clear_event - clear an outstanding event on the DMA channel
|
|
|
|
* Arguments:
|
|
|
|
* channel - channel number
|
|
|
|
*/
|
|
|
|
void edma_clear_event(unsigned channel)
|
|
|
|
{
|
2009-05-21 13:41:35 +02:00
|
|
|
unsigned ctlr;
|
|
|
|
|
|
|
|
ctlr = EDMA_CTLR(channel);
|
|
|
|
channel = EDMA_CHAN_SLOT(channel);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
if (channel >= edma_cc[ctlr]->num_channels)
|
2009-04-14 14:18:14 +02:00
|
|
|
return;
|
|
|
|
if (channel < 32)
|
2010-05-10 09:11:18 +02:00
|
|
|
edma_write(ctlr, EDMA_ECR, BIT(channel));
|
2009-04-14 14:18:14 +02:00
|
|
|
else
|
2010-05-10 09:11:18 +02:00
|
|
|
edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(edma_clear_event);
|
|
|
|
|
2013-06-20 23:06:38 +02:00
|
|
|
#if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
|
|
|
|
|
2013-06-20 23:06:39 +02:00
|
|
|
static int edma_of_read_u32_to_s16_array(const struct device_node *np,
|
|
|
|
const char *propname, s16 *out_values,
|
|
|
|
size_t sz)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = of_property_read_u16_array(np, propname, out_values, sz);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* Terminate it */
|
|
|
|
*out_values++ = -1;
|
|
|
|
*out_values++ = -1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int edma_xbar_event_map(struct device *dev,
|
|
|
|
struct device_node *node,
|
|
|
|
struct edma_soc_info *pdata, int len)
|
|
|
|
{
|
|
|
|
int ret, i;
|
|
|
|
struct resource res;
|
|
|
|
void __iomem *xbar;
|
|
|
|
const s16 (*xbar_chans)[2];
|
|
|
|
u32 shift, offset, mux;
|
|
|
|
|
|
|
|
xbar_chans = devm_kzalloc(dev,
|
|
|
|
len/sizeof(s16) + 2*sizeof(s16),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!xbar_chans)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = of_address_to_resource(node, 1, &res);
|
|
|
|
if (ret)
|
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
xbar = devm_ioremap(dev, res.start, resource_size(&res));
|
|
|
|
if (!xbar)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
ret = edma_of_read_u32_to_s16_array(node,
|
|
|
|
"ti,edma-xbar-event-map",
|
|
|
|
(s16 *)xbar_chans,
|
|
|
|
len/sizeof(u32));
|
|
|
|
if (ret)
|
|
|
|
return -EIO;
|
|
|
|
|
|
|
|
for (i = 0; xbar_chans[i][0] != -1; i++) {
|
|
|
|
shift = (xbar_chans[i][1] & 0x03) << 3;
|
|
|
|
offset = xbar_chans[i][1] & 0xfffffffc;
|
|
|
|
mux = readl(xbar + offset);
|
|
|
|
mux &= ~(0xff << shift);
|
|
|
|
mux |= xbar_chans[i][0] << shift;
|
|
|
|
writel(mux, (xbar + offset));
|
|
|
|
}
|
|
|
|
|
|
|
|
pdata->xbar_chans = xbar_chans;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-06-20 23:06:38 +02:00
|
|
|
static int edma_of_parse_dt(struct device *dev,
|
|
|
|
struct device_node *node,
|
|
|
|
struct edma_soc_info *pdata)
|
|
|
|
{
|
|
|
|
int ret = 0, i;
|
|
|
|
u32 value;
|
2013-06-20 23:06:39 +02:00
|
|
|
struct property *prop;
|
|
|
|
size_t sz;
|
2013-06-20 23:06:38 +02:00
|
|
|
struct edma_rsv_info *rsv_info;
|
|
|
|
s8 (*queue_tc_map)[2], (*queue_priority_map)[2];
|
|
|
|
|
|
|
|
memset(pdata, 0, sizeof(struct edma_soc_info));
|
|
|
|
|
|
|
|
ret = of_property_read_u32(node, "dma-channels", &value);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
pdata->n_channel = value;
|
|
|
|
|
|
|
|
ret = of_property_read_u32(node, "ti,edma-regions", &value);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
pdata->n_region = value;
|
|
|
|
|
|
|
|
ret = of_property_read_u32(node, "ti,edma-slots", &value);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
pdata->n_slot = value;
|
|
|
|
|
|
|
|
pdata->n_cc = 1;
|
|
|
|
|
|
|
|
rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
|
|
|
|
if (!rsv_info)
|
|
|
|
return -ENOMEM;
|
|
|
|
pdata->rsv = rsv_info;
|
|
|
|
|
|
|
|
queue_tc_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
|
|
|
|
if (!queue_tc_map)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
queue_tc_map[i][0] = i;
|
|
|
|
queue_tc_map[i][1] = i;
|
|
|
|
}
|
|
|
|
queue_tc_map[i][0] = -1;
|
|
|
|
queue_tc_map[i][1] = -1;
|
|
|
|
|
|
|
|
pdata->queue_tc_mapping = queue_tc_map;
|
|
|
|
|
|
|
|
queue_priority_map = devm_kzalloc(dev, 8*sizeof(s8), GFP_KERNEL);
|
|
|
|
if (!queue_priority_map)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
|
|
queue_priority_map[i][0] = i;
|
|
|
|
queue_priority_map[i][1] = i;
|
|
|
|
}
|
|
|
|
queue_priority_map[i][0] = -1;
|
|
|
|
queue_priority_map[i][1] = -1;
|
|
|
|
|
|
|
|
pdata->queue_priority_mapping = queue_priority_map;
|
|
|
|
|
|
|
|
pdata->default_queue = 0;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2013-06-20 23:06:39 +02:00
|
|
|
prop = of_find_property(node, "ti,edma-xbar-event-map", &sz);
|
|
|
|
if (prop)
|
|
|
|
ret = edma_xbar_event_map(dev, node, pdata, sz);
|
|
|
|
|
2013-06-20 23:06:38 +02:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct of_dma_filter_info edma_filter_info = {
|
|
|
|
.filter_fn = edma_filter_fn,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
|
|
|
|
struct device_node *node)
|
|
|
|
{
|
|
|
|
struct edma_soc_info *info;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
|
|
|
|
if (!info)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
ret = edma_of_parse_dt(dev, node, info);
|
|
|
|
if (ret)
|
|
|
|
return ERR_PTR(ret);
|
|
|
|
|
|
|
|
dma_cap_set(DMA_SLAVE, edma_filter_info.dma_cap);
|
|
|
|
of_dma_controller_register(dev->of_node, of_dma_simple_xlate,
|
|
|
|
&edma_filter_info);
|
|
|
|
|
|
|
|
return info;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
|
|
|
|
struct device_node *node)
|
|
|
|
{
|
|
|
|
return ERR_PTR(-ENOSYS);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int edma_probe(struct platform_device *pdev)
|
2009-04-14 14:18:14 +02:00
|
|
|
{
|
2010-06-29 08:05:12 +02:00
|
|
|
struct edma_soc_info **info = pdev->dev.platform_data;
|
2013-06-20 23:06:38 +02:00
|
|
|
struct edma_soc_info *ninfo[EDMA_MAX_CC] = {NULL};
|
|
|
|
s8 (*queue_priority_mapping)[2];
|
|
|
|
s8 (*queue_tc_mapping)[2];
|
2010-06-29 08:05:13 +02:00
|
|
|
int i, j, off, ln, found = 0;
|
2009-05-21 13:41:35 +02:00
|
|
|
int status = -1;
|
2010-06-29 08:05:13 +02:00
|
|
|
const s16 (*rsv_chans)[2];
|
|
|
|
const s16 (*rsv_slots)[2];
|
2013-06-20 23:06:39 +02:00
|
|
|
const s16 (*xbar_chans)[2];
|
2009-05-21 13:41:35 +02:00
|
|
|
int irq[EDMA_MAX_CC] = {0, 0};
|
|
|
|
int err_irq[EDMA_MAX_CC] = {0, 0};
|
|
|
|
struct resource *r[EDMA_MAX_CC] = {NULL};
|
2013-06-20 23:06:38 +02:00
|
|
|
struct resource res[EDMA_MAX_CC];
|
2009-05-21 13:41:35 +02:00
|
|
|
char res_name[10];
|
|
|
|
char irq_name[10];
|
2013-06-20 23:06:38 +02:00
|
|
|
struct device_node *node = pdev->dev.of_node;
|
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (node) {
|
|
|
|
/* Check if this is a second instance registered */
|
|
|
|
if (arch_num_cc) {
|
|
|
|
dev_err(dev, "only one EDMA instance is supported via DT\n");
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
|
|
|
|
ninfo[0] = edma_setup_info_from_dt(dev, node);
|
|
|
|
if (IS_ERR(ninfo[0])) {
|
|
|
|
dev_err(dev, "failed to get DT data\n");
|
|
|
|
return PTR_ERR(ninfo[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
info = ninfo;
|
|
|
|
}
|
2009-04-14 14:18:14 +02:00
|
|
|
|
|
|
|
if (!info)
|
|
|
|
return -ENODEV;
|
|
|
|
|
2013-06-20 23:06:38 +02:00
|
|
|
pm_runtime_enable(dev);
|
|
|
|
ret = pm_runtime_get_sync(dev);
|
|
|
|
if (ret < 0) {
|
|
|
|
dev_err(dev, "pm_runtime_get_sync() failed\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
for (j = 0; j < EDMA_MAX_CC; j++) {
|
2013-06-20 23:06:38 +02:00
|
|
|
if (!info[j]) {
|
|
|
|
if (!found)
|
|
|
|
return -ENODEV;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (node) {
|
|
|
|
ret = of_address_to_resource(node, j, &res[j]);
|
|
|
|
if (!ret)
|
|
|
|
r[j] = &res[j];
|
|
|
|
} else {
|
|
|
|
sprintf(res_name, "edma_cc%d", j);
|
|
|
|
r[j] = platform_get_resource_byname(pdev,
|
|
|
|
IORESOURCE_MEM,
|
2009-05-21 13:41:35 +02:00
|
|
|
res_name);
|
2013-06-20 23:06:38 +02:00
|
|
|
}
|
|
|
|
if (!r[j]) {
|
2009-05-21 13:41:35 +02:00
|
|
|
if (found)
|
|
|
|
break;
|
|
|
|
else
|
|
|
|
return -ENODEV;
|
2010-05-04 10:41:36 +02:00
|
|
|
} else {
|
2009-05-21 13:41:35 +02:00
|
|
|
found = 1;
|
2010-05-04 10:41:36 +02:00
|
|
|
}
|
2009-05-21 13:41:35 +02:00
|
|
|
|
2013-06-17 16:57:58 +02:00
|
|
|
edmacc_regs_base[j] = devm_ioremap_resource(&pdev->dev, r[j]);
|
|
|
|
if (IS_ERR(edmacc_regs_base[j]))
|
|
|
|
return PTR_ERR(edmacc_regs_base[j]);
|
2009-05-21 13:41:35 +02:00
|
|
|
|
2013-06-17 16:57:58 +02:00
|
|
|
edma_cc[j] = devm_kzalloc(&pdev->dev, sizeof(struct edma),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!edma_cc[j])
|
|
|
|
return -ENOMEM;
|
2009-05-21 13:41:35 +02:00
|
|
|
|
2010-06-29 08:05:12 +02:00
|
|
|
edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
|
2009-05-21 13:41:35 +02:00
|
|
|
EDMA_MAX_DMACH);
|
2010-06-29 08:05:12 +02:00
|
|
|
edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
|
2009-05-21 13:41:35 +02:00
|
|
|
EDMA_MAX_PARAMENTRY);
|
2010-06-29 08:05:12 +02:00
|
|
|
edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
|
|
|
|
EDMA_MAX_CC);
|
2009-05-21 13:41:35 +02:00
|
|
|
|
2010-06-29 08:05:12 +02:00
|
|
|
edma_cc[j]->default_queue = info[j]->default_queue;
|
2009-07-27 15:57:07 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
|
|
|
|
edmacc_regs_base[j]);
|
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
for (i = 0; i < edma_cc[j]->num_slots; i++)
|
2009-05-21 13:41:35 +02:00
|
|
|
memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
|
|
|
|
&dummy_paramset, PARM_SIZE);
|
|
|
|
|
2010-01-06 12:59:49 +01:00
|
|
|
/* Mark all channels as unused */
|
2010-05-04 10:41:35 +02:00
|
|
|
memset(edma_cc[j]->edma_unused, 0xff,
|
|
|
|
sizeof(edma_cc[j]->edma_unused));
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2010-06-29 08:05:13 +02:00
|
|
|
if (info[j]->rsv) {
|
|
|
|
|
|
|
|
/* Clear the reserved channels in unused list */
|
|
|
|
rsv_chans = info[j]->rsv->rsv_chans;
|
|
|
|
if (rsv_chans) {
|
|
|
|
for (i = 0; rsv_chans[i][0] != -1; i++) {
|
|
|
|
off = rsv_chans[i][0];
|
|
|
|
ln = rsv_chans[i][1];
|
|
|
|
clear_bits(off, ln,
|
2013-06-20 23:06:38 +02:00
|
|
|
edma_cc[j]->edma_unused);
|
2010-06-29 08:05:13 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set the reserved slots in inuse list */
|
|
|
|
rsv_slots = info[j]->rsv->rsv_slots;
|
|
|
|
if (rsv_slots) {
|
|
|
|
for (i = 0; rsv_slots[i][0] != -1; i++) {
|
|
|
|
off = rsv_slots[i][0];
|
|
|
|
ln = rsv_slots[i][1];
|
|
|
|
set_bits(off, ln,
|
|
|
|
edma_cc[j]->edma_inuse);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-06-20 23:06:39 +02:00
|
|
|
/* Clear the xbar mapped channels in unused list */
|
|
|
|
xbar_chans = info[j]->xbar_chans;
|
|
|
|
if (xbar_chans) {
|
|
|
|
for (i = 0; xbar_chans[i][1] != -1; i++) {
|
|
|
|
off = xbar_chans[i][1];
|
|
|
|
clear_bits(off, 1,
|
|
|
|
edma_cc[j]->edma_unused);
|
|
|
|
}
|
|
|
|
}
|
2013-06-20 23:06:38 +02:00
|
|
|
|
|
|
|
if (node) {
|
|
|
|
irq[j] = irq_of_parse_and_map(node, 0);
|
|
|
|
} else {
|
|
|
|
sprintf(irq_name, "edma%d", j);
|
|
|
|
irq[j] = platform_get_irq_byname(pdev, irq_name);
|
|
|
|
}
|
2010-05-04 10:41:35 +02:00
|
|
|
edma_cc[j]->irq_res_start = irq[j];
|
2013-06-17 16:57:58 +02:00
|
|
|
status = devm_request_irq(&pdev->dev, irq[j],
|
|
|
|
dma_irq_handler, 0, "edma",
|
|
|
|
&pdev->dev);
|
2009-05-21 13:41:35 +02:00
|
|
|
if (status < 0) {
|
2013-06-17 16:57:58 +02:00
|
|
|
dev_dbg(&pdev->dev,
|
|
|
|
"devm_request_irq %d failed --> %d\n",
|
2009-05-21 13:41:35 +02:00
|
|
|
irq[j], status);
|
2013-06-17 16:57:58 +02:00
|
|
|
return status;
|
2009-05-21 13:41:35 +02:00
|
|
|
}
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2013-06-20 23:06:38 +02:00
|
|
|
if (node) {
|
|
|
|
err_irq[j] = irq_of_parse_and_map(node, 2);
|
|
|
|
} else {
|
|
|
|
sprintf(irq_name, "edma%d_err", j);
|
|
|
|
err_irq[j] = platform_get_irq_byname(pdev, irq_name);
|
|
|
|
}
|
2010-05-04 10:41:35 +02:00
|
|
|
edma_cc[j]->irq_res_end = err_irq[j];
|
2013-06-17 16:57:58 +02:00
|
|
|
status = devm_request_irq(&pdev->dev, err_irq[j],
|
|
|
|
dma_ccerr_handler, 0,
|
|
|
|
"edma_error", &pdev->dev);
|
2009-05-21 13:41:35 +02:00
|
|
|
if (status < 0) {
|
2013-06-17 16:57:58 +02:00
|
|
|
dev_dbg(&pdev->dev,
|
|
|
|
"devm_request_irq %d failed --> %d\n",
|
2009-05-21 13:41:35 +02:00
|
|
|
err_irq[j], status);
|
2013-06-17 16:57:58 +02:00
|
|
|
return status;
|
2009-05-21 13:41:35 +02:00
|
|
|
}
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2010-05-04 10:41:35 +02:00
|
|
|
for (i = 0; i < edma_cc[j]->num_channels; i++)
|
2012-01-19 08:05:21 +01:00
|
|
|
map_dmach_queue(j, i, info[j]->default_queue);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2010-06-29 08:05:12 +02:00
|
|
|
queue_tc_mapping = info[j]->queue_tc_mapping;
|
|
|
|
queue_priority_mapping = info[j]->queue_priority_mapping;
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
/* Event queue to TC mapping */
|
|
|
|
for (i = 0; queue_tc_mapping[i][0] != -1; i++)
|
|
|
|
map_queue_tc(j, queue_tc_mapping[i][0],
|
|
|
|
queue_tc_mapping[i][1]);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2009-05-21 13:41:35 +02:00
|
|
|
/* Event queue priority mapping */
|
|
|
|
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
|
|
assign_priority_to_queue(j,
|
|
|
|
queue_priority_mapping[i][0],
|
|
|
|
queue_priority_mapping[i][1]);
|
|
|
|
|
|
|
|
/* Map the channel to param entry if channel mapping logic
|
|
|
|
* exist
|
|
|
|
*/
|
|
|
|
if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
|
|
|
|
map_dmach_param(j);
|
2009-04-14 14:18:14 +02:00
|
|
|
|
2010-06-29 08:05:12 +02:00
|
|
|
for (i = 0; i < info[j]->n_region; i++) {
|
2009-05-21 13:41:35 +02:00
|
|
|
edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
|
|
|
|
edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
|
|
|
|
edma_write_array(j, EDMA_QRAE, i, 0x0);
|
|
|
|
}
|
2010-01-06 12:58:44 +01:00
|
|
|
arch_num_cc++;
|
2009-04-14 14:18:14 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct platform_driver edma_driver = {
|
2013-06-20 23:06:38 +02:00
|
|
|
.driver = {
|
|
|
|
.name = "edma",
|
|
|
|
.of_match_table = edma_of_ids,
|
|
|
|
},
|
|
|
|
.probe = edma_probe,
|
2009-04-14 14:18:14 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
static int __init edma_init(void)
|
|
|
|
{
|
|
|
|
return platform_driver_probe(&edma_driver, edma_probe);
|
|
|
|
}
|
|
|
|
arch_initcall(edma_init);
|
|
|
|
|