linux/drivers/staging/dgnc/dgnc_tty.c

2606 lines
57 KiB
C
Raw Normal View History

/*
* Copyright 2003 Digi International (www.digi.com)
* Scott H Kilau <Scott_Kilau at digi dot com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*/
/*
* This file implements the tty driver functionality for the
* Neo and ClassicBoard PCI based product lines.
*/
#include <linux/kernel.h>
#include <linux/sched/signal.h> /* For jiffies, task states, etc. */
#include <linux/interrupt.h> /* For tasklet and interrupt structs/defines */
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/types.h>
#include <linux/serial_reg.h>
#include <linux/slab.h>
#include <linux/delay.h> /* For udelay */
#include <linux/uaccess.h> /* For copy_from_user/copy_to_user */
#include <linux/pci.h>
#include "dgnc_driver.h"
#include "dgnc_tty.h"
#include "dgnc_neo.h"
#include "dgnc_cls.h"
#include "dgnc_utils.h"
/* Default transparent print information. */
static const struct digi_t dgnc_digi_init = {
.digi_flags = DIGI_COOK, /* Flags */
.digi_maxcps = 100, /* Max CPS */
.digi_maxchar = 50, /* Max chars in print queue */
.digi_bufsize = 100, /* Printer buffer size */
.digi_onlen = 4, /* size of printer on string */
.digi_offlen = 4, /* size of printer off string */
.digi_onstr = "\033[5i", /* ANSI printer on string ] */
.digi_offstr = "\033[4i", /* ANSI printer off string ] */
.digi_term = "ansi" /* default terminal type */
};
static int dgnc_tty_open(struct tty_struct *tty, struct file *file);
static void dgnc_tty_close(struct tty_struct *tty, struct file *file);
static int dgnc_block_til_ready(struct tty_struct *tty, struct file *file,
struct channel_t *ch);
static int dgnc_tty_ioctl(struct tty_struct *tty, unsigned int cmd,
unsigned long arg);
static int dgnc_tty_digigeta(struct tty_struct *tty,
struct digi_t __user *retinfo);
static int dgnc_tty_digiseta(struct tty_struct *tty,
struct digi_t __user *new_info);
static int dgnc_tty_write_room(struct tty_struct *tty);
static int dgnc_tty_put_char(struct tty_struct *tty, unsigned char c);
static int dgnc_tty_chars_in_buffer(struct tty_struct *tty);
static void dgnc_tty_start(struct tty_struct *tty);
static void dgnc_tty_stop(struct tty_struct *tty);
static void dgnc_tty_throttle(struct tty_struct *tty);
static void dgnc_tty_unthrottle(struct tty_struct *tty);
static void dgnc_tty_flush_chars(struct tty_struct *tty);
static void dgnc_tty_flush_buffer(struct tty_struct *tty);
static void dgnc_tty_hangup(struct tty_struct *tty);
static int dgnc_set_modem_info(struct channel_t *ch, unsigned int command,
unsigned int __user *value);
static int dgnc_get_modem_info(struct channel_t *ch,
unsigned int __user *value);
static int dgnc_tty_tiocmget(struct tty_struct *tty);
static int dgnc_tty_tiocmset(struct tty_struct *tty, unsigned int set,
unsigned int clear);
static int dgnc_tty_send_break(struct tty_struct *tty, int msec);
static void dgnc_tty_wait_until_sent(struct tty_struct *tty, int timeout);
static int dgnc_tty_write(struct tty_struct *tty, const unsigned char *buf,
int count);
static void dgnc_tty_set_termios(struct tty_struct *tty,
struct ktermios *old_termios);
static void dgnc_tty_send_xchar(struct tty_struct *tty, char ch);
static void dgnc_set_signal_low(struct channel_t *ch, const unsigned char line);
static void dgnc_wake_up_unit(struct un_t *unit);
static const struct tty_operations dgnc_tty_ops = {
.open = dgnc_tty_open,
.close = dgnc_tty_close,
.write = dgnc_tty_write,
.write_room = dgnc_tty_write_room,
.flush_buffer = dgnc_tty_flush_buffer,
.chars_in_buffer = dgnc_tty_chars_in_buffer,
.flush_chars = dgnc_tty_flush_chars,
.ioctl = dgnc_tty_ioctl,
.set_termios = dgnc_tty_set_termios,
.stop = dgnc_tty_stop,
.start = dgnc_tty_start,
.throttle = dgnc_tty_throttle,
.unthrottle = dgnc_tty_unthrottle,
.hangup = dgnc_tty_hangup,
.put_char = dgnc_tty_put_char,
.tiocmget = dgnc_tty_tiocmget,
.tiocmset = dgnc_tty_tiocmset,
.break_ctl = dgnc_tty_send_break,
.wait_until_sent = dgnc_tty_wait_until_sent,
.send_xchar = dgnc_tty_send_xchar
};
/* TTY Initialization/Cleanup Functions */
static struct tty_driver *dgnc_tty_create(char *serial_name, uint maxports,
int major, int minor)
{
int rc;
struct tty_driver *drv;
drv = tty_alloc_driver(maxports,
TTY_DRIVER_REAL_RAW |
TTY_DRIVER_DYNAMIC_DEV |
TTY_DRIVER_HARDWARE_BREAK);
if (IS_ERR(drv))
return drv;
drv->name = serial_name;
drv->name_base = 0;
drv->major = major;
drv->minor_start = minor;
drv->type = TTY_DRIVER_TYPE_SERIAL;
drv->subtype = SERIAL_TYPE_NORMAL;
drv->init_termios = tty_std_termios;
drv->init_termios.c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL);
drv->init_termios.c_ispeed = 9600;
drv->init_termios.c_ospeed = 9600;
drv->driver_name = DRVSTR;
/*
* Entry points for driver. Called by the kernel from
* tty_io.c and n_tty.c.
*/
tty_set_operations(drv, &dgnc_tty_ops);
rc = tty_register_driver(drv);
if (rc < 0) {
put_tty_driver(drv);
return ERR_PTR(rc);
}
return drv;
}
static void dgnc_tty_free(struct tty_driver *drv)
{
tty_unregister_driver(drv);
put_tty_driver(drv);
}
/**
* dgnc_tty_register() - Init the tty subsystem for this board.
*/
int dgnc_tty_register(struct dgnc_board *brd)
{
int rc;
snprintf(brd->serial_name, MAXTTYNAMELEN, "tty_dgnc_%d_",
brd->boardnum);
brd->serial_driver = dgnc_tty_create(brd->serial_name,
brd->maxports, 0, 0);
if (IS_ERR(brd->serial_driver)) {
rc = PTR_ERR(brd->serial_driver);
dev_dbg(&brd->pdev->dev, "Can't register tty device (%d)\n",
rc);
return rc;
}
snprintf(brd->print_name, MAXTTYNAMELEN, "pr_dgnc_%d_", brd->boardnum);
brd->print_driver = dgnc_tty_create(brd->print_name, brd->maxports,
0x80,
brd->serial_driver->major);
if (IS_ERR(brd->print_driver)) {
rc = PTR_ERR(brd->print_driver);
dev_dbg(&brd->pdev->dev,
"Can't register Transparent Print device(%d)\n", rc);
dgnc_tty_free(brd->serial_driver);
return rc;
}
return 0;
}
void dgnc_tty_unregister(struct dgnc_board *brd)
{
dgnc_tty_free(brd->print_driver);
dgnc_tty_free(brd->serial_driver);
}
/**
* dgnc_tty_init() - Initialize the tty subsystem.
*
* Called once per board after board has been downloaded and initialized.
*/
int dgnc_tty_init(struct dgnc_board *brd)
{
int i;
int rc;
void __iomem *vaddr;
struct channel_t *ch;
if (!brd)
return -ENXIO;
/* Initialize board structure elements. */
vaddr = brd->re_map_membase;
brd->nasync = brd->maxports;
for (i = 0; i < brd->nasync; i++) {
brd->channels[i] = kzalloc(sizeof(*brd->channels[i]),
GFP_KERNEL);
if (!brd->channels[i]) {
rc = -ENOMEM;
goto err_free_channels;
}
}
ch = brd->channels[0];
vaddr = brd->re_map_membase;
/* Set up channel variables */
for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
spin_lock_init(&ch->ch_lock);
ch->ch_tun.un_ch = ch;
ch->ch_tun.un_type = DGNC_SERIAL;
ch->ch_tun.un_dev = i;
ch->ch_pun.un_ch = ch;
ch->ch_pun.un_type = DGNC_PRINT;
ch->ch_pun.un_dev = i + 128;
if (brd->bd_uart_offset == 0x200)
ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
else
ch->ch_cls_uart = vaddr + (brd->bd_uart_offset * i);
ch->ch_bd = brd;
ch->ch_portnum = i;
ch->ch_digi = dgnc_digi_init;
/* .25 second delay */
ch->ch_close_delay = 250;
init_waitqueue_head(&ch->ch_flags_wait);
init_waitqueue_head(&ch->ch_tun.un_flags_wait);
init_waitqueue_head(&ch->ch_pun.un_flags_wait);
{
struct device *classp;
classp = tty_register_device(brd->serial_driver, i,
&ch->ch_bd->pdev->dev);
ch->ch_tun.un_sysfs = classp;
classp = tty_register_device(brd->print_driver, i,
&ch->ch_bd->pdev->dev);
ch->ch_pun.un_sysfs = classp;
}
}
return 0;
err_free_channels:
for (i = i - 1; i >= 0; --i) {
kfree(brd->channels[i]);
brd->channels[i] = NULL;
}
return rc;
}
/**
* dgnc_cleanup_tty() - Cleanup driver.
*
* Uninitialize the TTY portion of this driver. Free all memory and
* resources.
*/
void dgnc_cleanup_tty(struct dgnc_board *brd)
{
int i = 0;
for (i = 0; i < brd->nasync; i++)
tty_unregister_device(brd->serial_driver, i);
tty_unregister_driver(brd->serial_driver);
for (i = 0; i < brd->nasync; i++)
tty_unregister_device(brd->print_driver, i);
tty_unregister_driver(brd->print_driver);
put_tty_driver(brd->serial_driver);
put_tty_driver(brd->print_driver);
}
/**
* dgnc_wmove() - Write data to transmit queue.
* @ch: Pointer to channel structure.
* @buf: Pointer to characters to be moved.
* @n: Number of characters to move.
*/
static void dgnc_wmove(struct channel_t *ch, char *buf, uint n)
{
int remain;
uint head;
if (!ch)
return;
head = ch->ch_w_head & WQUEUEMASK;
/*
* If the write wraps over the top of the circular buffer,
* move the portion up to the wrap point, and reset the
* pointers to the bottom.
*/
remain = WQUEUESIZE - head;
if (n >= remain) {
n -= remain;
memcpy(ch->ch_wqueue + head, buf, remain);
head = 0;
buf += remain;
}
if (n > 0) {
/* Move rest of data. */
remain = n;
memcpy(ch->ch_wqueue + head, buf, remain);
head += remain;
}
head &= WQUEUEMASK;
ch->ch_w_head = head;
}
/**
* dgnc_input() - Process received data.
* @ch: Pointer to channel structure.
*/
void dgnc_input(struct channel_t *ch)
{
struct dgnc_board *bd;
struct tty_struct *tp;
struct tty_ldisc *ld = NULL;
uint rmask;
ushort head;
ushort tail;
int data_len;
unsigned long flags;
int flip_len;
int len = 0;
int n = 0;
int s = 0;
int i = 0;
if (!ch)
return;
tp = ch->ch_tun.un_tty;
bd = ch->ch_bd;
if (!bd)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
rmask = RQUEUEMASK;
head = ch->ch_r_head & rmask;
tail = ch->ch_r_tail & rmask;
data_len = (head - tail) & rmask;
if (data_len == 0)
goto exit_unlock;
/*
* If the device is not open, or CREAD is off,
* flush input data and return immediately.
*/
if (!tp ||
!(ch->ch_tun.un_flags & UN_ISOPEN) ||
!C_CREAD(tp) ||
(ch->ch_tun.un_flags & UN_CLOSING)) {
ch->ch_r_head = tail;
/* Force queue flow control to be released, if needed */
dgnc_check_queue_flow_control(ch);
goto exit_unlock;
}
if (ch->ch_flags & CH_FORCED_STOPI)
goto exit_unlock;
flip_len = TTY_FLIPBUF_SIZE;
len = min(data_len, flip_len);
len = min(len, (N_TTY_BUF_SIZE - 1));
ld = tty_ldisc_ref(tp);
if (!ld) {
len = 0;
} else {
if (!ld->ops->receive_buf) {
ch->ch_r_head = ch->ch_r_tail;
len = 0;
}
}
if (len <= 0)
goto exit_unlock;
/*
* The tty layer in the kernel has changed in 2.6.16+.
*
* The flip buffers in the tty structure are no longer exposed,
* and probably will be going away eventually.
*
* If we are completely raw, we don't need to go through a lot
* of the tty layers that exist.
* In this case, we take the shortest and fastest route we
* can to relay the data to the user.
*
* On the other hand, if we are not raw, we need to go through
* the new 2.6.16+ tty layer, which has its API more well defined.
*/
len = tty_buffer_request_room(tp->port, len);
n = len;
/*
* n now contains the most amount of data we can copy,
* bounded either by how much the Linux tty layer can handle,
* or the amount of data the card actually has pending...
*/
while (n) {
unsigned char *ch_pos = ch->ch_equeue + tail;
s = ((head >= tail) ? head : RQUEUESIZE) - tail;
s = min(s, n);
if (s <= 0)
break;
/*
* If conditions are such that ld needs to see all
* UART errors, we will have to walk each character
* and error byte and send them to the buffer one at
* a time.
*/
if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
for (i = 0; i < s; i++) {
unsigned char ch = *(ch_pos + i);
char flag = TTY_NORMAL;
if (ch & UART_LSR_BI)
flag = TTY_BREAK;
else if (ch & UART_LSR_PE)
flag = TTY_PARITY;
else if (ch & UART_LSR_FE)
flag = TTY_FRAME;
tty_insert_flip_char(tp->port, ch, flag);
}
} else {
tty_insert_flip_string(tp->port, ch_pos, s);
}
tail += s;
n -= s;
/* Flip queue if needed */
tail &= rmask;
}
ch->ch_r_tail = tail & rmask;
ch->ch_e_tail = tail & rmask;
dgnc_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags);
/* Tell the tty layer its okay to "eat" the data now */
tty_flip_buffer_push(tp->port);
if (ld)
tty_ldisc_deref(ld);
return;
exit_unlock:
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (ld)
tty_ldisc_deref(ld);
}
/**
* dgnc_carrier()
*
* Determines when CARRIER changes state and takes appropriate
* action.
*/
void dgnc_carrier(struct channel_t *ch)
{
int virt_carrier = 0;
int phys_carrier = 0;
if (!ch)
return;
if (ch->ch_mistat & UART_MSR_DCD)
phys_carrier = 1;
if (ch->ch_digi.digi_flags & DIGI_FORCEDCD)
virt_carrier = 1;
if (ch->ch_c_cflag & CLOCAL)
virt_carrier = 1;
/* Test for a VIRTUAL carrier transition to HIGH. */
if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
/*
* When carrier rises, wake any threads waiting
* for carrier in the open routine.
*/
if (waitqueue_active(&ch->ch_flags_wait))
wake_up_interruptible(&ch->ch_flags_wait);
}
/* Test for a PHYSICAL carrier transition to HIGH. */
if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
/*
* When carrier rises, wake any threads waiting
* for carrier in the open routine.
*/
if (waitqueue_active(&ch->ch_flags_wait))
wake_up_interruptible(&ch->ch_flags_wait);
}
/*
* Test for a PHYSICAL transition to low, so long as we aren't
* currently ignoring physical transitions (which is what "virtual
* carrier" indicates).
*
* The transition of the virtual carrier to low really doesn't
* matter... it really only means "ignore carrier state", not
* "make pretend that carrier is there".
*/
if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0) &&
(phys_carrier == 0)) {
/*
* When carrier drops:
*
* Drop carrier on all open units.
*
* Flush queues, waking up any task waiting in the
* line discipline.
*
* Send a hangup to the control terminal.
*
* Enable all select calls.
*/
if (waitqueue_active(&ch->ch_flags_wait))
wake_up_interruptible(&ch->ch_flags_wait);
if (ch->ch_tun.un_open_count > 0)
tty_hangup(ch->ch_tun.un_tty);
if (ch->ch_pun.un_open_count > 0)
tty_hangup(ch->ch_pun.un_tty);
}
/* Make sure that our cached values reflect the current reality. */
if (virt_carrier == 1)
ch->ch_flags |= CH_FCAR;
else
ch->ch_flags &= ~CH_FCAR;
if (phys_carrier == 1)
ch->ch_flags |= CH_CD;
else
ch->ch_flags &= ~CH_CD;
}
/* Assign the custom baud rate to the channel structure */
static void dgnc_set_custom_speed(struct channel_t *ch, uint newrate)
{
int testdiv;
int testrate_high;
int testrate_low;
int deltahigh;
int deltalow;
if (newrate <= 0) {
ch->ch_custom_speed = 0;
return;
}
/*
* Since the divisor is stored in a 16-bit integer, we make sure
* we don't allow any rates smaller than a 16-bit integer would allow.
* And of course, rates above the dividend won't fly.
*/
if (newrate && newrate < ((ch->ch_bd->bd_dividend / 0xFFFF) + 1))
newrate = (ch->ch_bd->bd_dividend / 0xFFFF) + 1;
if (newrate && newrate > ch->ch_bd->bd_dividend)
newrate = ch->ch_bd->bd_dividend;
if (newrate > 0) {
testdiv = ch->ch_bd->bd_dividend / newrate;
/*
* If we try to figure out what rate the board would use
* with the test divisor, it will be either equal or higher
* than the requested baud rate. If we then determine the
* rate with a divisor one higher, we will get the next lower
* supported rate below the requested.
*/
testrate_high = ch->ch_bd->bd_dividend / testdiv;
testrate_low = ch->ch_bd->bd_dividend / (testdiv + 1);
/*
* If the rate for the requested divisor is correct, just
* use it and be done.
*/
if (testrate_high != newrate) {
/*
* Otherwise, pick the rate that is closer
* (i.e. whichever rate has a smaller delta).
*/
deltahigh = testrate_high - newrate;
deltalow = newrate - testrate_low;
if (deltahigh < deltalow)
newrate = testrate_high;
else
newrate = testrate_low;
}
}
ch->ch_custom_speed = newrate;
}
void dgnc_check_queue_flow_control(struct channel_t *ch)
{
int qleft;
staging:dgnc: Removed assignments from if statements. Coccinelle was used for this patch. The script is not complete (semantically) and might raise some checkpatch warnings in terms of indentation depending on existing code. *** IFASSIGNMENT.COCCI START *** /* Coccinelle script to handle assignments in if statements * For compound statements, can so far only handle statements with the * assignment on either extreme */ /* This rule is for simple cases * e.g. just an assignment in if, possibly with unary operator */ @simple@ expression E1, E2; statement S1, S2; @@ + E1 = E2; if ( - (E1 = E2) + E1 ) S1 else S2 /* This rule is for compound statements where the assignment is on the right.*/ @right@ expression E, E1, E2; statement S1, S2; @@ ( /* and */ - if (E && (E1 = E2)) + if (E) { + E1 = E2; + if (E1) S1 else S2 + } else S2 | - if (E && (E1 = E2)) + if (E) { + E1 = E2; + if (E1) S1 + } /* or */ | - if (E || (E1 = E2)) + if (!E) { + E1 = E2; + if (E1) S1 else S2 + } + else S1 | - if (E || (E1 = E2)) + if (!E) { + E1 = E2; + if (E1) S1 + } else S1 /* not equal */ | - if (E != (E1 = E2)) + E1 = E2; + if (E != E1) S1 else S2 | - if (E != (E1 = E2)) + E1 = E2; + if (E != E1) S1 /* equal */ | - if (E == (E1 = E2)) + E1 = E2; + if (E == E1) S1 else S2 | - if (E == (E1 = E2)) + E1 = E2; + if (E == E1) S1 /* greater than */ | - if (E > (E1 = E2)) + E1 = E2; + if (E > E1) S1 else S2 | - if (E > (E1 = E2)) + E1 = E2; + if (E > E1) S1 /* less than */ | - if (E < (E1 = E2)) + E1 = E2; + if (E < E1) S1 else S2 | - if (E < (E1 = E2)) + E1 = E2; + if (E < E1) S1 /* lesser than or equal to */ | - if (E <= (E1 = E2)) + E1 = E2; + if (E <= E1) S1 else S2 | - if (E <= (E1 = E2)) + E1 = E2; + if (E <= E1) S1 /* greater than or equal to */ | - if (E >= (E1 = E2)) + E1 = E2; + if (E >= E1) S1 else S2 | - if (E >= (E1 = E2)) + E1 = E2; + if (E >= E1) S1 ) /* This rule is for compound statements where the assignment is on the left.*/ @left@ expression E, E1, E2; statement S1, S2; @@ ( /* and */ - if ((E1 = E2) && E) + E1 = E2; + if (E1 && E) S1 else S2 | - if ((E1 = E2) && E) + E1 = E2; + if (E1 && E) S1 | /* or */ - if ((E1 = E2) || E) + E1 = E2; + if (E1 || E) S1 | - if ((E1 = E2) || E) + E1 = E2; + if (E1 || E) S1 else S2 | /* not equal */ - if ((E1 = E2) != E) + E1 = E2; + if (E1 != E) S1 | - if ((E1 = E2) != E) + E1 = E2; + if (E1 != E) S1 else S2 | /* equal */ - if ((E1 = E2) == E) + E1 = E2; + if (E1 == E) S1 | - if ((E1 = E2) == E) + E1 = E2; + if (E1 == E) S1 else S2 | /* greater */ - if ((E1 = E2) > E) + E1 = E2; + if (E1 > E) S1 | - if ((E1 = E2) > E) + E1 = E2; + if (E1 > E) S1 else S2 | /* less */ - if ((E1 = E2) < E) + E1 = E2; + if (E1 < E) S1 | - if ((E1 = E2) < E) + E1 = E2; + if (E1 < E) S1 else S2 /* lesser than or equal to */ - if ((E1 = E2) <= E) + E1 = E2; + if (E1 <= E) S1 | - if ((E1 = E2) <= E) + E1 = E2; + if (E1 <= E) S1 else S2 /* greater than or equal to */ - if ((E1 = E2) >= E) + E1 = E2; + if (E1 >= E) S1 | - if ((E1 = E2) >= E) + E1 = E2; + if (E1 >= E) S1 else S2 ) *** IFASSIGNMENT.COCCI END *** Signed-off-by: Chi Pham <fempsci@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-09 10:39:04 +01:00
qleft = ch->ch_r_tail - ch->ch_r_head - 1;
if (qleft < 0)
qleft += RQUEUEMASK + 1;
/*
* Check to see if we should enforce flow control on our queue because
* the ld (or user) isn't reading data out of our queue fast enuf.
*
* NOTE: This is done based on what the current flow control of the
* port is set for.
*
* 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
* This will cause the UART's FIFO to back up, and force
* the RTS signal to be dropped.
* 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
* the other side, in hopes it will stop sending data to us.
* 3) NONE - Nothing we can do. We will simply drop any extra data
* that gets sent into us when the queue fills up.
*/
if (qleft < 256) {
/* HWFLOW */
if (ch->ch_digi.digi_flags & CTSPACE ||
ch->ch_c_cflag & CRTSCTS) {
if (!(ch->ch_flags & CH_RECEIVER_OFF)) {
ch->ch_bd->bd_ops->disable_receiver(ch);
ch->ch_flags |= (CH_RECEIVER_OFF);
}
}
/* SWFLOW */
else if (ch->ch_c_iflag & IXOFF) {
if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
ch->ch_bd->bd_ops->send_stop_character(ch);
ch->ch_stops_sent++;
}
}
}
/*
* Check to see if we should unenforce flow control because
* ld (or user) finally read enuf data out of our queue.
*
* NOTE: This is done based on what the current flow control of the
* port is set for.
*
* 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
* This will cause the UART's FIFO to raise RTS back up,
* which will allow the other side to start sending data again.
* 2) SWFLOW (IXOFF) - Send a start character to
* the other side, so it will start sending data to us again.
* 3) NONE - Do nothing. Since we didn't do anything to turn off the
* other side, we don't need to do anything now.
*/
if (qleft > (RQUEUESIZE / 2)) {
/* HWFLOW */
if (ch->ch_digi.digi_flags & RTSPACE ||
ch->ch_c_cflag & CRTSCTS) {
if (ch->ch_flags & CH_RECEIVER_OFF) {
ch->ch_bd->bd_ops->enable_receiver(ch);
ch->ch_flags &= ~(CH_RECEIVER_OFF);
}
}
/* SWFLOW */
else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
ch->ch_stops_sent = 0;
ch->ch_bd->bd_ops->send_start_character(ch);
}
}
}
static void dgnc_set_signal_low(struct channel_t *ch, const unsigned char sig)
{
ch->ch_mostat &= ~(sig);
ch->ch_bd->bd_ops->assert_modem_signals(ch);
}
void dgnc_wakeup_writes(struct channel_t *ch)
{
int qlen = 0;
unsigned long flags;
if (!ch)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
/* If channel now has space, wake up anyone waiting on the condition. */
staging:dgnc: Removed assignments from if statements. Coccinelle was used for this patch. The script is not complete (semantically) and might raise some checkpatch warnings in terms of indentation depending on existing code. *** IFASSIGNMENT.COCCI START *** /* Coccinelle script to handle assignments in if statements * For compound statements, can so far only handle statements with the * assignment on either extreme */ /* This rule is for simple cases * e.g. just an assignment in if, possibly with unary operator */ @simple@ expression E1, E2; statement S1, S2; @@ + E1 = E2; if ( - (E1 = E2) + E1 ) S1 else S2 /* This rule is for compound statements where the assignment is on the right.*/ @right@ expression E, E1, E2; statement S1, S2; @@ ( /* and */ - if (E && (E1 = E2)) + if (E) { + E1 = E2; + if (E1) S1 else S2 + } else S2 | - if (E && (E1 = E2)) + if (E) { + E1 = E2; + if (E1) S1 + } /* or */ | - if (E || (E1 = E2)) + if (!E) { + E1 = E2; + if (E1) S1 else S2 + } + else S1 | - if (E || (E1 = E2)) + if (!E) { + E1 = E2; + if (E1) S1 + } else S1 /* not equal */ | - if (E != (E1 = E2)) + E1 = E2; + if (E != E1) S1 else S2 | - if (E != (E1 = E2)) + E1 = E2; + if (E != E1) S1 /* equal */ | - if (E == (E1 = E2)) + E1 = E2; + if (E == E1) S1 else S2 | - if (E == (E1 = E2)) + E1 = E2; + if (E == E1) S1 /* greater than */ | - if (E > (E1 = E2)) + E1 = E2; + if (E > E1) S1 else S2 | - if (E > (E1 = E2)) + E1 = E2; + if (E > E1) S1 /* less than */ | - if (E < (E1 = E2)) + E1 = E2; + if (E < E1) S1 else S2 | - if (E < (E1 = E2)) + E1 = E2; + if (E < E1) S1 /* lesser than or equal to */ | - if (E <= (E1 = E2)) + E1 = E2; + if (E <= E1) S1 else S2 | - if (E <= (E1 = E2)) + E1 = E2; + if (E <= E1) S1 /* greater than or equal to */ | - if (E >= (E1 = E2)) + E1 = E2; + if (E >= E1) S1 else S2 | - if (E >= (E1 = E2)) + E1 = E2; + if (E >= E1) S1 ) /* This rule is for compound statements where the assignment is on the left.*/ @left@ expression E, E1, E2; statement S1, S2; @@ ( /* and */ - if ((E1 = E2) && E) + E1 = E2; + if (E1 && E) S1 else S2 | - if ((E1 = E2) && E) + E1 = E2; + if (E1 && E) S1 | /* or */ - if ((E1 = E2) || E) + E1 = E2; + if (E1 || E) S1 | - if ((E1 = E2) || E) + E1 = E2; + if (E1 || E) S1 else S2 | /* not equal */ - if ((E1 = E2) != E) + E1 = E2; + if (E1 != E) S1 | - if ((E1 = E2) != E) + E1 = E2; + if (E1 != E) S1 else S2 | /* equal */ - if ((E1 = E2) == E) + E1 = E2; + if (E1 == E) S1 | - if ((E1 = E2) == E) + E1 = E2; + if (E1 == E) S1 else S2 | /* greater */ - if ((E1 = E2) > E) + E1 = E2; + if (E1 > E) S1 | - if ((E1 = E2) > E) + E1 = E2; + if (E1 > E) S1 else S2 | /* less */ - if ((E1 = E2) < E) + E1 = E2; + if (E1 < E) S1 | - if ((E1 = E2) < E) + E1 = E2; + if (E1 < E) S1 else S2 /* lesser than or equal to */ - if ((E1 = E2) <= E) + E1 = E2; + if (E1 <= E) S1 | - if ((E1 = E2) <= E) + E1 = E2; + if (E1 <= E) S1 else S2 /* greater than or equal to */ - if ((E1 = E2) >= E) + E1 = E2; + if (E1 >= E) S1 | - if ((E1 = E2) >= E) + E1 = E2; + if (E1 >= E) S1 else S2 ) *** IFASSIGNMENT.COCCI END *** Signed-off-by: Chi Pham <fempsci@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-09 10:39:04 +01:00
qlen = ch->ch_w_head - ch->ch_w_tail;
if (qlen < 0)
qlen += WQUEUESIZE;
if (qlen >= (WQUEUESIZE - 256)) {
spin_unlock_irqrestore(&ch->ch_lock, flags);
return;
}
if (ch->ch_tun.un_flags & UN_ISOPEN) {
tty_wakeup(ch->ch_tun.un_tty);
/*
* If unit is set to wait until empty, check to make sure
* the queue AND FIFO are both empty.
*/
if (ch->ch_tun.un_flags & UN_EMPTY) {
if ((qlen == 0) &&
(ch->ch_bd->bd_ops->get_uart_bytes_left(ch) == 0)) {
ch->ch_tun.un_flags &= ~(UN_EMPTY);
/*
* If RTS Toggle mode is on, whenever
* the queue and UART is empty, keep RTS low.
*/
if (ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE)
dgnc_set_signal_low(ch, UART_MCR_RTS);
/*
* If DTR Toggle mode is on, whenever
* the queue and UART is empty, keep DTR low.
*/
if (ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE)
dgnc_set_signal_low(ch, UART_MCR_DTR);
}
}
wake_up_interruptible(&ch->ch_tun.un_flags_wait);
}
if (ch->ch_pun.un_flags & UN_ISOPEN) {
tty_wakeup(ch->ch_pun.un_tty);
/*
* If unit is set to wait until empty, check to make sure
* the queue AND FIFO are both empty.
*/
if (ch->ch_pun.un_flags & UN_EMPTY) {
if ((qlen == 0) &&
(ch->ch_bd->bd_ops->get_uart_bytes_left(ch) == 0))
ch->ch_pun.un_flags &= ~(UN_EMPTY);
}
wake_up_interruptible(&ch->ch_pun.un_flags_wait);
}
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
static struct dgnc_board *find_board_by_major(unsigned int major)
{
int i;
for (i = 0; i < MAXBOARDS; i++) {
struct dgnc_board *brd = dgnc_board[i];
if (!brd)
return NULL;
if (major == brd->serial_driver->major ||
major == brd->print_driver->major)
return brd;
}
return NULL;
}
/* TTY Entry points and helper functions */
static int dgnc_tty_open(struct tty_struct *tty, struct file *file)
{
struct dgnc_board *brd;
struct channel_t *ch;
struct un_t *un;
uint major = 0;
uint minor = 0;
int rc = 0;
unsigned long flags;
rc = 0;
major = MAJOR(tty_devnum(tty));
minor = MINOR(tty_devnum(tty));
if (major > 255)
return -ENXIO;
brd = find_board_by_major(major);
if (!brd)
return -ENXIO;
rc = wait_event_interruptible(brd->state_wait,
(brd->state & BOARD_READY));
if (rc)
return rc;
spin_lock_irqsave(&brd->bd_lock, flags);
if (PORT_NUM(minor) >= brd->nasync) {
rc = -ENXIO;
goto err_brd_unlock;
}
ch = brd->channels[PORT_NUM(minor)];
if (!ch) {
rc = -ENXIO;
goto err_brd_unlock;
}
spin_unlock_irqrestore(&brd->bd_lock, flags);
spin_lock_irqsave(&ch->ch_lock, flags);
/* Figure out our type */
if (!IS_PRINT(minor)) {
un = &brd->channels[PORT_NUM(minor)]->ch_tun;
un->un_type = DGNC_SERIAL;
} else if (IS_PRINT(minor)) {
un = &brd->channels[PORT_NUM(minor)]->ch_pun;
un->un_type = DGNC_PRINT;
} else {
rc = -ENXIO;
goto err_ch_unlock;
}
/*
* If the port is still in a previous open, and in a state
* where we simply cannot safely keep going, wait until the
* state clears.
*/
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = wait_event_interruptible(ch->ch_flags_wait,
((ch->ch_flags & CH_OPENING) == 0));
/* If ret is non-zero, user ctrl-c'ed us */
if (rc)
return -EINTR;
/*
* If either unit is in the middle of the fragile part of close,
* we just cannot touch the channel safely.
* Go to sleep, knowing that when the channel can be
* touched safely, the close routine will signal the
* ch_flags_wait to wake us back up.
*/
rc = wait_event_interruptible(
ch->ch_flags_wait,
(((ch->ch_tun.un_flags |
ch->ch_pun.un_flags) & UN_CLOSING) == 0));
/* If ret is non-zero, user ctrl-c'ed us */
if (rc)
return -EINTR;
spin_lock_irqsave(&ch->ch_lock, flags);
tty->driver_data = un;
/* Initialize tty's */
if (!(un->un_flags & UN_ISOPEN)) {
un->un_tty = tty;
/* Maybe do something here to the TTY struct as well? */
}
/*
* Allocate channel buffers for read/write/error.
* Set flag, so we don't get trounced on.
*/
ch->ch_flags |= (CH_OPENING);
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (!ch->ch_rqueue)
ch->ch_rqueue = kzalloc(RQUEUESIZE, GFP_KERNEL);
if (!ch->ch_equeue)
ch->ch_equeue = kzalloc(EQUEUESIZE, GFP_KERNEL);
if (!ch->ch_wqueue)
ch->ch_wqueue = kzalloc(WQUEUESIZE, GFP_KERNEL);
if (!ch->ch_rqueue || !ch->ch_equeue || !ch->ch_wqueue) {
kfree(ch->ch_rqueue);
kfree(ch->ch_equeue);
kfree(ch->ch_wqueue);
return -ENOMEM;
}
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags &= ~(CH_OPENING);
wake_up_interruptible(&ch->ch_flags_wait);
/* Initialize if neither terminal or printer is open. */
if (!((ch->ch_tun.un_flags | ch->ch_pun.un_flags) & UN_ISOPEN)) {
/* Flush input queues. */
ch->ch_r_head = 0;
ch->ch_r_tail = 0;
ch->ch_e_head = 0;
ch->ch_e_tail = 0;
ch->ch_w_head = 0;
ch->ch_w_tail = 0;
brd->bd_ops->flush_uart_write(ch);
brd->bd_ops->flush_uart_read(ch);
ch->ch_flags = 0;
ch->ch_cached_lsr = 0;
ch->ch_stop_sending_break = 0;
ch->ch_stops_sent = 0;
ch->ch_c_cflag = tty->termios.c_cflag;
ch->ch_c_iflag = tty->termios.c_iflag;
ch->ch_c_oflag = tty->termios.c_oflag;
ch->ch_c_lflag = tty->termios.c_lflag;
ch->ch_startc = tty->termios.c_cc[VSTART];
ch->ch_stopc = tty->termios.c_cc[VSTOP];
/*
* Bring up RTS and DTR...
* Also handle RTS or DTR toggle if set.
*/
if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE))
ch->ch_mostat |= (UART_MCR_RTS);
if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE))
ch->ch_mostat |= (UART_MCR_DTR);
/* Tell UART to init itself */
brd->bd_ops->uart_init(ch);
}
brd->bd_ops->param(tty);
dgnc_carrier(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = dgnc_block_til_ready(tty, file, ch);
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_open_count++;
un->un_open_count++;
un->un_flags |= (UN_ISOPEN);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return rc;
err_brd_unlock:
spin_unlock_irqrestore(&brd->bd_lock, flags);
return rc;
err_ch_unlock:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return rc;
}
/* Wait for DCD, if needed. */
static int dgnc_block_til_ready(struct tty_struct *tty,
struct file *file,
struct channel_t *ch)
{
int rc = 0;
struct un_t *un = tty->driver_data;
unsigned long flags;
uint old_flags = 0;
int sleep_on_un_flags = 0;
if (!file)
return -ENXIO;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_wopen++;
while (1) {
sleep_on_un_flags = 0;
if (ch->ch_bd->state == BOARD_FAILED) {
rc = -ENXIO;
break;
}
if (tty_hung_up_p(file)) {
rc = -EAGAIN;
break;
}
/*
* If either unit is in the middle of the fragile part of close,
* we just cannot touch the channel safely.
* Go back to sleep, knowing that when the channel can be
* touched safely, the close routine will signal the
* ch_wait_flags to wake us back up.
*/
if (!((ch->ch_tun.un_flags |
ch->ch_pun.un_flags) &
UN_CLOSING)) {
/*
* Our conditions to leave cleanly and happily:
* 1) NONBLOCKING on the tty is set.
* 2) CLOCAL is set.
* 3) DCD (fake or real) is active.
*/
if (file->f_flags & O_NONBLOCK)
break;
if (tty_io_error(tty)) {
rc = -EIO;
break;
}
if (ch->ch_flags & CH_CD)
break;
if (ch->ch_flags & CH_FCAR)
break;
} else {
sleep_on_un_flags = 1;
}
/*
* If there is a signal pending, the user probably
* interrupted (ctrl-c) us.
*/
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
if (sleep_on_un_flags)
old_flags = ch->ch_tun.un_flags | ch->ch_pun.un_flags;
else
old_flags = ch->ch_flags;
/*
* Let go of channel lock before calling schedule.
* Our poller will get any FEP events and wake us up when DCD
* eventually goes active.
*/
spin_unlock_irqrestore(&ch->ch_lock, flags);
/*
* Wait for something in the flags to change
* from the current value.
*/
if (sleep_on_un_flags)
rc = wait_event_interruptible
(un->un_flags_wait,
(old_flags != (ch->ch_tun.un_flags |
ch->ch_pun.un_flags)));
else
rc = wait_event_interruptible(
ch->ch_flags_wait,
(old_flags != ch->ch_flags));
/*
* We got woken up for some reason.
* Before looping around, grab our channel lock.
*/
spin_lock_irqsave(&ch->ch_lock, flags);
}
ch->ch_wopen--;
spin_unlock_irqrestore(&ch->ch_lock, flags);
return rc;
}
/* Hangup the port. Like a close, but don't wait for output to drain. */
static void dgnc_tty_hangup(struct tty_struct *tty)
{
if (!tty)
return;
/* flush the transmit queues */
dgnc_tty_flush_buffer(tty);
}
static void dgnc_tty_close(struct tty_struct *tty, struct file *file)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
/*
* Determine if this is the last close or not - and if we agree about
* which type of close it is with the Line Discipline
*/
if ((tty->count == 1) && (un->un_open_count != 1)) {
/*
* Uh, oh. tty->count is 1, which means that the tty
* structure will be freed. un_open_count should always
* be one in these conditions. If it's greater than
* one, we've got real problems, since it means the
* serial port won't be shutdown.
*/
dev_dbg(tty->dev,
"tty->count is 1, un open count is %d\n",
un->un_open_count);
un->un_open_count = 1;
}
if (un->un_open_count)
un->un_open_count--;
else
dev_dbg(tty->dev,
"bad serial port open count of %d\n",
un->un_open_count);
ch->ch_open_count--;
if (ch->ch_open_count && un->un_open_count) {
spin_unlock_irqrestore(&ch->ch_lock, flags);
return;
}
/* OK, its the last close on the unit */
un->un_flags |= UN_CLOSING;
tty->closing = 1;
/*
* Only officially close channel if count is 0 and
* DIGI_PRINTER bit is not set.
*/
if ((ch->ch_open_count == 0) &&
!(ch->ch_digi.digi_flags & DIGI_PRINTER)) {
ch->ch_flags &= ~(CH_STOPI | CH_FORCED_STOPI);
/* turn off print device when closing print device. */
if ((un->un_type == DGNC_PRINT) && (ch->ch_flags & CH_PRON)) {
dgnc_wmove(ch, ch->ch_digi.digi_offstr,
(int)ch->ch_digi.digi_offlen);
ch->ch_flags &= ~CH_PRON;
}
spin_unlock_irqrestore(&ch->ch_lock, flags);
/* wait for output to drain */
/* This will also return if we take an interrupt */
bd->bd_ops->drain(tty, 0);
dgnc_tty_flush_buffer(tty);
tty_ldisc_flush(tty);
spin_lock_irqsave(&ch->ch_lock, flags);
tty->closing = 0;
/* If we have HUPCL set, lower DTR and RTS */
if (ch->ch_c_cflag & HUPCL) {
/* Drop RTS/DTR */
ch->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
bd->bd_ops->assert_modem_signals(ch);
/*
* Go to sleep to ensure RTS/DTR
* have been dropped for modems to see it.
*/
if (ch->ch_close_delay) {
spin_unlock_irqrestore(&ch->ch_lock,
flags);
dgnc_ms_sleep(ch->ch_close_delay);
spin_lock_irqsave(&ch->ch_lock, flags);
}
}
ch->ch_old_baud = 0;
/* Turn off UART interrupts for this port */
ch->ch_bd->bd_ops->uart_off(ch);
} else {
/* turn off print device when closing print device. */
if ((un->un_type == DGNC_PRINT) && (ch->ch_flags & CH_PRON)) {
dgnc_wmove(ch, ch->ch_digi.digi_offstr,
(int)ch->ch_digi.digi_offlen);
ch->ch_flags &= ~CH_PRON;
}
}
un->un_tty = NULL;
un->un_flags &= ~(UN_ISOPEN | UN_CLOSING);
wake_up_interruptible(&ch->ch_flags_wait);
wake_up_interruptible(&un->un_flags_wait);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/*
* Return number of characters that have not been transmitted yet.
*
* This routine is used by the line discipline to determine if there
* is data waiting to be transmitted/drained/flushed or not.
*/
static int dgnc_tty_chars_in_buffer(struct tty_struct *tty)
{
struct channel_t *ch = NULL;
struct un_t *un = NULL;
ushort thead;
ushort ttail;
uint tmask;
uint chars;
unsigned long flags;
if (!tty)
return 0;
un = tty->driver_data;
if (!un)
return 0;
ch = un->un_ch;
if (!ch)
return 0;
spin_lock_irqsave(&ch->ch_lock, flags);
tmask = WQUEUEMASK;
thead = ch->ch_w_head & tmask;
ttail = ch->ch_w_tail & tmask;
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (ttail == thead)
chars = 0;
else if (thead > ttail)
chars = thead - ttail;
else
chars = thead - ttail + WQUEUESIZE;
return chars;
}
/*
* Reduces bytes_available to the max number of characters
* that can be sent currently given the maxcps value, and
* returns the new bytes_available. This only affects printer
* output.
*/
static int dgnc_maxcps_room(struct channel_t *ch, int bytes_available)
{
int rc = bytes_available;
if (ch->ch_digi.digi_maxcps > 0 && ch->ch_digi.digi_bufsize > 0) {
int cps_limit = 0;
unsigned long current_time = jiffies;
unsigned long buffer_time = current_time +
(HZ * ch->ch_digi.digi_bufsize) /
ch->ch_digi.digi_maxcps;
if (ch->ch_cpstime < current_time) {
/* buffer is empty */
ch->ch_cpstime = current_time; /* reset ch_cpstime */
cps_limit = ch->ch_digi.digi_bufsize;
} else if (ch->ch_cpstime < buffer_time) {
/* still room in the buffer */
cps_limit = ((buffer_time - ch->ch_cpstime) *
ch->ch_digi.digi_maxcps) / HZ;
} else {
/* no room in the buffer */
cps_limit = 0;
}
rc = min(cps_limit, bytes_available);
}
return rc;
}
/* Return room available in Tx buffer */
static int dgnc_tty_write_room(struct tty_struct *tty)
{
struct channel_t *ch = NULL;
struct un_t *un = NULL;
ushort head;
ushort tail;
ushort tmask;
int room = 0;
unsigned long flags;
if (!tty)
return 0;
un = tty->driver_data;
if (!un)
return 0;
ch = un->un_ch;
if (!ch)
return 0;
spin_lock_irqsave(&ch->ch_lock, flags);
tmask = WQUEUEMASK;
head = (ch->ch_w_head) & tmask;
tail = (ch->ch_w_tail) & tmask;
room = tail - head - 1;
if (room < 0)
room += WQUEUESIZE;
/* Limit printer to maxcps */
if (un->un_type != DGNC_PRINT)
room = dgnc_maxcps_room(ch, room);
/*
* If we are printer device, leave room for
* possibly both the on and off strings.
*/
if (un->un_type == DGNC_PRINT) {
if (!(ch->ch_flags & CH_PRON))
room -= ch->ch_digi.digi_onlen;
room -= ch->ch_digi.digi_offlen;
} else {
if (ch->ch_flags & CH_PRON)
room -= ch->ch_digi.digi_offlen;
}
if (room < 0)
room = 0;
spin_unlock_irqrestore(&ch->ch_lock, flags);
return room;
}
/*
* Put a character into ch->ch_buf
* Used by the line discipline for OPOST processing
*/
static int dgnc_tty_put_char(struct tty_struct *tty, unsigned char c)
{
dgnc_tty_write(tty, &c, 1);
return 1;
}
/*
* Take data from the user or kernel and send it out to the FEP.
* In here exists all the Transparent Print magic as well.
*/
static int dgnc_tty_write(struct tty_struct *tty,
const unsigned char *buf, int count)
{
struct channel_t *ch = NULL;
struct un_t *un = NULL;
int bufcount = 0, n = 0;
unsigned long flags;
ushort head;
ushort tail;
ushort tmask;
uint remain;
if (!tty)
return 0;
un = tty->driver_data;
if (!un)
return 0;
ch = un->un_ch;
if (!ch)
return 0;
if (!count)
return 0;
/*
* Store original amount of characters passed in.
* This helps to figure out if we should ask the FEP
* to send us an event when it has more space available.
*/
spin_lock_irqsave(&ch->ch_lock, flags);
tmask = WQUEUEMASK;
head = (ch->ch_w_head) & tmask;
tail = (ch->ch_w_tail) & tmask;
staging:dgnc: Removed assignments from if statements. Coccinelle was used for this patch. The script is not complete (semantically) and might raise some checkpatch warnings in terms of indentation depending on existing code. *** IFASSIGNMENT.COCCI START *** /* Coccinelle script to handle assignments in if statements * For compound statements, can so far only handle statements with the * assignment on either extreme */ /* This rule is for simple cases * e.g. just an assignment in if, possibly with unary operator */ @simple@ expression E1, E2; statement S1, S2; @@ + E1 = E2; if ( - (E1 = E2) + E1 ) S1 else S2 /* This rule is for compound statements where the assignment is on the right.*/ @right@ expression E, E1, E2; statement S1, S2; @@ ( /* and */ - if (E && (E1 = E2)) + if (E) { + E1 = E2; + if (E1) S1 else S2 + } else S2 | - if (E && (E1 = E2)) + if (E) { + E1 = E2; + if (E1) S1 + } /* or */ | - if (E || (E1 = E2)) + if (!E) { + E1 = E2; + if (E1) S1 else S2 + } + else S1 | - if (E || (E1 = E2)) + if (!E) { + E1 = E2; + if (E1) S1 + } else S1 /* not equal */ | - if (E != (E1 = E2)) + E1 = E2; + if (E != E1) S1 else S2 | - if (E != (E1 = E2)) + E1 = E2; + if (E != E1) S1 /* equal */ | - if (E == (E1 = E2)) + E1 = E2; + if (E == E1) S1 else S2 | - if (E == (E1 = E2)) + E1 = E2; + if (E == E1) S1 /* greater than */ | - if (E > (E1 = E2)) + E1 = E2; + if (E > E1) S1 else S2 | - if (E > (E1 = E2)) + E1 = E2; + if (E > E1) S1 /* less than */ | - if (E < (E1 = E2)) + E1 = E2; + if (E < E1) S1 else S2 | - if (E < (E1 = E2)) + E1 = E2; + if (E < E1) S1 /* lesser than or equal to */ | - if (E <= (E1 = E2)) + E1 = E2; + if (E <= E1) S1 else S2 | - if (E <= (E1 = E2)) + E1 = E2; + if (E <= E1) S1 /* greater than or equal to */ | - if (E >= (E1 = E2)) + E1 = E2; + if (E >= E1) S1 else S2 | - if (E >= (E1 = E2)) + E1 = E2; + if (E >= E1) S1 ) /* This rule is for compound statements where the assignment is on the left.*/ @left@ expression E, E1, E2; statement S1, S2; @@ ( /* and */ - if ((E1 = E2) && E) + E1 = E2; + if (E1 && E) S1 else S2 | - if ((E1 = E2) && E) + E1 = E2; + if (E1 && E) S1 | /* or */ - if ((E1 = E2) || E) + E1 = E2; + if (E1 || E) S1 | - if ((E1 = E2) || E) + E1 = E2; + if (E1 || E) S1 else S2 | /* not equal */ - if ((E1 = E2) != E) + E1 = E2; + if (E1 != E) S1 | - if ((E1 = E2) != E) + E1 = E2; + if (E1 != E) S1 else S2 | /* equal */ - if ((E1 = E2) == E) + E1 = E2; + if (E1 == E) S1 | - if ((E1 = E2) == E) + E1 = E2; + if (E1 == E) S1 else S2 | /* greater */ - if ((E1 = E2) > E) + E1 = E2; + if (E1 > E) S1 | - if ((E1 = E2) > E) + E1 = E2; + if (E1 > E) S1 else S2 | /* less */ - if ((E1 = E2) < E) + E1 = E2; + if (E1 < E) S1 | - if ((E1 = E2) < E) + E1 = E2; + if (E1 < E) S1 else S2 /* lesser than or equal to */ - if ((E1 = E2) <= E) + E1 = E2; + if (E1 <= E) S1 | - if ((E1 = E2) <= E) + E1 = E2; + if (E1 <= E) S1 else S2 /* greater than or equal to */ - if ((E1 = E2) >= E) + E1 = E2; + if (E1 >= E) S1 | - if ((E1 = E2) >= E) + E1 = E2; + if (E1 >= E) S1 else S2 ) *** IFASSIGNMENT.COCCI END *** Signed-off-by: Chi Pham <fempsci@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-03-09 10:39:04 +01:00
bufcount = tail - head - 1;
if (bufcount < 0)
bufcount += WQUEUESIZE;
/*
* Limit printer output to maxcps overall, with bursts allowed
* up to bufsize characters.
*/
if (un->un_type != DGNC_PRINT)
bufcount = dgnc_maxcps_room(ch, bufcount);
count = min(count, bufcount);
if (count <= 0)
goto exit_retry;
/*
* Output the printer ON string, if we are in terminal mode, but
* need to be in printer mode.
*/
if ((un->un_type == DGNC_PRINT) && !(ch->ch_flags & CH_PRON)) {
dgnc_wmove(ch, ch->ch_digi.digi_onstr,
(int)ch->ch_digi.digi_onlen);
head = (ch->ch_w_head) & tmask;
ch->ch_flags |= CH_PRON;
}
/*
* On the other hand, output the printer OFF string, if we are
* currently in printer mode, but need to output to the terminal.
*/
if ((un->un_type != DGNC_PRINT) && (ch->ch_flags & CH_PRON)) {
dgnc_wmove(ch, ch->ch_digi.digi_offstr,
(int)ch->ch_digi.digi_offlen);
head = (ch->ch_w_head) & tmask;
ch->ch_flags &= ~CH_PRON;
}
n = count;
/*
* If the write wraps over the top of the circular buffer,
* move the portion up to the wrap point, and reset the
* pointers to the bottom.
*/
remain = WQUEUESIZE - head;
if (n >= remain) {
n -= remain;
memcpy(ch->ch_wqueue + head, buf, remain);
head = 0;
buf += remain;
}
if (n > 0) {
/* Move rest of data. */
remain = n;
memcpy(ch->ch_wqueue + head, buf, remain);
head += remain;
}
if (count) {
head &= tmask;
ch->ch_w_head = head;
}
/* Update printer buffer empty time. */
if ((un->un_type == DGNC_PRINT) && (ch->ch_digi.digi_maxcps > 0) &&
(ch->ch_digi.digi_bufsize > 0)) {
ch->ch_cpstime += (HZ * count) / ch->ch_digi.digi_maxcps;
}
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (count)
ch->ch_bd->bd_ops->copy_data_from_queue_to_uart(ch);
return count;
exit_retry:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
/* Return modem signals to ld. */
static int dgnc_tty_tiocmget(struct tty_struct *tty)
{
struct channel_t *ch;
struct un_t *un;
int rc;
unsigned char mstat = 0;
unsigned long flags;
if (!tty)
return -EIO;
un = tty->driver_data;
if (!un)
return -EIO;
ch = un->un_ch;
if (!ch)
return -EIO;
spin_lock_irqsave(&ch->ch_lock, flags);
mstat = ch->ch_mostat | ch->ch_mistat;
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = 0;
if (mstat & UART_MCR_DTR)
rc |= TIOCM_DTR;
if (mstat & UART_MCR_RTS)
rc |= TIOCM_RTS;
if (mstat & UART_MSR_CTS)
rc |= TIOCM_CTS;
if (mstat & UART_MSR_DSR)
rc |= TIOCM_DSR;
if (mstat & UART_MSR_RI)
rc |= TIOCM_RI;
if (mstat & UART_MSR_DCD)
rc |= TIOCM_CD;
return rc;
}
/* Set modem signals, called by ld. */
static int dgnc_tty_tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return -EIO;
un = tty->driver_data;
if (!un)
return -EIO;
ch = un->un_ch;
if (!ch)
return -EIO;
bd = ch->ch_bd;
if (!bd)
return -EIO;
spin_lock_irqsave(&ch->ch_lock, flags);
if (set & TIOCM_RTS)
ch->ch_mostat |= UART_MCR_RTS;
if (set & TIOCM_DTR)
ch->ch_mostat |= UART_MCR_DTR;
if (clear & TIOCM_RTS)
ch->ch_mostat &= ~(UART_MCR_RTS);
if (clear & TIOCM_DTR)
ch->ch_mostat &= ~(UART_MCR_DTR);
bd->bd_ops->assert_modem_signals(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
/* Send a Break, called by ld. */
static int dgnc_tty_send_break(struct tty_struct *tty, int msec)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return -EIO;
un = tty->driver_data;
if (!un)
return -EIO;
ch = un->un_ch;
if (!ch)
return -EIO;
bd = ch->ch_bd;
if (!bd)
return -EIO;
if (msec < 0)
msec = 0xFFFF;
spin_lock_irqsave(&ch->ch_lock, flags);
bd->bd_ops->send_break(ch, msec);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
/* wait until data has been transmitted, called by ld. */
static void dgnc_tty_wait_until_sent(struct tty_struct *tty, int timeout)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
bd->bd_ops->drain(tty, 0);
}
/* send a high priority character, called by ld. */
static void dgnc_tty_send_xchar(struct tty_struct *tty, char c)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
bd->bd_ops->send_immediate_char(ch, c);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/* Return modem signals to ld. */
static inline int dgnc_get_mstat(struct channel_t *ch)
{
unsigned char mstat;
unsigned long flags;
int rc;
if (!ch)
return -ENXIO;
spin_lock_irqsave(&ch->ch_lock, flags);
mstat = ch->ch_mostat | ch->ch_mistat;
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = 0;
if (mstat & UART_MCR_DTR)
rc |= TIOCM_DTR;
if (mstat & UART_MCR_RTS)
rc |= TIOCM_RTS;
if (mstat & UART_MSR_CTS)
rc |= TIOCM_CTS;
if (mstat & UART_MSR_DSR)
rc |= TIOCM_DSR;
if (mstat & UART_MSR_RI)
rc |= TIOCM_RI;
if (mstat & UART_MSR_DCD)
rc |= TIOCM_CD;
return rc;
}
/* Return modem signals to ld. */
static int dgnc_get_modem_info(struct channel_t *ch,
unsigned int __user *value)
{
return put_user(dgnc_get_mstat(ch), value);
}
/* Set modem signals, called by ld. */
static int dgnc_set_modem_info(struct channel_t *ch,
unsigned int command,
unsigned int __user *value)
{
int rc;
unsigned int arg = 0;
unsigned long flags;
rc = get_user(arg, value);
if (rc)
return rc;
switch (command) {
case TIOCMBIS:
if (arg & TIOCM_RTS)
ch->ch_mostat |= UART_MCR_RTS;
if (arg & TIOCM_DTR)
ch->ch_mostat |= UART_MCR_DTR;
break;
case TIOCMBIC:
if (arg & TIOCM_RTS)
ch->ch_mostat &= ~(UART_MCR_RTS);
if (arg & TIOCM_DTR)
ch->ch_mostat &= ~(UART_MCR_DTR);
break;
case TIOCMSET:
if (arg & TIOCM_RTS)
ch->ch_mostat |= UART_MCR_RTS;
else
ch->ch_mostat &= ~(UART_MCR_RTS);
if (arg & TIOCM_DTR)
ch->ch_mostat |= UART_MCR_DTR;
else
ch->ch_mostat &= ~(UART_MCR_DTR);
break;
default:
return -EINVAL;
}
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_bd->bd_ops->assert_modem_signals(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
/* Ioctl to get the information for ditty. */
static int dgnc_tty_digigeta(struct tty_struct *tty,
struct digi_t __user *retinfo)
{
struct channel_t *ch;
struct un_t *un;
struct digi_t tmp;
unsigned long flags;
if (!retinfo)
return -EFAULT;
if (!tty)
return -EFAULT;
un = tty->driver_data;
if (!un)
return -EFAULT;
ch = un->un_ch;
if (!ch)
return -EFAULT;
memset(&tmp, 0, sizeof(tmp));
spin_lock_irqsave(&ch->ch_lock, flags);
memcpy(&tmp, &ch->ch_digi, sizeof(tmp));
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (copy_to_user(retinfo, &tmp, sizeof(*retinfo)))
return -EFAULT;
return 0;
}
/* Ioctl to set the information for ditty. */
static int dgnc_tty_digiseta(struct tty_struct *tty,
struct digi_t __user *new_info)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
struct digi_t new_digi;
unsigned long flags;
if (!tty)
return -EFAULT;
un = tty->driver_data;
if (!un)
return -EFAULT;
ch = un->un_ch;
if (!ch)
return -EFAULT;
bd = ch->ch_bd;
if (!bd)
return -EFAULT;
if (copy_from_user(&new_digi, new_info, sizeof(new_digi)))
return -EFAULT;
spin_lock_irqsave(&ch->ch_lock, flags);
/* Handle transitions to and from RTS Toggle. */
if (!(ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) &&
(new_digi.digi_flags & DIGI_RTS_TOGGLE))
ch->ch_mostat &= ~(UART_MCR_RTS);
if ((ch->ch_digi.digi_flags & DIGI_RTS_TOGGLE) &&
!(new_digi.digi_flags & DIGI_RTS_TOGGLE))
ch->ch_mostat |= (UART_MCR_RTS);
/* Handle transitions to and from DTR Toggle. */
if (!(ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) &&
(new_digi.digi_flags & DIGI_DTR_TOGGLE))
ch->ch_mostat &= ~(UART_MCR_DTR);
if ((ch->ch_digi.digi_flags & DIGI_DTR_TOGGLE) &&
!(new_digi.digi_flags & DIGI_DTR_TOGGLE))
ch->ch_mostat |= (UART_MCR_DTR);
memcpy(&ch->ch_digi, &new_digi, sizeof(new_digi));
if (ch->ch_digi.digi_maxcps < 1)
ch->ch_digi.digi_maxcps = 1;
if (ch->ch_digi.digi_maxcps > 10000)
ch->ch_digi.digi_maxcps = 10000;
if (ch->ch_digi.digi_bufsize < 10)
ch->ch_digi.digi_bufsize = 10;
if (ch->ch_digi.digi_maxchar < 1)
ch->ch_digi.digi_maxchar = 1;
if (ch->ch_digi.digi_maxchar > ch->ch_digi.digi_bufsize)
ch->ch_digi.digi_maxchar = ch->ch_digi.digi_bufsize;
if (ch->ch_digi.digi_onlen > DIGI_PLEN)
ch->ch_digi.digi_onlen = DIGI_PLEN;
if (ch->ch_digi.digi_offlen > DIGI_PLEN)
ch->ch_digi.digi_offlen = DIGI_PLEN;
bd->bd_ops->param(tty);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
static void dgnc_tty_set_termios(struct tty_struct *tty,
struct ktermios *old_termios)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_c_cflag = tty->termios.c_cflag;
ch->ch_c_iflag = tty->termios.c_iflag;
ch->ch_c_oflag = tty->termios.c_oflag;
ch->ch_c_lflag = tty->termios.c_lflag;
ch->ch_startc = tty->termios.c_cc[VSTART];
ch->ch_stopc = tty->termios.c_cc[VSTOP];
bd->bd_ops->param(tty);
dgnc_carrier(ch);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
static void dgnc_tty_throttle(struct tty_struct *tty)
{
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags |= (CH_FORCED_STOPI);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
static void dgnc_tty_unthrottle(struct tty_struct *tty)
{
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags &= ~(CH_FORCED_STOPI);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
static void dgnc_tty_start(struct tty_struct *tty)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags &= ~(CH_FORCED_STOP);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
static void dgnc_tty_stop(struct tty_struct *tty)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags |= (CH_FORCED_STOP);
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/*
* Flush the cook buffer
*
* Note to self, and any other poor souls who venture here:
*
* flush in this case DOES NOT mean dispose of the data.
* instead, it means "stop buffering and send it if you
* haven't already." Just guess how I figured that out... SRW 2-Jun-98
*
* It is also always called in interrupt context - JAR 8-Sept-99
*/
static void dgnc_tty_flush_chars(struct tty_struct *tty)
{
struct dgnc_board *bd;
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
/* Do something maybe here */
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/* Flush Tx buffer (make in == out) */
static void dgnc_tty_flush_buffer(struct tty_struct *tty)
{
struct channel_t *ch;
struct un_t *un;
unsigned long flags;
if (!tty)
return;
un = tty->driver_data;
if (!un)
return;
ch = un->un_ch;
if (!ch)
return;
spin_lock_irqsave(&ch->ch_lock, flags);
ch->ch_flags &= ~CH_STOP;
/* Flush our write queue */
ch->ch_w_head = ch->ch_w_tail;
/* Flush UARTs transmit FIFO */
ch->ch_bd->bd_ops->flush_uart_write(ch);
if (ch->ch_tun.un_flags & (UN_LOW | UN_EMPTY)) {
ch->ch_tun.un_flags &= ~(UN_LOW | UN_EMPTY);
wake_up_interruptible(&ch->ch_tun.un_flags_wait);
}
if (ch->ch_pun.un_flags & (UN_LOW | UN_EMPTY)) {
ch->ch_pun.un_flags &= ~(UN_LOW | UN_EMPTY);
wake_up_interruptible(&ch->ch_pun.un_flags_wait);
}
spin_unlock_irqrestore(&ch->ch_lock, flags);
}
/* Wakes up processes waiting in the unit's (teminal/printer) wait queue */
static void dgnc_wake_up_unit(struct un_t *unit)
{
unit->un_flags &= ~(UN_LOW | UN_EMPTY);
wake_up_interruptible(&unit->un_flags_wait);
}
/* The IOCTL function and all of its helpers */
/* The usual assortment of ioctl's */
static int dgnc_tty_ioctl(struct tty_struct *tty, unsigned int cmd,
unsigned long arg)
{
struct dgnc_board *bd;
struct board_ops *ch_bd_ops;
struct channel_t *ch;
struct un_t *un;
int rc;
unsigned long flags;
void __user *uarg = (void __user *)arg;
if (!tty)
return -ENODEV;
un = tty->driver_data;
if (!un)
return -ENODEV;
ch = un->un_ch;
if (!ch)
return -ENODEV;
bd = ch->ch_bd;
if (!bd)
return -ENODEV;
ch_bd_ops = bd->bd_ops;
spin_lock_irqsave(&ch->ch_lock, flags);
if (un->un_open_count <= 0) {
rc = -EIO;
goto err_unlock;
}
switch (cmd) {
/* Here are all the standard ioctl's that we MUST implement */
case TCSBRK:
/*
* TCSBRK is SVID version: non-zero arg --> no break
* this behaviour is exploited by tcdrain().
*
* According to POSIX.1 spec (7.2.2.1.2) breaks should be
* between 0.25 and 0.5 seconds so we'll ask for something
* in the middle: 0.375 seconds.
*/
rc = tty_check_change(tty);
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (rc)
return rc;
rc = ch_bd_ops->drain(tty, 0);
if (rc)
return -EINTR;
spin_lock_irqsave(&ch->ch_lock, flags);
if (((cmd == TCSBRK) && (!arg)) || (cmd == TCSBRKP))
ch_bd_ops->send_break(ch, 250);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
case TCSBRKP:
/*
* support for POSIX tcsendbreak()
* According to POSIX.1 spec (7.2.2.1.2) breaks should be
* between 0.25 and 0.5 seconds so we'll ask for something
* in the middle: 0.375 seconds.
*/
rc = tty_check_change(tty);
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (rc)
return rc;
rc = ch_bd_ops->drain(tty, 0);
if (rc)
return -EINTR;
spin_lock_irqsave(&ch->ch_lock, flags);
ch_bd_ops->send_break(ch, 250);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
case TIOCSBRK:
rc = tty_check_change(tty);
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (rc)
return rc;
rc = ch_bd_ops->drain(tty, 0);
if (rc)
return -EINTR;
spin_lock_irqsave(&ch->ch_lock, flags);
ch_bd_ops->send_break(ch, 250);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
case TIOCCBRK:
/* Do Nothing */
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
case TIOCGSOFTCAR:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return put_user(C_CLOCAL(tty) ? 1 : 0,
(unsigned long __user *)arg);
case TIOCSSOFTCAR:
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = get_user(arg, (unsigned long __user *)arg);
if (rc)
return rc;
spin_lock_irqsave(&ch->ch_lock, flags);
tty->termios.c_cflag = ((tty->termios.c_cflag & ~CLOCAL) |
(arg ? CLOCAL : 0));
ch_bd_ops->param(tty);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
case TIOCMGET:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return dgnc_get_modem_info(ch, uarg);
case TIOCMBIS:
case TIOCMBIC:
case TIOCMSET:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return dgnc_set_modem_info(ch, cmd, uarg);
/* Here are any additional ioctl's that we want to implement */
case TCFLSH:
/*
* The linux tty driver doesn't have a flush
* input routine for the driver, assuming all backed
* up data is in the line disc. buffers. However,
* we all know that's not the case. Here, we
* act on the ioctl, but then lie and say we didn't
* so the line discipline will process the flush
* also.
*/
rc = tty_check_change(tty);
if (rc)
goto err_unlock;
if ((arg == TCIFLUSH) || (arg == TCIOFLUSH)) {
ch->ch_r_head = ch->ch_r_tail;
ch_bd_ops->flush_uart_read(ch);
/* Force queue flow control to be released, if needed */
dgnc_check_queue_flow_control(ch);
}
if ((arg == TCOFLUSH) || (arg == TCIOFLUSH)) {
if (!(un->un_type == DGNC_PRINT)) {
ch->ch_w_head = ch->ch_w_tail;
ch_bd_ops->flush_uart_write(ch);
if (ch->ch_tun.un_flags & (UN_LOW | UN_EMPTY))
dgnc_wake_up_unit(&ch->ch_tun);
if (ch->ch_pun.un_flags & (UN_LOW | UN_EMPTY))
dgnc_wake_up_unit(&ch->ch_pun);
}
}
/* pretend we didn't recognize this IOCTL */
spin_unlock_irqrestore(&ch->ch_lock, flags);
return -ENOIOCTLCMD;
case TCSETSF:
case TCSETSW:
/*
* The linux tty driver doesn't have a flush
* input routine for the driver, assuming all backed
* up data is in the line disc. buffers. However,
* we all know that's not the case. Here, we
* act on the ioctl, but then lie and say we didn't
* so the line discipline will process the flush
* also.
*/
if (cmd == TCSETSF) {
/* flush rx */
ch->ch_flags &= ~CH_STOP;
ch->ch_r_head = ch->ch_r_tail;
ch_bd_ops->flush_uart_read(ch);
/* Force queue flow control to be released, if needed */
dgnc_check_queue_flow_control(ch);
}
/* now wait for all the output to drain */
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = ch_bd_ops->drain(tty, 0);
if (rc)
return -EINTR;
/* pretend we didn't recognize this */
return -ENOIOCTLCMD;
case TCSETAW:
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = ch_bd_ops->drain(tty, 0);
if (rc)
return -EINTR;
/* pretend we didn't recognize this */
return -ENOIOCTLCMD;
case TCXONC:
spin_unlock_irqrestore(&ch->ch_lock, flags);
/* Make the ld do it */
return -ENOIOCTLCMD;
case DIGI_GETA:
/* get information for ditty */
spin_unlock_irqrestore(&ch->ch_lock, flags);
return dgnc_tty_digigeta(tty, uarg);
case DIGI_SETAW:
case DIGI_SETAF:
/* set information for ditty */
if (cmd == (DIGI_SETAW)) {
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = ch_bd_ops->drain(tty, 0);
if (rc)
return -EINTR;
spin_lock_irqsave(&ch->ch_lock, flags);
} else {
tty_ldisc_flush(tty);
}
/* fall thru */
case DIGI_SETA:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return dgnc_tty_digiseta(tty, uarg);
case DIGI_LOOPBACK:
{
uint loopback = 0;
/*
* Let go of locks when accessing user space,
* could sleep
*/
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = get_user(loopback, (unsigned int __user *)arg);
if (rc)
return rc;
spin_lock_irqsave(&ch->ch_lock, flags);
/* Enable/disable internal loopback for this port */
if (loopback)
ch->ch_flags |= CH_LOOPBACK;
else
ch->ch_flags &= ~(CH_LOOPBACK);
ch_bd_ops->param(tty);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
case DIGI_GETCUSTOMBAUD:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return put_user(ch->ch_custom_speed,
(unsigned int __user *)arg);
case DIGI_SETCUSTOMBAUD:
{
int new_rate;
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = get_user(new_rate, (int __user *)arg);
if (rc)
return rc;
spin_lock_irqsave(&ch->ch_lock, flags);
dgnc_set_custom_speed(ch, new_rate);
ch_bd_ops->param(tty);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
/*
* This ioctl allows insertion of a character into the front
* of any pending data to be transmitted.
*
* This ioctl is to satisfy the "Send Character Immediate"
* call that the RealPort protocol spec requires.
*/
case DIGI_REALPORT_SENDIMMEDIATE:
{
unsigned char c;
spin_unlock_irqrestore(&ch->ch_lock, flags);
rc = get_user(c, (unsigned char __user *)arg);
if (rc)
return rc;
spin_lock_irqsave(&ch->ch_lock, flags);
ch_bd_ops->send_immediate_char(ch, c);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return 0;
}
/*
* This ioctl returns all the current counts for the port.
*
* This ioctl is to satisfy the "Line Error Counters"
* call that the RealPort protocol spec requires.
*/
case DIGI_REALPORT_GETCOUNTERS:
{
struct digi_getcounter buf;
buf.norun = ch->ch_err_overrun;
buf.noflow = 0; /* The driver doesn't keep this stat */
buf.nframe = ch->ch_err_frame;
buf.nparity = ch->ch_err_parity;
buf.nbreak = ch->ch_err_break;
buf.rbytes = ch->ch_rxcount;
buf.tbytes = ch->ch_txcount;
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (copy_to_user(uarg, &buf, sizeof(buf)))
return -EFAULT;
return 0;
}
/*
* This ioctl returns all current events.
*
* This ioctl is to satisfy the "Event Reporting"
* call that the RealPort protocol spec requires.
*/
case DIGI_REALPORT_GETEVENTS:
{
unsigned int events = 0;
/* NOTE: MORE EVENTS NEEDS TO BE ADDED HERE */
if (ch->ch_flags & CH_BREAK_SENDING)
events |= EV_TXB;
if ((ch->ch_flags & CH_STOP) ||
(ch->ch_flags & CH_FORCED_STOP))
events |= (EV_OPU | EV_OPS);
if ((ch->ch_flags & CH_STOPI) ||
(ch->ch_flags & CH_FORCED_STOPI))
events |= (EV_IPU | EV_IPS);
spin_unlock_irqrestore(&ch->ch_lock, flags);
return put_user(events, (unsigned int __user *)arg);
}
/*
* This ioctl returns TOUT and TIN counters based
* upon the values passed in by the RealPort Server.
* It also passes back whether the UART Transmitter is
* empty as well.
*/
case DIGI_REALPORT_GETBUFFERS:
{
struct digi_getbuffer buf;
int tdist;
int count;
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (copy_from_user(&buf, uarg, sizeof(buf)))
return -EFAULT;
spin_lock_irqsave(&ch->ch_lock, flags);
/* Figure out how much data is in our RX and TX queues. */
buf.rxbuf = (ch->ch_r_head - ch->ch_r_tail) & RQUEUEMASK;
buf.txbuf = (ch->ch_w_head - ch->ch_w_tail) & WQUEUEMASK;
/*
* Is the UART empty?
* Add that value to whats in our TX queue.
*/
count = buf.txbuf + ch_bd_ops->get_uart_bytes_left(ch);
/*
* Figure out how much data the RealPort Server believes should
* be in our TX queue.
*/
tdist = (buf.tx_in - buf.tx_out) & 0xffff;
/*
* If we have more data than the RealPort Server believes we
* should have, reduce our count to its amount.
*
* This count difference CAN happen because the Linux LD can
* insert more characters into our queue for OPOST processing
* that the RealPort Server doesn't know about.
*/
if (buf.txbuf > tdist)
buf.txbuf = tdist;
/* Report whether our queue and UART TX are completely empty. */
if (count)
buf.txdone = 0;
else
buf.txdone = 1;
spin_unlock_irqrestore(&ch->ch_lock, flags);
if (copy_to_user(uarg, &buf, sizeof(buf)))
return -EFAULT;
return 0;
}
default:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return -ENOIOCTLCMD;
}
err_unlock:
spin_unlock_irqrestore(&ch->ch_lock, flags);
return rc;
}