2005-04-17 00:20:36 +02:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2004 PathScale, Inc
|
|
|
|
* Licensed under the GPL
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <signal.h>
|
2006-01-08 10:01:29 +01:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <sys/mman.h>
|
|
|
|
#include "user_util.h"
|
|
|
|
#include "user.h"
|
|
|
|
#include "signal_kern.h"
|
|
|
|
#include "sysdep/sigcontext.h"
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-03 07:07:22 +01:00
|
|
|
#include "sysdep/barrier.h"
|
2006-01-08 10:01:29 +01:00
|
|
|
#include "sigcontext.h"
|
2005-04-17 00:20:36 +02:00
|
|
|
#include "mode.h"
|
2006-01-19 02:42:42 +01:00
|
|
|
#include "os.h"
|
2005-04-17 00:20:36 +02:00
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
/* These are the asynchronous signals. SIGVTALRM and SIGARLM are handled
|
|
|
|
* together under SIGVTALRM_BIT. SIGPROF is excluded because we want to
|
|
|
|
* be able to profile all of UML, not just the non-critical sections. If
|
|
|
|
* profiling is not thread-safe, then that is not my problem. We can disable
|
|
|
|
* profiling when SMP is enabled in that case.
|
|
|
|
*/
|
|
|
|
#define SIGIO_BIT 0
|
|
|
|
#define SIGIO_MASK (1 << SIGIO_BIT)
|
|
|
|
|
|
|
|
#define SIGVTALRM_BIT 1
|
|
|
|
#define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
|
|
|
|
|
|
|
|
#define SIGALRM_BIT 2
|
|
|
|
#define SIGALRM_MASK (1 << SIGALRM_BIT)
|
|
|
|
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-03 07:07:22 +01:00
|
|
|
/* These are used by both the signal handlers and
|
|
|
|
* block/unblock_signals. I don't want modifications cached in a
|
|
|
|
* register - they must go straight to memory.
|
|
|
|
*/
|
|
|
|
static volatile int signals_enabled = 1;
|
|
|
|
static volatile int pending = 0;
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
|
2006-09-26 08:33:04 +02:00
|
|
|
void sig_handler(int sig, struct sigcontext *sc)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
int enabled;
|
|
|
|
|
|
|
|
enabled = signals_enabled;
|
|
|
|
if(!enabled && (sig == SIGIO)){
|
|
|
|
pending |= SIGIO_MASK;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
block_signals();
|
|
|
|
|
2005-04-17 00:20:36 +02:00
|
|
|
CHOOSE_MODE_PROC(sig_handler_common_tt, sig_handler_common_skas,
|
|
|
|
sig, sc);
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
|
|
|
|
set_signals(enabled);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
static void real_alarm_handler(int sig, struct sigcontext *sc)
|
2005-04-17 00:20:36 +02:00
|
|
|
{
|
|
|
|
if(sig == SIGALRM)
|
|
|
|
switch_timers(0);
|
|
|
|
|
|
|
|
CHOOSE_MODE_PROC(sig_handler_common_tt, sig_handler_common_skas,
|
|
|
|
sig, sc);
|
|
|
|
|
|
|
|
if(sig == SIGALRM)
|
|
|
|
switch_timers(1);
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
|
|
|
|
}
|
|
|
|
|
2006-09-26 08:33:04 +02:00
|
|
|
void alarm_handler(int sig, struct sigcontext *sc)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
{
|
|
|
|
int enabled;
|
|
|
|
|
|
|
|
enabled = signals_enabled;
|
|
|
|
if(!signals_enabled){
|
|
|
|
if(sig == SIGVTALRM)
|
|
|
|
pending |= SIGVTALRM_MASK;
|
|
|
|
else pending |= SIGALRM_MASK;
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
block_signals();
|
|
|
|
|
|
|
|
real_alarm_handler(sig, sc);
|
|
|
|
set_signals(enabled);
|
2005-04-17 00:20:36 +02:00
|
|
|
}
|
|
|
|
|
2006-01-08 10:01:29 +01:00
|
|
|
void set_sigstack(void *sig_stack, int size)
|
|
|
|
{
|
|
|
|
stack_t stack = ((stack_t) { .ss_flags = 0,
|
|
|
|
.ss_sp = (__ptr_t) sig_stack,
|
|
|
|
.ss_size = size - sizeof(void *) });
|
|
|
|
|
|
|
|
if(sigaltstack(&stack, NULL) != 0)
|
|
|
|
panic("enabling signal stack failed, errno = %d\n", errno);
|
|
|
|
}
|
|
|
|
|
|
|
|
void remove_sigstack(void)
|
|
|
|
{
|
|
|
|
stack_t stack = ((stack_t) { .ss_flags = SS_DISABLE,
|
|
|
|
.ss_sp = NULL,
|
|
|
|
.ss_size = 0 });
|
|
|
|
|
|
|
|
if(sigaltstack(&stack, NULL) != 0)
|
|
|
|
panic("disabling signal stack failed, errno = %d\n", errno);
|
|
|
|
}
|
|
|
|
|
2006-09-26 08:33:04 +02:00
|
|
|
void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
|
|
|
|
|
|
|
|
extern void hard_handler(int sig);
|
|
|
|
|
2006-01-08 10:01:29 +01:00
|
|
|
void set_handler(int sig, void (*handler)(int), int flags, ...)
|
|
|
|
{
|
|
|
|
struct sigaction action;
|
|
|
|
va_list ap;
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
sigset_t sig_mask;
|
2006-01-08 10:01:29 +01:00
|
|
|
int mask;
|
|
|
|
|
2006-09-26 08:33:04 +02:00
|
|
|
handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
|
|
|
|
action.sa_handler = hard_handler;
|
|
|
|
|
2006-01-08 10:01:29 +01:00
|
|
|
sigemptyset(&action.sa_mask);
|
2006-09-26 08:33:04 +02:00
|
|
|
|
|
|
|
va_start(ap, flags);
|
|
|
|
while((mask = va_arg(ap, int)) != -1)
|
2006-01-08 10:01:29 +01:00
|
|
|
sigaddset(&action.sa_mask, mask);
|
|
|
|
va_end(ap);
|
2006-09-26 08:33:04 +02:00
|
|
|
|
2006-01-08 10:01:29 +01:00
|
|
|
action.sa_flags = flags;
|
|
|
|
action.sa_restorer = NULL;
|
|
|
|
if(sigaction(sig, &action, NULL) < 0)
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
panic("sigaction failed - errno = %d\n", errno);
|
|
|
|
|
|
|
|
sigemptyset(&sig_mask);
|
|
|
|
sigaddset(&sig_mask, sig);
|
|
|
|
if(sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
|
|
|
|
panic("sigprocmask failed - errno = %d\n", errno);
|
2006-01-08 10:01:29 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
int change_sig(int signal, int on)
|
|
|
|
{
|
|
|
|
sigset_t sigset, old;
|
|
|
|
|
|
|
|
sigemptyset(&sigset);
|
|
|
|
sigaddset(&sigset, signal);
|
|
|
|
sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old);
|
|
|
|
return(!sigismember(&old, signal));
|
|
|
|
}
|
|
|
|
|
|
|
|
void block_signals(void)
|
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
signals_enabled = 0;
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-03 07:07:22 +01:00
|
|
|
/* This must return with signals disabled, so this barrier
|
|
|
|
* ensures that writes are flushed out before the return.
|
|
|
|
* This might matter if gcc figures out how to inline this and
|
|
|
|
* decides to shuffle this code into the caller.
|
|
|
|
*/
|
|
|
|
mb();
|
2006-01-08 10:01:29 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void unblock_signals(void)
|
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
int save_pending;
|
2006-01-08 10:01:29 +01:00
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
if(signals_enabled == 1)
|
|
|
|
return;
|
2006-01-08 10:01:29 +01:00
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
/* We loop because the IRQ handler returns with interrupts off. So,
|
|
|
|
* interrupts may have arrived and we need to re-enable them and
|
|
|
|
* recheck pending.
|
|
|
|
*/
|
|
|
|
while(1){
|
|
|
|
/* Save and reset save_pending after enabling signals. This
|
|
|
|
* way, pending won't be changed while we're reading it.
|
|
|
|
*/
|
|
|
|
signals_enabled = 1;
|
|
|
|
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-03 07:07:22 +01:00
|
|
|
/* Setting signals_enabled and reading pending must
|
|
|
|
* happen in this order.
|
|
|
|
*/
|
|
|
|
mb();
|
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
save_pending = pending;
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-03 07:07:22 +01:00
|
|
|
if(save_pending == 0){
|
|
|
|
/* This must return with signals enabled, so
|
|
|
|
* this barrier ensures that writes are
|
|
|
|
* flushed out before the return. This might
|
|
|
|
* matter if gcc figures out how to inline
|
|
|
|
* this (unlikely, given its size) and decides
|
|
|
|
* to shuffle this code into the caller.
|
|
|
|
*/
|
|
|
|
mb();
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
return;
|
[PATCH] uml: fix I/O hang
Fix a UML hang in which everything would just stop until some I/O happened
- a ping, someone whacking the keyboard - at which point everything would
start up again as though nothing had happened.
The cause was gcc reordering some code which absolutely needed to be
executed in the order in the source. When unblock_signals switches signals
from off to on, it needs to see if any interrupts had happened in the
critical section. The interrupt handlers check signals_enabled - if it is
zero, then the handler adds a bit to the "pending" bitmask and returns.
unblock_signals checks this mask to see if any signals need to be
delivered.
The crucial part is this:
signals_enabled = 1;
save_pending = pending;
if(save_pending == 0)
return;
pending = 0;
In order to avoid an interrupt arriving between reading pending and setting
it to zero, in which case, the record of the interrupt would be erased,
signals are enabled.
What happened was that gcc reordered this so that 'save_pending = pending'
came before 'signals_enabled = 1', creating a one-instruction window within
which an interrupt could arrive, set its bit in pending, and have it be
immediately erased.
When the I/O workload is purely disk-based, the loss of a block device
interrupt stops the entire I/O system because the next block request will
wait for the current one to finish. Thus the system hangs until something
else causes some I/O to arrive, such as a network packet or console input.
The fix to this particular problem is a memory barrier between enabling
signals and reading the pending signal mask. An xchg would also probably
work.
Looking over this code for similar problems led me to do a few more
things:
- make signals_enabled and pending volatile so that they don't get cached
in registers
- add an mb() to the return paths of block_signals and unblock_signals so
that the modification of signals_enabled doesn't get shuffled into the
caller in the event that these are inlined in the future.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-03 07:07:22 +01:00
|
|
|
}
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
|
|
|
|
pending = 0;
|
|
|
|
|
|
|
|
/* We have pending interrupts, so disable signals, as the
|
|
|
|
* handlers expect them off when they are called. They will
|
|
|
|
* be enabled again above.
|
|
|
|
*/
|
|
|
|
|
|
|
|
signals_enabled = 0;
|
|
|
|
|
|
|
|
/* Deal with SIGIO first because the alarm handler might
|
|
|
|
* schedule, leaving the pending SIGIO stranded until we come
|
|
|
|
* back here.
|
|
|
|
*/
|
|
|
|
if(save_pending & SIGIO_MASK)
|
|
|
|
CHOOSE_MODE_PROC(sig_handler_common_tt,
|
|
|
|
sig_handler_common_skas, SIGIO, NULL);
|
|
|
|
|
|
|
|
if(save_pending & SIGALRM_MASK)
|
|
|
|
real_alarm_handler(SIGALRM, NULL);
|
|
|
|
|
|
|
|
if(save_pending & SIGVTALRM_MASK)
|
|
|
|
real_alarm_handler(SIGVTALRM, NULL);
|
|
|
|
}
|
2006-01-08 10:01:29 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
int get_signals(void)
|
|
|
|
{
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
return signals_enabled;
|
2006-01-08 10:01:29 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
int set_signals(int enable)
|
|
|
|
{
|
|
|
|
int ret;
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
if(signals_enabled == enable)
|
|
|
|
return enable;
|
2006-01-08 10:01:29 +01:00
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
ret = signals_enabled;
|
|
|
|
if(enable)
|
|
|
|
unblock_signals();
|
|
|
|
else block_signals();
|
2006-01-08 10:01:29 +01:00
|
|
|
|
[PATCH] uml: implement soft interrupts
This patch implements soft interrupts. Interrupt enabling and disabling no
longer map to sigprocmask. Rather, a flag is set indicating whether
interrupts may be handled. If a signal comes in and interrupts are marked as
OK, then it is handled normally. If interrupts are marked as off, then the
signal handler simply returns after noting that a signal needs handling. When
interrupts are enabled later on, this pending signals flag is checked, and the
IRQ handlers are called at that point.
The point of this is to reduce the cost of local_irq_save et al, since they
are very much more common than the signals that they are enabling and
disabling. Soft interrupts produce a speed-up of ~25% on a kernel build.
Subtleties -
UML uses sigsetjmp/siglongjmp to switch contexts. sigsetjmp has been
wrapped in a save_flags-like macro which remembers the interrupt state at
setjmp time, and restores it when it is longjmp-ed back to.
The enable_signals function has to loop because the IRQ handler
disables interrupts before returning. enable_signals has to return with
signals enabled, and signals may come in between the disabling and the
return to enable_signals. So, it loops for as long as there are pending
signals, ensuring that signals are enabled when it finally returns, and
that there are no pending signals that need to be dealt with.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-19 02:42:49 +01:00
|
|
|
return ret;
|
2006-01-08 10:01:29 +01:00
|
|
|
}
|
2006-01-19 02:42:46 +01:00
|
|
|
|
|
|
|
void os_usr1_signal(int on)
|
|
|
|
{
|
|
|
|
change_sig(SIGUSR1, on);
|
|
|
|
}
|