linux/drivers/ata/sata_nv.c

2547 lines
68 KiB
C
Raw Normal View History

/*
* sata_nv.c - NVIDIA nForce SATA
*
* Copyright 2004 NVIDIA Corp. All rights reserved.
* Copyright 2004 Andrew Chew
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* No hardware documentation available outside of NVIDIA.
* This driver programs the NVIDIA SATA controller in a similar
* fashion as with other PCI IDE BMDMA controllers, with a few
* NV-specific details such as register offsets, SATA phy location,
* hotplug info, etc.
*
* CK804/MCP04 controllers support an alternate programming interface
* similar to the ADMA specification (with some modifications).
* This allows the use of NCQ. Non-DMA-mapped ATA commands are still
* sent through the legacy interface.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_device.h>
#include <linux/libata.h>
#define DRV_NAME "sata_nv"
#define DRV_VERSION "3.5"
#define NV_ADMA_DMA_BOUNDARY 0xffffffffUL
enum {
NV_MMIO_BAR = 5,
NV_PORTS = 2,
NV_PIO_MASK = 0x1f,
NV_MWDMA_MASK = 0x07,
NV_UDMA_MASK = 0x7f,
NV_PORT0_SCR_REG_OFFSET = 0x00,
NV_PORT1_SCR_REG_OFFSET = 0x40,
/* INT_STATUS/ENABLE */
NV_INT_STATUS = 0x10,
NV_INT_ENABLE = 0x11,
NV_INT_STATUS_CK804 = 0x440,
NV_INT_ENABLE_CK804 = 0x441,
/* INT_STATUS/ENABLE bits */
NV_INT_DEV = 0x01,
NV_INT_PM = 0x02,
NV_INT_ADDED = 0x04,
NV_INT_REMOVED = 0x08,
NV_INT_PORT_SHIFT = 4, /* each port occupies 4 bits */
NV_INT_ALL = 0x0f,
NV_INT_MASK = NV_INT_DEV |
NV_INT_ADDED | NV_INT_REMOVED,
/* INT_CONFIG */
NV_INT_CONFIG = 0x12,
NV_INT_CONFIG_METHD = 0x01, // 0 = INT, 1 = SMI
// For PCI config register 20
NV_MCP_SATA_CFG_20 = 0x50,
NV_MCP_SATA_CFG_20_SATA_SPACE_EN = 0x04,
NV_MCP_SATA_CFG_20_PORT0_EN = (1 << 17),
NV_MCP_SATA_CFG_20_PORT1_EN = (1 << 16),
NV_MCP_SATA_CFG_20_PORT0_PWB_EN = (1 << 14),
NV_MCP_SATA_CFG_20_PORT1_PWB_EN = (1 << 12),
NV_ADMA_MAX_CPBS = 32,
NV_ADMA_CPB_SZ = 128,
NV_ADMA_APRD_SZ = 16,
NV_ADMA_SGTBL_LEN = (1024 - NV_ADMA_CPB_SZ) /
NV_ADMA_APRD_SZ,
NV_ADMA_SGTBL_TOTAL_LEN = NV_ADMA_SGTBL_LEN + 5,
NV_ADMA_SGTBL_SZ = NV_ADMA_SGTBL_LEN * NV_ADMA_APRD_SZ,
NV_ADMA_PORT_PRIV_DMA_SZ = NV_ADMA_MAX_CPBS *
(NV_ADMA_CPB_SZ + NV_ADMA_SGTBL_SZ),
/* BAR5 offset to ADMA general registers */
NV_ADMA_GEN = 0x400,
NV_ADMA_GEN_CTL = 0x00,
NV_ADMA_NOTIFIER_CLEAR = 0x30,
/* BAR5 offset to ADMA ports */
NV_ADMA_PORT = 0x480,
/* size of ADMA port register space */
NV_ADMA_PORT_SIZE = 0x100,
/* ADMA port registers */
NV_ADMA_CTL = 0x40,
NV_ADMA_CPB_COUNT = 0x42,
NV_ADMA_NEXT_CPB_IDX = 0x43,
NV_ADMA_STAT = 0x44,
NV_ADMA_CPB_BASE_LOW = 0x48,
NV_ADMA_CPB_BASE_HIGH = 0x4C,
NV_ADMA_APPEND = 0x50,
NV_ADMA_NOTIFIER = 0x68,
NV_ADMA_NOTIFIER_ERROR = 0x6C,
/* NV_ADMA_CTL register bits */
NV_ADMA_CTL_HOTPLUG_IEN = (1 << 0),
NV_ADMA_CTL_CHANNEL_RESET = (1 << 5),
NV_ADMA_CTL_GO = (1 << 7),
NV_ADMA_CTL_AIEN = (1 << 8),
NV_ADMA_CTL_READ_NON_COHERENT = (1 << 11),
NV_ADMA_CTL_WRITE_NON_COHERENT = (1 << 12),
/* CPB response flag bits */
NV_CPB_RESP_DONE = (1 << 0),
NV_CPB_RESP_ATA_ERR = (1 << 3),
NV_CPB_RESP_CMD_ERR = (1 << 4),
NV_CPB_RESP_CPB_ERR = (1 << 7),
/* CPB control flag bits */
NV_CPB_CTL_CPB_VALID = (1 << 0),
NV_CPB_CTL_QUEUE = (1 << 1),
NV_CPB_CTL_APRD_VALID = (1 << 2),
NV_CPB_CTL_IEN = (1 << 3),
NV_CPB_CTL_FPDMA = (1 << 4),
/* APRD flags */
NV_APRD_WRITE = (1 << 1),
NV_APRD_END = (1 << 2),
NV_APRD_CONT = (1 << 3),
/* NV_ADMA_STAT flags */
NV_ADMA_STAT_TIMEOUT = (1 << 0),
NV_ADMA_STAT_HOTUNPLUG = (1 << 1),
NV_ADMA_STAT_HOTPLUG = (1 << 2),
NV_ADMA_STAT_CPBERR = (1 << 4),
NV_ADMA_STAT_SERROR = (1 << 5),
NV_ADMA_STAT_CMD_COMPLETE = (1 << 6),
NV_ADMA_STAT_IDLE = (1 << 8),
NV_ADMA_STAT_LEGACY = (1 << 9),
NV_ADMA_STAT_STOPPED = (1 << 10),
NV_ADMA_STAT_DONE = (1 << 12),
NV_ADMA_STAT_ERR = NV_ADMA_STAT_CPBERR |
NV_ADMA_STAT_TIMEOUT,
/* port flags */
NV_ADMA_PORT_REGISTER_MODE = (1 << 0),
NV_ADMA_ATAPI_SETUP_COMPLETE = (1 << 1),
/* MCP55 reg offset */
NV_CTL_MCP55 = 0x400,
NV_INT_STATUS_MCP55 = 0x440,
NV_INT_ENABLE_MCP55 = 0x444,
NV_NCQ_REG_MCP55 = 0x448,
/* MCP55 */
NV_INT_ALL_MCP55 = 0xffff,
NV_INT_PORT_SHIFT_MCP55 = 16, /* each port occupies 16 bits */
NV_INT_MASK_MCP55 = NV_INT_ALL_MCP55 & 0xfffd,
/* SWNCQ ENABLE BITS*/
NV_CTL_PRI_SWNCQ = 0x02,
NV_CTL_SEC_SWNCQ = 0x04,
/* SW NCQ status bits*/
NV_SWNCQ_IRQ_DEV = (1 << 0),
NV_SWNCQ_IRQ_PM = (1 << 1),
NV_SWNCQ_IRQ_ADDED = (1 << 2),
NV_SWNCQ_IRQ_REMOVED = (1 << 3),
NV_SWNCQ_IRQ_BACKOUT = (1 << 4),
NV_SWNCQ_IRQ_SDBFIS = (1 << 5),
NV_SWNCQ_IRQ_DHREGFIS = (1 << 6),
NV_SWNCQ_IRQ_DMASETUP = (1 << 7),
NV_SWNCQ_IRQ_HOTPLUG = NV_SWNCQ_IRQ_ADDED |
NV_SWNCQ_IRQ_REMOVED,
};
/* ADMA Physical Region Descriptor - one SG segment */
struct nv_adma_prd {
__le64 addr;
__le32 len;
u8 flags;
u8 packet_len;
__le16 reserved;
};
enum nv_adma_regbits {
CMDEND = (1 << 15), /* end of command list */
WNB = (1 << 14), /* wait-not-BSY */
IGN = (1 << 13), /* ignore this entry */
CS1n = (1 << (4 + 8)), /* std. PATA signals follow... */
DA2 = (1 << (2 + 8)),
DA1 = (1 << (1 + 8)),
DA0 = (1 << (0 + 8)),
};
/* ADMA Command Parameter Block
The first 5 SG segments are stored inside the Command Parameter Block itself.
If there are more than 5 segments the remainder are stored in a separate
memory area indicated by next_aprd. */
struct nv_adma_cpb {
u8 resp_flags; /* 0 */
u8 reserved1; /* 1 */
u8 ctl_flags; /* 2 */
/* len is length of taskfile in 64 bit words */
u8 len; /* 3 */
u8 tag; /* 4 */
u8 next_cpb_idx; /* 5 */
__le16 reserved2; /* 6-7 */
__le16 tf[12]; /* 8-31 */
struct nv_adma_prd aprd[5]; /* 32-111 */
__le64 next_aprd; /* 112-119 */
__le64 reserved3; /* 120-127 */
};
struct nv_adma_port_priv {
struct nv_adma_cpb *cpb;
dma_addr_t cpb_dma;
struct nv_adma_prd *aprd;
dma_addr_t aprd_dma;
void __iomem *ctl_block;
void __iomem *gen_block;
void __iomem *notifier_clear_block;
u8 flags;
int last_issue_ncq;
};
struct nv_host_priv {
unsigned long type;
};
struct defer_queue {
u32 defer_bits;
unsigned int head;
unsigned int tail;
unsigned int tag[ATA_MAX_QUEUE];
};
enum ncq_saw_flag_list {
ncq_saw_d2h = (1U << 0),
ncq_saw_dmas = (1U << 1),
ncq_saw_sdb = (1U << 2),
ncq_saw_backout = (1U << 3),
};
struct nv_swncq_port_priv {
struct ata_prd *prd; /* our SG list */
dma_addr_t prd_dma; /* and its DMA mapping */
void __iomem *sactive_block;
void __iomem *irq_block;
void __iomem *tag_block;
u32 qc_active;
unsigned int last_issue_tag;
/* fifo circular queue to store deferral command */
struct defer_queue defer_queue;
/* for NCQ interrupt analysis */
u32 dhfis_bits;
u32 dmafis_bits;
u32 sdbfis_bits;
unsigned int ncq_flags;
};
#define NV_ADMA_CHECK_INTR(GCTL, PORT) ((GCTL) & (1 << (19 + (12 * (PORT)))))
static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
#ifdef CONFIG_PM
static int nv_pci_device_resume(struct pci_dev *pdev);
#endif
static void nv_ck804_host_stop(struct ata_host *host);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance);
static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance);
static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance);
static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val);
static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val);
static void nv_nf2_freeze(struct ata_port *ap);
static void nv_nf2_thaw(struct ata_port *ap);
static void nv_ck804_freeze(struct ata_port *ap);
static void nv_ck804_thaw(struct ata_port *ap);
static void nv_error_handler(struct ata_port *ap);
static int nv_adma_slave_config(struct scsi_device *sdev);
static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc);
static void nv_adma_qc_prep(struct ata_queued_cmd *qc);
static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc);
static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance);
static void nv_adma_irq_clear(struct ata_port *ap);
static int nv_adma_port_start(struct ata_port *ap);
static void nv_adma_port_stop(struct ata_port *ap);
#ifdef CONFIG_PM
static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg);
static int nv_adma_port_resume(struct ata_port *ap);
#endif
static void nv_adma_freeze(struct ata_port *ap);
static void nv_adma_thaw(struct ata_port *ap);
static void nv_adma_error_handler(struct ata_port *ap);
static void nv_adma_host_stop(struct ata_host *host);
static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc);
static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf);
static void nv_mcp55_thaw(struct ata_port *ap);
static void nv_mcp55_freeze(struct ata_port *ap);
static void nv_swncq_error_handler(struct ata_port *ap);
static int nv_swncq_slave_config(struct scsi_device *sdev);
static int nv_swncq_port_start(struct ata_port *ap);
static void nv_swncq_qc_prep(struct ata_queued_cmd *qc);
static void nv_swncq_fill_sg(struct ata_queued_cmd *qc);
static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc);
static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis);
static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance);
#ifdef CONFIG_PM
static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg);
static int nv_swncq_port_resume(struct ata_port *ap);
#endif
enum nv_host_type
{
GENERIC,
NFORCE2,
NFORCE3 = NFORCE2, /* NF2 == NF3 as far as sata_nv is concerned */
CK804,
ADMA,
SWNCQ,
};
static const struct pci_device_id nv_pci_tbl[] = {
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2S_SATA), NFORCE2 },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA), NFORCE3 },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE3S_SATA2), NFORCE3 },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA), CK804 },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_CK804_SATA2), CK804 },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA), CK804 },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP04_SATA2), CK804 },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA), SWNCQ },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2), SWNCQ },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA), SWNCQ },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2), SWNCQ },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA), GENERIC },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA2), GENERIC },
{ PCI_VDEVICE(NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE_MCP61_SATA3), GENERIC },
{ } /* terminate list */
};
static struct pci_driver nv_pci_driver = {
.name = DRV_NAME,
.id_table = nv_pci_tbl,
.probe = nv_init_one,
#ifdef CONFIG_PM
.suspend = ata_pci_device_suspend,
.resume = nv_pci_device_resume,
#endif
.remove = ata_pci_remove_one,
};
static struct scsi_host_template nv_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.can_queue = ATA_DEF_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = LIBATA_MAX_PRD,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = ATA_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static struct scsi_host_template nv_adma_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.change_queue_depth = ata_scsi_change_queue_depth,
.can_queue = NV_ADMA_MAX_CPBS,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = NV_ADMA_DMA_BOUNDARY,
.slave_configure = nv_adma_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static struct scsi_host_template nv_swncq_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.change_queue_depth = ata_scsi_change_queue_depth,
.can_queue = ATA_MAX_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = LIBATA_MAX_PRD,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = ATA_DMA_BOUNDARY,
.slave_configure = nv_swncq_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
};
static const struct ata_port_operations nv_generic_ops = {
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.exec_command = ata_exec_command,
.check_status = ata_check_status,
.dev_select = ata_std_dev_select,
.bmdma_setup = ata_bmdma_setup,
.bmdma_start = ata_bmdma_start,
.bmdma_stop = ata_bmdma_stop,
.bmdma_status = ata_bmdma_status,
.qc_prep = ata_qc_prep,
.qc_issue = ata_qc_issue_prot,
.freeze = ata_bmdma_freeze,
.thaw = ata_bmdma_thaw,
.error_handler = nv_error_handler,
.post_internal_cmd = ata_bmdma_post_internal_cmd,
.data_xfer = ata_data_xfer,
.irq_clear = ata_bmdma_irq_clear,
.irq_on = ata_irq_on,
.scr_read = nv_scr_read,
.scr_write = nv_scr_write,
.port_start = ata_port_start,
};
static const struct ata_port_operations nv_nf2_ops = {
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.exec_command = ata_exec_command,
.check_status = ata_check_status,
.dev_select = ata_std_dev_select,
.bmdma_setup = ata_bmdma_setup,
.bmdma_start = ata_bmdma_start,
.bmdma_stop = ata_bmdma_stop,
.bmdma_status = ata_bmdma_status,
.qc_prep = ata_qc_prep,
.qc_issue = ata_qc_issue_prot,
.freeze = nv_nf2_freeze,
.thaw = nv_nf2_thaw,
.error_handler = nv_error_handler,
.post_internal_cmd = ata_bmdma_post_internal_cmd,
.data_xfer = ata_data_xfer,
.irq_clear = ata_bmdma_irq_clear,
.irq_on = ata_irq_on,
.scr_read = nv_scr_read,
.scr_write = nv_scr_write,
.port_start = ata_port_start,
};
static const struct ata_port_operations nv_ck804_ops = {
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.exec_command = ata_exec_command,
.check_status = ata_check_status,
.dev_select = ata_std_dev_select,
.bmdma_setup = ata_bmdma_setup,
.bmdma_start = ata_bmdma_start,
.bmdma_stop = ata_bmdma_stop,
.bmdma_status = ata_bmdma_status,
.qc_prep = ata_qc_prep,
.qc_issue = ata_qc_issue_prot,
.freeze = nv_ck804_freeze,
.thaw = nv_ck804_thaw,
.error_handler = nv_error_handler,
.post_internal_cmd = ata_bmdma_post_internal_cmd,
.data_xfer = ata_data_xfer,
.irq_clear = ata_bmdma_irq_clear,
.irq_on = ata_irq_on,
.scr_read = nv_scr_read,
.scr_write = nv_scr_write,
.port_start = ata_port_start,
.host_stop = nv_ck804_host_stop,
};
static const struct ata_port_operations nv_adma_ops = {
.tf_load = ata_tf_load,
.tf_read = nv_adma_tf_read,
.check_atapi_dma = nv_adma_check_atapi_dma,
.exec_command = ata_exec_command,
.check_status = ata_check_status,
.dev_select = ata_std_dev_select,
.bmdma_setup = ata_bmdma_setup,
.bmdma_start = ata_bmdma_start,
.bmdma_stop = ata_bmdma_stop,
.bmdma_status = ata_bmdma_status,
.qc_defer = ata_std_qc_defer,
.qc_prep = nv_adma_qc_prep,
.qc_issue = nv_adma_qc_issue,
.freeze = nv_adma_freeze,
.thaw = nv_adma_thaw,
.error_handler = nv_adma_error_handler,
.post_internal_cmd = nv_adma_post_internal_cmd,
.data_xfer = ata_data_xfer,
.irq_clear = nv_adma_irq_clear,
.irq_on = ata_irq_on,
.scr_read = nv_scr_read,
.scr_write = nv_scr_write,
.port_start = nv_adma_port_start,
.port_stop = nv_adma_port_stop,
#ifdef CONFIG_PM
.port_suspend = nv_adma_port_suspend,
.port_resume = nv_adma_port_resume,
#endif
.host_stop = nv_adma_host_stop,
};
static const struct ata_port_operations nv_swncq_ops = {
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.exec_command = ata_exec_command,
.check_status = ata_check_status,
.dev_select = ata_std_dev_select,
.bmdma_setup = ata_bmdma_setup,
.bmdma_start = ata_bmdma_start,
.bmdma_stop = ata_bmdma_stop,
.bmdma_status = ata_bmdma_status,
.qc_defer = ata_std_qc_defer,
.qc_prep = nv_swncq_qc_prep,
.qc_issue = nv_swncq_qc_issue,
.freeze = nv_mcp55_freeze,
.thaw = nv_mcp55_thaw,
.error_handler = nv_swncq_error_handler,
.post_internal_cmd = ata_bmdma_post_internal_cmd,
.data_xfer = ata_data_xfer,
.irq_clear = ata_bmdma_irq_clear,
.irq_on = ata_irq_on,
.scr_read = nv_scr_read,
.scr_write = nv_scr_write,
#ifdef CONFIG_PM
.port_suspend = nv_swncq_port_suspend,
.port_resume = nv_swncq_port_resume,
#endif
.port_start = nv_swncq_port_start,
};
libata: clean up SFF init mess The intention of using port_mask in SFF init helpers was to eventually support exoctic configurations such as combination of legacy and native port on the same controller. This never became actually necessary and the related code always has been subtly broken one way or the other. Now that new init model is in place, there is no reason to make common helpers capable of handling all corner cases. Exotic cases can simply dealt within LLDs as necessary. This patch removes port_mask handling in SFF init helpers. SFF init helpers don't take n_ports argument and interpret it into port_mask anymore. All information is carried via port_info. n_ports argument is dropped and always two ports are allocated. LLD can tell SFF to skip certain port by marking it dummy. Note that SFF code has been treating unuvailable ports this way for a long time until recent breakage fix from Linus and is consistent with how other drivers handle with unavailable ports. This fixes 1-port legacy host handling still broken after the recent native mode fix and simplifies SFF init logic. The following changes are made... * ata_pci_init_native_host() and ata_init_legacy_host() both now try to initialized whatever they can and mark failed ports dummy. They return 0 if any port is successfully initialized. * ata_pci_prepare_native_host() and ata_pci_init_one() now doesn't take n_ports argument. All info should be specified via port_info array. Always two ports are allocated. * ata_pci_init_bmdma() exported to be used by LLDs in exotic cases. * port_info handling in all LLDs are standardized - all port_info arrays are const stack variable named ppi. Unless the second port is different from the first, its port_info is specified as NULL (tells libata that it's identical to the last non-NULL port_info). * pata_hpt37x/hpt3x2n: don't modify static variable directly. Make an on-stack copy instead as ata_piix does. * pata_uli: It has 4 ports instead of 2. Don't use ata_pci_prepare_native_host(). Allocate the host explicitly and use init helpers. It's simple enough. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-04 12:43:58 +02:00
static const struct ata_port_info nv_port_info[] = {
/* generic */
{
.sht = &nv_sht,
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
.link_flags = ATA_LFLAG_HRST_TO_RESUME,
.pio_mask = NV_PIO_MASK,
.mwdma_mask = NV_MWDMA_MASK,
.udma_mask = NV_UDMA_MASK,
.port_ops = &nv_generic_ops,
.irq_handler = nv_generic_interrupt,
},
/* nforce2/3 */
{
.sht = &nv_sht,
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
.link_flags = ATA_LFLAG_HRST_TO_RESUME,
.pio_mask = NV_PIO_MASK,
.mwdma_mask = NV_MWDMA_MASK,
.udma_mask = NV_UDMA_MASK,
.port_ops = &nv_nf2_ops,
.irq_handler = nv_nf2_interrupt,
},
/* ck804 */
{
.sht = &nv_sht,
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY,
.link_flags = ATA_LFLAG_HRST_TO_RESUME,
.pio_mask = NV_PIO_MASK,
.mwdma_mask = NV_MWDMA_MASK,
.udma_mask = NV_UDMA_MASK,
.port_ops = &nv_ck804_ops,
.irq_handler = nv_ck804_interrupt,
},
/* ADMA */
{
.sht = &nv_adma_sht,
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_MMIO | ATA_FLAG_NCQ,
.link_flags = ATA_LFLAG_HRST_TO_RESUME,
.pio_mask = NV_PIO_MASK,
.mwdma_mask = NV_MWDMA_MASK,
.udma_mask = NV_UDMA_MASK,
.port_ops = &nv_adma_ops,
.irq_handler = nv_adma_interrupt,
},
/* SWNCQ */
{
.sht = &nv_swncq_sht,
.flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
ATA_FLAG_NCQ,
.link_flags = ATA_LFLAG_HRST_TO_RESUME,
.pio_mask = NV_PIO_MASK,
.mwdma_mask = NV_MWDMA_MASK,
.udma_mask = NV_UDMA_MASK,
.port_ops = &nv_swncq_ops,
.irq_handler = nv_swncq_interrupt,
},
};
MODULE_AUTHOR("NVIDIA");
MODULE_DESCRIPTION("low-level driver for NVIDIA nForce SATA controller");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, nv_pci_tbl);
MODULE_VERSION(DRV_VERSION);
static int adma_enabled = 1;
static int swncq_enabled;
static void nv_adma_register_mode(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
u16 tmp, status;
int count = 0;
if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
return;
status = readw(mmio + NV_ADMA_STAT);
while (!(status & NV_ADMA_STAT_IDLE) && count < 20) {
ndelay(50);
status = readw(mmio + NV_ADMA_STAT);
count++;
}
if (count == 20)
ata_port_printk(ap, KERN_WARNING,
"timeout waiting for ADMA IDLE, stat=0x%hx\n",
status);
tmp = readw(mmio + NV_ADMA_CTL);
writew(tmp & ~NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
count = 0;
status = readw(mmio + NV_ADMA_STAT);
while (!(status & NV_ADMA_STAT_LEGACY) && count < 20) {
ndelay(50);
status = readw(mmio + NV_ADMA_STAT);
count++;
}
if (count == 20)
ata_port_printk(ap, KERN_WARNING,
"timeout waiting for ADMA LEGACY, stat=0x%hx\n",
status);
pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
}
static void nv_adma_mode(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
u16 tmp, status;
int count = 0;
if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE))
return;
WARN_ON(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
tmp = readw(mmio + NV_ADMA_CTL);
writew(tmp | NV_ADMA_CTL_GO, mmio + NV_ADMA_CTL);
status = readw(mmio + NV_ADMA_STAT);
while (((status & NV_ADMA_STAT_LEGACY) ||
!(status & NV_ADMA_STAT_IDLE)) && count < 20) {
ndelay(50);
status = readw(mmio + NV_ADMA_STAT);
count++;
}
if (count == 20)
ata_port_printk(ap, KERN_WARNING,
"timeout waiting for ADMA LEGACY clear and IDLE, stat=0x%hx\n",
status);
pp->flags &= ~NV_ADMA_PORT_REGISTER_MODE;
}
static int nv_adma_slave_config(struct scsi_device *sdev)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct nv_adma_port_priv *pp = ap->private_data;
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u64 bounce_limit;
unsigned long segment_boundary;
unsigned short sg_tablesize;
int rc;
int adma_enable;
u32 current_reg, new_reg, config_mask;
rc = ata_scsi_slave_config(sdev);
if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
/* Not a proper libata device, ignore */
return rc;
if (ap->link.device[sdev->id].class == ATA_DEV_ATAPI) {
/*
* NVIDIA reports that ADMA mode does not support ATAPI commands.
* Therefore ATAPI commands are sent through the legacy interface.
* However, the legacy interface only supports 32-bit DMA.
* Restrict DMA parameters as required by the legacy interface
* when an ATAPI device is connected.
*/
bounce_limit = ATA_DMA_MASK;
segment_boundary = ATA_DMA_BOUNDARY;
/* Subtract 1 since an extra entry may be needed for padding, see
libata-scsi.c */
sg_tablesize = LIBATA_MAX_PRD - 1;
/* Since the legacy DMA engine is in use, we need to disable ADMA
on the port. */
adma_enable = 0;
nv_adma_register_mode(ap);
} else {
bounce_limit = *ap->dev->dma_mask;
segment_boundary = NV_ADMA_DMA_BOUNDARY;
sg_tablesize = NV_ADMA_SGTBL_TOTAL_LEN;
adma_enable = 1;
}
pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &current_reg);
if (ap->port_no == 1)
config_mask = NV_MCP_SATA_CFG_20_PORT1_EN |
NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
else
config_mask = NV_MCP_SATA_CFG_20_PORT0_EN |
NV_MCP_SATA_CFG_20_PORT0_PWB_EN;
if (adma_enable) {
new_reg = current_reg | config_mask;
pp->flags &= ~NV_ADMA_ATAPI_SETUP_COMPLETE;
} else {
new_reg = current_reg & ~config_mask;
pp->flags |= NV_ADMA_ATAPI_SETUP_COMPLETE;
}
if (current_reg != new_reg)
pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, new_reg);
blk_queue_bounce_limit(sdev->request_queue, bounce_limit);
blk_queue_segment_boundary(sdev->request_queue, segment_boundary);
blk_queue_max_hw_segments(sdev->request_queue, sg_tablesize);
ata_port_printk(ap, KERN_INFO,
"bounce limit 0x%llX, segment boundary 0x%lX, hw segs %hu\n",
(unsigned long long)bounce_limit, segment_boundary, sg_tablesize);
return rc;
}
static int nv_adma_check_atapi_dma(struct ata_queued_cmd *qc)
{
struct nv_adma_port_priv *pp = qc->ap->private_data;
return !(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE);
}
static void nv_adma_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
/* Other than when internal or pass-through commands are executed,
the only time this function will be called in ADMA mode will be
if a command fails. In the failure case we don't care about going
into register mode with ADMA commands pending, as the commands will
all shortly be aborted anyway. We assume that NCQ commands are not
issued via passthrough, which is the only way that switching into
ADMA mode could abort outstanding commands. */
nv_adma_register_mode(ap);
ata_tf_read(ap, tf);
}
static unsigned int nv_adma_tf_to_cpb(struct ata_taskfile *tf, __le16 *cpb)
{
unsigned int idx = 0;
if (tf->flags & ATA_TFLAG_ISADDR) {
if (tf->flags & ATA_TFLAG_LBA48) {
cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->hob_feature | WNB);
cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->hob_nsect);
cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->hob_lbal);
cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->hob_lbam);
cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->hob_lbah);
cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature);
} else
cpb[idx++] = cpu_to_le16((ATA_REG_ERR << 8) | tf->feature | WNB);
cpb[idx++] = cpu_to_le16((ATA_REG_NSECT << 8) | tf->nsect);
cpb[idx++] = cpu_to_le16((ATA_REG_LBAL << 8) | tf->lbal);
cpb[idx++] = cpu_to_le16((ATA_REG_LBAM << 8) | tf->lbam);
cpb[idx++] = cpu_to_le16((ATA_REG_LBAH << 8) | tf->lbah);
}
if (tf->flags & ATA_TFLAG_DEVICE)
cpb[idx++] = cpu_to_le16((ATA_REG_DEVICE << 8) | tf->device);
cpb[idx++] = cpu_to_le16((ATA_REG_CMD << 8) | tf->command | CMDEND);
while (idx < 12)
cpb[idx++] = cpu_to_le16(IGN);
return idx;
}
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
static int nv_adma_check_cpb(struct ata_port *ap, int cpb_num, int force_err)
{
struct nv_adma_port_priv *pp = ap->private_data;
u8 flags = pp->cpb[cpb_num].resp_flags;
VPRINTK("CPB %d, flags=0x%x\n", cpb_num, flags);
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
if (unlikely((force_err ||
flags & (NV_CPB_RESP_ATA_ERR |
NV_CPB_RESP_CMD_ERR |
NV_CPB_RESP_CPB_ERR)))) {
struct ata_eh_info *ehi = &ap->link.eh_info;
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
int freeze = 0;
ata_ehi_clear_desc(ehi);
__ata_ehi_push_desc(ehi, "CPB resp_flags 0x%x: ", flags);
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
if (flags & NV_CPB_RESP_ATA_ERR) {
ata_ehi_push_desc(ehi, "ATA error");
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
ehi->err_mask |= AC_ERR_DEV;
} else if (flags & NV_CPB_RESP_CMD_ERR) {
ata_ehi_push_desc(ehi, "CMD error");
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
ehi->err_mask |= AC_ERR_DEV;
} else if (flags & NV_CPB_RESP_CPB_ERR) {
ata_ehi_push_desc(ehi, "CPB error");
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
ehi->err_mask |= AC_ERR_SYSTEM;
freeze = 1;
} else {
/* notifier error, but no error in CPB flags? */
ata_ehi_push_desc(ehi, "unknown");
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
ehi->err_mask |= AC_ERR_OTHER;
freeze = 1;
}
/* Kill all commands. EH will determine what actually failed. */
if (freeze)
ata_port_freeze(ap);
else
ata_port_abort(ap);
return 1;
}
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
if (likely(flags & NV_CPB_RESP_DONE)) {
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, cpb_num);
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
VPRINTK("CPB flags done, flags=0x%x\n", flags);
if (likely(qc)) {
DPRINTK("Completing qc from tag %d\n", cpb_num);
ata_qc_complete(qc);
} else {
struct ata_eh_info *ehi = &ap->link.eh_info;
/* Notifier bits set without a command may indicate the drive
is misbehaving. Raise host state machine violation on this
condition. */
ata_port_printk(ap, KERN_ERR,
"notifier for tag %d with no cmd?\n",
cpb_num);
ehi->err_mask |= AC_ERR_HSM;
ehi->action |= ATA_EH_SOFTRESET;
ata_port_freeze(ap);
return 1;
}
}
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
return 0;
}
static int nv_host_intr(struct ata_port *ap, u8 irq_stat)
{
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
/* freeze if hotplugged */
if (unlikely(irq_stat & (NV_INT_ADDED | NV_INT_REMOVED))) {
ata_port_freeze(ap);
return 1;
}
/* bail out if not our interrupt */
if (!(irq_stat & NV_INT_DEV))
return 0;
/* DEV interrupt w/ no active qc? */
if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
ata_check_status(ap);
return 1;
}
/* handle interrupt */
return ata_host_intr(ap, qc);
}
static irqreturn_t nv_adma_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
int i, handled = 0;
u32 notifier_clears[2];
spin_lock(&host->lock);
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
notifier_clears[i] = 0;
if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
u16 status;
u32 gen_ctl;
u32 notifier, notifier_error;
/* if ADMA is disabled, use standard ata interrupt handler */
if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
>> (NV_INT_PORT_SHIFT * i);
handled += nv_host_intr(ap, irq_stat);
continue;
}
/* if in ATA register mode, check for standard interrupts */
if (pp->flags & NV_ADMA_PORT_REGISTER_MODE) {
u8 irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804)
>> (NV_INT_PORT_SHIFT * i);
if (ata_tag_valid(ap->link.active_tag))
/** NV_INT_DEV indication seems unreliable at times
at least in ADMA mode. Force it on always when a
command is active, to prevent losing interrupts. */
irq_stat |= NV_INT_DEV;
handled += nv_host_intr(ap, irq_stat);
}
notifier = readl(mmio + NV_ADMA_NOTIFIER);
notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
notifier_clears[i] = notifier | notifier_error;
gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
if (!NV_ADMA_CHECK_INTR(gen_ctl, ap->port_no) && !notifier &&
!notifier_error)
/* Nothing to do */
continue;
status = readw(mmio + NV_ADMA_STAT);
/* Clear status. Ensure the controller sees the clearing before we start
looking at any of the CPB statuses, so that any CPB completions after
this point in the handler will raise another interrupt. */
writew(status, mmio + NV_ADMA_STAT);
readw(mmio + NV_ADMA_STAT); /* flush posted write */
rmb();
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
handled++; /* irq handled if we got here */
/* freeze if hotplugged or controller error */
if (unlikely(status & (NV_ADMA_STAT_HOTPLUG |
NV_ADMA_STAT_HOTUNPLUG |
NV_ADMA_STAT_TIMEOUT |
NV_ADMA_STAT_SERROR))) {
struct ata_eh_info *ehi = &ap->link.eh_info;
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
ata_ehi_clear_desc(ehi);
__ata_ehi_push_desc(ehi, "ADMA status 0x%08x: ", status);
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
if (status & NV_ADMA_STAT_TIMEOUT) {
ehi->err_mask |= AC_ERR_SYSTEM;
ata_ehi_push_desc(ehi, "timeout");
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
} else if (status & NV_ADMA_STAT_HOTPLUG) {
ata_ehi_hotplugged(ehi);
ata_ehi_push_desc(ehi, "hotplug");
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
} else if (status & NV_ADMA_STAT_HOTUNPLUG) {
ata_ehi_hotplugged(ehi);
ata_ehi_push_desc(ehi, "hot unplug");
} else if (status & NV_ADMA_STAT_SERROR) {
/* let libata analyze SError and figure out the cause */
ata_ehi_push_desc(ehi, "SError");
} else
ata_ehi_push_desc(ehi, "unknown");
ata_port_freeze(ap);
continue;
}
sata_nv: cleanup ADMA error handling This cleans up a few issues with the error handling in sata_nv in ADMA mode to make it more consistent with other NCQ-capable drivers like ahci and sata_sil24: - When a command failed, we would effectively set AC_ERR_DEV on the queued command always. In the case of NCQ commands this prevents libata from doing a log page query to determine the details of the failed command, since it thinks we've already analyzed. Just set flags in the port ehi->err_mask, then freeze or abort and let libata figure out what went wrong. - The code handled NV_ADMA_STAT_CPBERR as a "really bad error" which caused it to set error flags on every queued command. I don't know exactly what this flag means (no docs, grr!) but from what I can guess from the standard ADMA spec, it just means that one or more of the CPBs had an error, so we just need to go through and do our normal checks in this case. - In the error_handler function the code would always dump the state of all the CPBs. This output seems redundant at this point since libata already dumps the state of all active commands on errors (and it also triggers at times when it shouldn't, like when suspending). Take this out. [akpm@osdl.org: many coding-style fixes] Signed-off-by: Robert Hancock <hancockr@shaw.ca> Cc: Jeff Garzik <jeff@garzik.org> Cc: Tejun Heo <htejun@gmail.com> Cc: Allen Martin <AMartin@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-06 01:26:01 +01:00
if (status & (NV_ADMA_STAT_DONE |
NV_ADMA_STAT_CPBERR)) {
u32 check_commands;
int pos, error = 0;
if (ata_tag_valid(ap->link.active_tag))
check_commands = 1 << ap->link.active_tag;
else
check_commands = ap->link.sactive;
/** Check CPBs for completed commands */
while ((pos = ffs(check_commands)) && !error) {
pos--;
error = nv_adma_check_cpb(ap, pos,
notifier_error & (1 << pos));
check_commands &= ~(1 << pos);
}
}
}
}
if (notifier_clears[0] || notifier_clears[1]) {
/* Note: Both notifier clear registers must be written
if either is set, even if one is zero, according to NVIDIA. */
struct nv_adma_port_priv *pp = host->ports[0]->private_data;
writel(notifier_clears[0], pp->notifier_clear_block);
pp = host->ports[1]->private_data;
writel(notifier_clears[1], pp->notifier_clear_block);
}
spin_unlock(&host->lock);
return IRQ_RETVAL(handled);
}
static void nv_adma_freeze(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
u16 tmp;
nv_ck804_freeze(ap);
if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
return;
/* clear any outstanding CK804 notifications */
writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
/* Disable interrupt */
tmp = readw(mmio + NV_ADMA_CTL);
writew(tmp & ~(NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
}
static void nv_adma_thaw(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
u16 tmp;
nv_ck804_thaw(ap);
if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
return;
/* Enable interrupt */
tmp = readw(mmio + NV_ADMA_CTL);
writew(tmp | (NV_ADMA_CTL_AIEN | NV_ADMA_CTL_HOTPLUG_IEN),
mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
}
static void nv_adma_irq_clear(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
u32 notifier_clears[2];
if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) {
ata_bmdma_irq_clear(ap);
return;
}
/* clear any outstanding CK804 notifications */
writeb(NV_INT_ALL << (ap->port_no * NV_INT_PORT_SHIFT),
ap->host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
/* clear ADMA status */
writew(0xffff, mmio + NV_ADMA_STAT);
/* clear notifiers - note both ports need to be written with
something even though we are only clearing on one */
if (ap->port_no == 0) {
notifier_clears[0] = 0xFFFFFFFF;
notifier_clears[1] = 0;
} else {
notifier_clears[0] = 0;
notifier_clears[1] = 0xFFFFFFFF;
}
pp = ap->host->ports[0]->private_data;
writel(notifier_clears[0], pp->notifier_clear_block);
pp = ap->host->ports[1]->private_data;
writel(notifier_clears[1], pp->notifier_clear_block);
}
static void nv_adma_post_internal_cmd(struct ata_queued_cmd *qc)
{
struct nv_adma_port_priv *pp = qc->ap->private_data;
if (pp->flags & NV_ADMA_PORT_REGISTER_MODE)
ata_bmdma_post_internal_cmd(qc);
}
static int nv_adma_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct nv_adma_port_priv *pp;
int rc;
void *mem;
dma_addr_t mem_dma;
void __iomem *mmio;
u16 tmp;
VPRINTK("ENTER\n");
rc = ata_port_start(ap);
if (rc)
return rc;
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
mmio = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_PORT +
ap->port_no * NV_ADMA_PORT_SIZE;
pp->ctl_block = mmio;
pp->gen_block = ap->host->iomap[NV_MMIO_BAR] + NV_ADMA_GEN;
pp->notifier_clear_block = pp->gen_block +
NV_ADMA_NOTIFIER_CLEAR + (4 * ap->port_no);
mem = dmam_alloc_coherent(dev, NV_ADMA_PORT_PRIV_DMA_SZ,
&mem_dma, GFP_KERNEL);
if (!mem)
return -ENOMEM;
memset(mem, 0, NV_ADMA_PORT_PRIV_DMA_SZ);
/*
* First item in chunk of DMA memory:
* 128-byte command parameter block (CPB)
* one for each command tag
*/
pp->cpb = mem;
pp->cpb_dma = mem_dma;
writel(mem_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
writel((mem_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
mem += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
mem_dma += NV_ADMA_MAX_CPBS * NV_ADMA_CPB_SZ;
/*
* Second item: block of ADMA_SGTBL_LEN s/g entries
*/
pp->aprd = mem;
pp->aprd_dma = mem_dma;
ap->private_data = pp;
/* clear any outstanding interrupt conditions */
writew(0xffff, mmio + NV_ADMA_STAT);
/* initialize port variables */
pp->flags = NV_ADMA_PORT_REGISTER_MODE;
/* clear CPB fetch count */
writew(0, mmio + NV_ADMA_CPB_COUNT);
/* clear GO for register mode, enable interrupt */
tmp = readw(mmio + NV_ADMA_CTL);
writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
tmp = readw(mmio + NV_ADMA_CTL);
writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
udelay(1);
writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
return 0;
}
static void nv_adma_port_stop(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
VPRINTK("ENTER\n");
writew(0, mmio + NV_ADMA_CTL);
}
#ifdef CONFIG_PM
static int nv_adma_port_suspend(struct ata_port *ap, pm_message_t mesg)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
/* Go to register mode - clears GO */
nv_adma_register_mode(ap);
/* clear CPB fetch count */
writew(0, mmio + NV_ADMA_CPB_COUNT);
/* disable interrupt, shut down port */
writew(0, mmio + NV_ADMA_CTL);
return 0;
}
static int nv_adma_port_resume(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
void __iomem *mmio = pp->ctl_block;
u16 tmp;
/* set CPB block location */
writel(pp->cpb_dma & 0xFFFFFFFF, mmio + NV_ADMA_CPB_BASE_LOW);
writel((pp->cpb_dma >> 16) >> 16, mmio + NV_ADMA_CPB_BASE_HIGH);
/* clear any outstanding interrupt conditions */
writew(0xffff, mmio + NV_ADMA_STAT);
/* initialize port variables */
pp->flags |= NV_ADMA_PORT_REGISTER_MODE;
/* clear CPB fetch count */
writew(0, mmio + NV_ADMA_CPB_COUNT);
/* clear GO for register mode, enable interrupt */
tmp = readw(mmio + NV_ADMA_CTL);
writew((tmp & ~NV_ADMA_CTL_GO) | NV_ADMA_CTL_AIEN |
NV_ADMA_CTL_HOTPLUG_IEN, mmio + NV_ADMA_CTL);
tmp = readw(mmio + NV_ADMA_CTL);
writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
udelay(1);
writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
return 0;
}
#endif
static void nv_adma_setup_port(struct ata_port *ap)
{
void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
struct ata_ioports *ioport = &ap->ioaddr;
VPRINTK("ENTER\n");
mmio += NV_ADMA_PORT + ap->port_no * NV_ADMA_PORT_SIZE;
ioport->cmd_addr = mmio;
ioport->data_addr = mmio + (ATA_REG_DATA * 4);
ioport->error_addr =
ioport->feature_addr = mmio + (ATA_REG_ERR * 4);
ioport->nsect_addr = mmio + (ATA_REG_NSECT * 4);
ioport->lbal_addr = mmio + (ATA_REG_LBAL * 4);
ioport->lbam_addr = mmio + (ATA_REG_LBAM * 4);
ioport->lbah_addr = mmio + (ATA_REG_LBAH * 4);
ioport->device_addr = mmio + (ATA_REG_DEVICE * 4);
ioport->status_addr =
ioport->command_addr = mmio + (ATA_REG_STATUS * 4);
ioport->altstatus_addr =
ioport->ctl_addr = mmio + 0x20;
}
static int nv_adma_host_init(struct ata_host *host)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
unsigned int i;
u32 tmp32;
VPRINTK("ENTER\n");
/* enable ADMA on the ports */
pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
tmp32 |= NV_MCP_SATA_CFG_20_PORT0_EN |
NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
NV_MCP_SATA_CFG_20_PORT1_EN |
NV_MCP_SATA_CFG_20_PORT1_PWB_EN;
pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
for (i = 0; i < host->n_ports; i++)
nv_adma_setup_port(host->ports[i]);
return 0;
}
static void nv_adma_fill_aprd(struct ata_queued_cmd *qc,
struct scatterlist *sg,
int idx,
struct nv_adma_prd *aprd)
{
u8 flags = 0;
if (qc->tf.flags & ATA_TFLAG_WRITE)
flags |= NV_APRD_WRITE;
if (idx == qc->n_elem - 1)
flags |= NV_APRD_END;
else if (idx != 4)
flags |= NV_APRD_CONT;
aprd->addr = cpu_to_le64(((u64)sg_dma_address(sg)));
aprd->len = cpu_to_le32(((u32)sg_dma_len(sg))); /* len in bytes */
aprd->flags = flags;
aprd->packet_len = 0;
}
static void nv_adma_fill_sg(struct ata_queued_cmd *qc, struct nv_adma_cpb *cpb)
{
struct nv_adma_port_priv *pp = qc->ap->private_data;
struct nv_adma_prd *aprd;
struct scatterlist *sg;
unsigned int si;
VPRINTK("ENTER\n");
for_each_sg(qc->sg, sg, qc->n_elem, si) {
aprd = (si < 5) ? &cpb->aprd[si] :
&pp->aprd[NV_ADMA_SGTBL_LEN * qc->tag + (si-5)];
nv_adma_fill_aprd(qc, sg, si, aprd);
}
if (si > 5)
cpb->next_aprd = cpu_to_le64(((u64)(pp->aprd_dma + NV_ADMA_SGTBL_SZ * qc->tag)));
else
cpb->next_aprd = cpu_to_le64(0);
}
static int nv_adma_use_reg_mode(struct ata_queued_cmd *qc)
{
struct nv_adma_port_priv *pp = qc->ap->private_data;
/* ADMA engine can only be used for non-ATAPI DMA commands,
or interrupt-driven no-data commands. */
if ((pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) ||
(qc->tf.flags & ATA_TFLAG_POLLING))
return 1;
if ((qc->flags & ATA_QCFLAG_DMAMAP) ||
(qc->tf.protocol == ATA_PROT_NODATA))
return 0;
return 1;
}
static void nv_adma_qc_prep(struct ata_queued_cmd *qc)
{
struct nv_adma_port_priv *pp = qc->ap->private_data;
struct nv_adma_cpb *cpb = &pp->cpb[qc->tag];
u8 ctl_flags = NV_CPB_CTL_CPB_VALID |
NV_CPB_CTL_IEN;
if (nv_adma_use_reg_mode(qc)) {
BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
(qc->flags & ATA_QCFLAG_DMAMAP));
nv_adma_register_mode(qc->ap);
ata_qc_prep(qc);
return;
}
cpb->resp_flags = NV_CPB_RESP_DONE;
wmb();
cpb->ctl_flags = 0;
wmb();
cpb->len = 3;
cpb->tag = qc->tag;
cpb->next_cpb_idx = 0;
/* turn on NCQ flags for NCQ commands */
if (qc->tf.protocol == ATA_PROT_NCQ)
ctl_flags |= NV_CPB_CTL_QUEUE | NV_CPB_CTL_FPDMA;
VPRINTK("qc->flags = 0x%lx\n", qc->flags);
nv_adma_tf_to_cpb(&qc->tf, cpb->tf);
if (qc->flags & ATA_QCFLAG_DMAMAP) {
nv_adma_fill_sg(qc, cpb);
ctl_flags |= NV_CPB_CTL_APRD_VALID;
} else
memset(&cpb->aprd[0], 0, sizeof(struct nv_adma_prd) * 5);
/* Be paranoid and don't let the device see NV_CPB_CTL_CPB_VALID
until we are finished filling in all of the contents */
wmb();
cpb->ctl_flags = ctl_flags;
wmb();
cpb->resp_flags = 0;
}
static unsigned int nv_adma_qc_issue(struct ata_queued_cmd *qc)
{
struct nv_adma_port_priv *pp = qc->ap->private_data;
void __iomem *mmio = pp->ctl_block;
int curr_ncq = (qc->tf.protocol == ATA_PROT_NCQ);
VPRINTK("ENTER\n");
/* We can't handle result taskfile with NCQ commands, since
retrieving the taskfile switches us out of ADMA mode and would abort
existing commands. */
if (unlikely(qc->tf.protocol == ATA_PROT_NCQ &&
(qc->flags & ATA_QCFLAG_RESULT_TF))) {
ata_dev_printk(qc->dev, KERN_ERR,
"NCQ w/ RESULT_TF not allowed\n");
return AC_ERR_SYSTEM;
}
if (nv_adma_use_reg_mode(qc)) {
/* use ATA register mode */
VPRINTK("using ATA register mode: 0x%lx\n", qc->flags);
BUG_ON(!(pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE) &&
(qc->flags & ATA_QCFLAG_DMAMAP));
nv_adma_register_mode(qc->ap);
return ata_qc_issue_prot(qc);
} else
nv_adma_mode(qc->ap);
/* write append register, command tag in lower 8 bits
and (number of cpbs to append -1) in top 8 bits */
wmb();
if (curr_ncq != pp->last_issue_ncq) {
/* Seems to need some delay before switching between NCQ and
non-NCQ commands, else we get command timeouts and such. */
udelay(20);
pp->last_issue_ncq = curr_ncq;
}
writew(qc->tag, mmio + NV_ADMA_APPEND);
DPRINTK("Issued tag %u\n", qc->tag);
return 0;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static irqreturn_t nv_generic_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
unsigned int i;
unsigned int handled = 0;
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap;
ap = host->ports[i];
if (ap &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
handled += ata_host_intr(ap, qc);
else
// No request pending? Clear interrupt status
// anyway, in case there's one pending.
ap->ops->check_status(ap);
}
}
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static irqreturn_t nv_do_interrupt(struct ata_host *host, u8 irq_stat)
{
int i, handled = 0;
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (ap && !(ap->flags & ATA_FLAG_DISABLED))
handled += nv_host_intr(ap, irq_stat);
irq_stat >>= NV_INT_PORT_SHIFT;
}
return IRQ_RETVAL(handled);
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static irqreturn_t nv_nf2_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
u8 irq_stat;
irqreturn_t ret;
spin_lock(&host->lock);
irq_stat = ioread8(host->ports[0]->ioaddr.scr_addr + NV_INT_STATUS);
ret = nv_do_interrupt(host, irq_stat);
spin_unlock(&host->lock);
return ret;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:55:46 +02:00
static irqreturn_t nv_ck804_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
u8 irq_stat;
irqreturn_t ret;
spin_lock(&host->lock);
irq_stat = readb(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_CK804);
ret = nv_do_interrupt(host, irq_stat);
spin_unlock(&host->lock);
return ret;
}
static int nv_scr_read(struct ata_port *ap, unsigned int sc_reg, u32 *val)
{
if (sc_reg > SCR_CONTROL)
return -EINVAL;
*val = ioread32(ap->ioaddr.scr_addr + (sc_reg * 4));
return 0;
}
static int nv_scr_write(struct ata_port *ap, unsigned int sc_reg, u32 val)
{
if (sc_reg > SCR_CONTROL)
return -EINVAL;
iowrite32(val, ap->ioaddr.scr_addr + (sc_reg * 4));
return 0;
}
static void nv_nf2_freeze(struct ata_port *ap)
{
void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
int shift = ap->port_no * NV_INT_PORT_SHIFT;
u8 mask;
mask = ioread8(scr_addr + NV_INT_ENABLE);
mask &= ~(NV_INT_ALL << shift);
iowrite8(mask, scr_addr + NV_INT_ENABLE);
}
static void nv_nf2_thaw(struct ata_port *ap)
{
void __iomem *scr_addr = ap->host->ports[0]->ioaddr.scr_addr;
int shift = ap->port_no * NV_INT_PORT_SHIFT;
u8 mask;
iowrite8(NV_INT_ALL << shift, scr_addr + NV_INT_STATUS);
mask = ioread8(scr_addr + NV_INT_ENABLE);
mask |= (NV_INT_MASK << shift);
iowrite8(mask, scr_addr + NV_INT_ENABLE);
}
static void nv_ck804_freeze(struct ata_port *ap)
{
void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
int shift = ap->port_no * NV_INT_PORT_SHIFT;
u8 mask;
mask = readb(mmio_base + NV_INT_ENABLE_CK804);
mask &= ~(NV_INT_ALL << shift);
writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
}
static void nv_ck804_thaw(struct ata_port *ap)
{
void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
int shift = ap->port_no * NV_INT_PORT_SHIFT;
u8 mask;
writeb(NV_INT_ALL << shift, mmio_base + NV_INT_STATUS_CK804);
mask = readb(mmio_base + NV_INT_ENABLE_CK804);
mask |= (NV_INT_MASK << shift);
writeb(mask, mmio_base + NV_INT_ENABLE_CK804);
}
static void nv_mcp55_freeze(struct ata_port *ap)
{
void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
u32 mask;
writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
mask &= ~(NV_INT_ALL_MCP55 << shift);
writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
ata_bmdma_freeze(ap);
}
static void nv_mcp55_thaw(struct ata_port *ap)
{
void __iomem *mmio_base = ap->host->iomap[NV_MMIO_BAR];
int shift = ap->port_no * NV_INT_PORT_SHIFT_MCP55;
u32 mask;
writel(NV_INT_ALL_MCP55 << shift, mmio_base + NV_INT_STATUS_MCP55);
mask = readl(mmio_base + NV_INT_ENABLE_MCP55);
mask |= (NV_INT_MASK_MCP55 << shift);
writel(mask, mmio_base + NV_INT_ENABLE_MCP55);
ata_bmdma_thaw(ap);
}
static int nv_hardreset(struct ata_link *link, unsigned int *class,
libata: add deadline support to prereset and reset methods Add @deadline to prereset and reset methods and make them honor it. ata_wait_ready() which directly takes @deadline is implemented to be used as the wait function. This patch is in preparation for EH timing improvements. * ata_wait_ready() never does busy sleep. It's only used from EH and no wait in EH is that urgent. This function also prints 'be patient' message automatically after 5 secs of waiting if more than 3 secs is remaining till deadline. * ata_bus_post_reset() now fails with error code if any of its wait fails. This is important because earlier reset tries will have shorter timeout than the spec requires. If a device fails to respond before the short timeout, reset should be retried with longer timeout rather than silently ignoring the device. There are three behavior differences. 1. Timeout is applied to both devices at once, not separately. This is more consistent with what the spec says. 2. When a device passes devchk but fails to become ready before deadline. Previouly, post_reset would just succeed and let device classification remove the device. New code fails the reset thus causing reset retry. After a few times, EH will give up disabling the port. 3. When slave device passes devchk but fails to become accessible (TF-wise) after reset. Original code disables dev1 after 30s timeout and continues as if the device doesn't exist, while the patched code fails reset. When this happens, new code fails reset on whole port rather than proceeding with only the primary device. If the failing device is suffering transient problems, new code retries reset which is a better behavior. If the failing device is actually broken, the net effect is identical to it, but not to the other device sharing the channel. In the previous code, reset would have succeeded after 30s thus detecting the working one. In the new code, reset fails and whole port gets disabled. IMO, it's a pathological case anyway (broken device sharing bus with working one) and doesn't really matter. * ata_bus_softreset() is changed to return error code from ata_bus_post_reset(). It used to return 0 unconditionally. * Spin up waiting is to be removed and not converted to honor deadline. * To be on the safe side, deadline is set to 40s for the time being. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-02-02 08:50:52 +01:00
unsigned long deadline)
{
unsigned int dummy;
/* SATA hardreset fails to retrieve proper device signature on
* some controllers. Don't classify on hardreset. For more
* info, see http://bugzilla.kernel.org/show_bug.cgi?id=3352
*/
return sata_std_hardreset(link, &dummy, deadline);
}
static void nv_error_handler(struct ata_port *ap)
{
ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset,
nv_hardreset, ata_std_postreset);
}
static void nv_adma_error_handler(struct ata_port *ap)
{
struct nv_adma_port_priv *pp = ap->private_data;
if (!(pp->flags & NV_ADMA_PORT_REGISTER_MODE)) {
void __iomem *mmio = pp->ctl_block;
int i;
u16 tmp;
if (ata_tag_valid(ap->link.active_tag) || ap->link.sactive) {
u32 notifier = readl(mmio + NV_ADMA_NOTIFIER);
u32 notifier_error = readl(mmio + NV_ADMA_NOTIFIER_ERROR);
u32 gen_ctl = readl(pp->gen_block + NV_ADMA_GEN_CTL);
u32 status = readw(mmio + NV_ADMA_STAT);
u8 cpb_count = readb(mmio + NV_ADMA_CPB_COUNT);
u8 next_cpb_idx = readb(mmio + NV_ADMA_NEXT_CPB_IDX);
ata_port_printk(ap, KERN_ERR,
"EH in ADMA mode, notifier 0x%X "
"notifier_error 0x%X gen_ctl 0x%X status 0x%X "
"next cpb count 0x%X next cpb idx 0x%x\n",
notifier, notifier_error, gen_ctl, status,
cpb_count, next_cpb_idx);
for (i = 0; i < NV_ADMA_MAX_CPBS; i++) {
struct nv_adma_cpb *cpb = &pp->cpb[i];
if ((ata_tag_valid(ap->link.active_tag) && i == ap->link.active_tag) ||
ap->link.sactive & (1 << i))
ata_port_printk(ap, KERN_ERR,
"CPB %d: ctl_flags 0x%x, resp_flags 0x%x\n",
i, cpb->ctl_flags, cpb->resp_flags);
}
}
/* Push us back into port register mode for error handling. */
nv_adma_register_mode(ap);
/* Mark all of the CPBs as invalid to prevent them from
being executed */
for (i = 0; i < NV_ADMA_MAX_CPBS; i++)
pp->cpb[i].ctl_flags &= ~NV_CPB_CTL_CPB_VALID;
/* clear CPB fetch count */
writew(0, mmio + NV_ADMA_CPB_COUNT);
/* Reset channel */
tmp = readw(mmio + NV_ADMA_CTL);
writew(tmp | NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
udelay(1);
writew(tmp & ~NV_ADMA_CTL_CHANNEL_RESET, mmio + NV_ADMA_CTL);
readw(mmio + NV_ADMA_CTL); /* flush posted write */
}
ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset,
nv_hardreset, ata_std_postreset);
}
static void nv_swncq_qc_to_dq(struct ata_port *ap, struct ata_queued_cmd *qc)
{
struct nv_swncq_port_priv *pp = ap->private_data;
struct defer_queue *dq = &pp->defer_queue;
/* queue is full */
WARN_ON(dq->tail - dq->head == ATA_MAX_QUEUE);
dq->defer_bits |= (1 << qc->tag);
dq->tag[dq->tail++ & (ATA_MAX_QUEUE - 1)] = qc->tag;
}
static struct ata_queued_cmd *nv_swncq_qc_from_dq(struct ata_port *ap)
{
struct nv_swncq_port_priv *pp = ap->private_data;
struct defer_queue *dq = &pp->defer_queue;
unsigned int tag;
if (dq->head == dq->tail) /* null queue */
return NULL;
tag = dq->tag[dq->head & (ATA_MAX_QUEUE - 1)];
dq->tag[dq->head++ & (ATA_MAX_QUEUE - 1)] = ATA_TAG_POISON;
WARN_ON(!(dq->defer_bits & (1 << tag)));
dq->defer_bits &= ~(1 << tag);
return ata_qc_from_tag(ap, tag);
}
static void nv_swncq_fis_reinit(struct ata_port *ap)
{
struct nv_swncq_port_priv *pp = ap->private_data;
pp->dhfis_bits = 0;
pp->dmafis_bits = 0;
pp->sdbfis_bits = 0;
pp->ncq_flags = 0;
}
static void nv_swncq_pp_reinit(struct ata_port *ap)
{
struct nv_swncq_port_priv *pp = ap->private_data;
struct defer_queue *dq = &pp->defer_queue;
dq->head = 0;
dq->tail = 0;
dq->defer_bits = 0;
pp->qc_active = 0;
pp->last_issue_tag = ATA_TAG_POISON;
nv_swncq_fis_reinit(ap);
}
static void nv_swncq_irq_clear(struct ata_port *ap, u16 fis)
{
struct nv_swncq_port_priv *pp = ap->private_data;
writew(fis, pp->irq_block);
}
static void __ata_bmdma_stop(struct ata_port *ap)
{
struct ata_queued_cmd qc;
qc.ap = ap;
ata_bmdma_stop(&qc);
}
static void nv_swncq_ncq_stop(struct ata_port *ap)
{
struct nv_swncq_port_priv *pp = ap->private_data;
unsigned int i;
u32 sactive;
u32 done_mask;
ata_port_printk(ap, KERN_ERR,
"EH in SWNCQ mode,QC:qc_active 0x%X sactive 0x%X\n",
ap->qc_active, ap->link.sactive);
ata_port_printk(ap, KERN_ERR,
"SWNCQ:qc_active 0x%X defer_bits 0x%X last_issue_tag 0x%x\n "
"dhfis 0x%X dmafis 0x%X sdbfis 0x%X\n",
pp->qc_active, pp->defer_queue.defer_bits, pp->last_issue_tag,
pp->dhfis_bits, pp->dmafis_bits, pp->sdbfis_bits);
ata_port_printk(ap, KERN_ERR, "ATA_REG 0x%X ERR_REG 0x%X\n",
ap->ops->check_status(ap),
ioread8(ap->ioaddr.error_addr));
sactive = readl(pp->sactive_block);
done_mask = pp->qc_active ^ sactive;
ata_port_printk(ap, KERN_ERR, "tag : dhfis dmafis sdbfis sacitve\n");
for (i = 0; i < ATA_MAX_QUEUE; i++) {
u8 err = 0;
if (pp->qc_active & (1 << i))
err = 0;
else if (done_mask & (1 << i))
err = 1;
else
continue;
ata_port_printk(ap, KERN_ERR,
"tag 0x%x: %01x %01x %01x %01x %s\n", i,
(pp->dhfis_bits >> i) & 0x1,
(pp->dmafis_bits >> i) & 0x1,
(pp->sdbfis_bits >> i) & 0x1,
(sactive >> i) & 0x1,
(err ? "error! tag doesn't exit" : " "));
}
nv_swncq_pp_reinit(ap);
ap->ops->irq_clear(ap);
__ata_bmdma_stop(ap);
nv_swncq_irq_clear(ap, 0xffff);
}
static void nv_swncq_error_handler(struct ata_port *ap)
{
struct ata_eh_context *ehc = &ap->link.eh_context;
if (ap->link.sactive) {
nv_swncq_ncq_stop(ap);
ehc->i.action |= ATA_EH_HARDRESET;
}
ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset,
nv_hardreset, ata_std_postreset);
}
#ifdef CONFIG_PM
static int nv_swncq_port_suspend(struct ata_port *ap, pm_message_t mesg)
{
void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
u32 tmp;
/* clear irq */
writel(~0, mmio + NV_INT_STATUS_MCP55);
/* disable irq */
writel(0, mmio + NV_INT_ENABLE_MCP55);
/* disable swncq */
tmp = readl(mmio + NV_CTL_MCP55);
tmp &= ~(NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ);
writel(tmp, mmio + NV_CTL_MCP55);
return 0;
}
static int nv_swncq_port_resume(struct ata_port *ap)
{
void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
u32 tmp;
/* clear irq */
writel(~0, mmio + NV_INT_STATUS_MCP55);
/* enable irq */
writel(0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
/* enable swncq */
tmp = readl(mmio + NV_CTL_MCP55);
writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
return 0;
}
#endif
static void nv_swncq_host_init(struct ata_host *host)
{
u32 tmp;
void __iomem *mmio = host->iomap[NV_MMIO_BAR];
struct pci_dev *pdev = to_pci_dev(host->dev);
u8 regval;
/* disable ECO 398 */
pci_read_config_byte(pdev, 0x7f, &regval);
regval &= ~(1 << 7);
pci_write_config_byte(pdev, 0x7f, regval);
/* enable swncq */
tmp = readl(mmio + NV_CTL_MCP55);
VPRINTK("HOST_CTL:0x%X\n", tmp);
writel(tmp | NV_CTL_PRI_SWNCQ | NV_CTL_SEC_SWNCQ, mmio + NV_CTL_MCP55);
/* enable irq intr */
tmp = readl(mmio + NV_INT_ENABLE_MCP55);
VPRINTK("HOST_ENABLE:0x%X\n", tmp);
writel(tmp | 0x00fd00fd, mmio + NV_INT_ENABLE_MCP55);
/* clear port irq */
writel(~0x0, mmio + NV_INT_STATUS_MCP55);
}
static int nv_swncq_slave_config(struct scsi_device *sdev)
{
struct ata_port *ap = ata_shost_to_port(sdev->host);
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
struct ata_device *dev;
int rc;
u8 rev;
u8 check_maxtor = 0;
unsigned char model_num[ATA_ID_PROD_LEN + 1];
rc = ata_scsi_slave_config(sdev);
if (sdev->id >= ATA_MAX_DEVICES || sdev->channel || sdev->lun)
/* Not a proper libata device, ignore */
return rc;
dev = &ap->link.device[sdev->id];
if (!(ap->flags & ATA_FLAG_NCQ) || dev->class == ATA_DEV_ATAPI)
return rc;
/* if MCP51 and Maxtor, then disable ncq */
if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA ||
pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP51_SATA2)
check_maxtor = 1;
/* if MCP55 and rev <= a2 and Maxtor, then disable ncq */
if (pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA ||
pdev->device == PCI_DEVICE_ID_NVIDIA_NFORCE_MCP55_SATA2) {
pci_read_config_byte(pdev, 0x8, &rev);
if (rev <= 0xa2)
check_maxtor = 1;
}
if (!check_maxtor)
return rc;
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
if (strncmp(model_num, "Maxtor", 6) == 0) {
ata_scsi_change_queue_depth(sdev, 1);
ata_dev_printk(dev, KERN_NOTICE,
"Disabling SWNCQ mode (depth %x)\n", sdev->queue_depth);
}
return rc;
}
static int nv_swncq_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
void __iomem *mmio = ap->host->iomap[NV_MMIO_BAR];
struct nv_swncq_port_priv *pp;
int rc;
rc = ata_port_start(ap);
if (rc)
return rc;
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
pp->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE,
&pp->prd_dma, GFP_KERNEL);
if (!pp->prd)
return -ENOMEM;
memset(pp->prd, 0, ATA_PRD_TBL_SZ * ATA_MAX_QUEUE);
ap->private_data = pp;
pp->sactive_block = ap->ioaddr.scr_addr + 4 * SCR_ACTIVE;
pp->irq_block = mmio + NV_INT_STATUS_MCP55 + ap->port_no * 2;
pp->tag_block = mmio + NV_NCQ_REG_MCP55 + ap->port_no * 2;
return 0;
}
static void nv_swncq_qc_prep(struct ata_queued_cmd *qc)
{
if (qc->tf.protocol != ATA_PROT_NCQ) {
ata_qc_prep(qc);
return;
}
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
nv_swncq_fill_sg(qc);
}
static void nv_swncq_fill_sg(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct scatterlist *sg;
struct nv_swncq_port_priv *pp = ap->private_data;
struct ata_prd *prd;
unsigned int si, idx;
prd = pp->prd + ATA_MAX_PRD * qc->tag;
idx = 0;
for_each_sg(qc->sg, sg, qc->n_elem, si) {
u32 addr, offset;
u32 sg_len, len;
addr = (u32)sg_dma_address(sg);
sg_len = sg_dma_len(sg);
while (sg_len) {
offset = addr & 0xffff;
len = sg_len;
if ((offset + sg_len) > 0x10000)
len = 0x10000 - offset;
prd[idx].addr = cpu_to_le32(addr);
prd[idx].flags_len = cpu_to_le32(len & 0xffff);
idx++;
sg_len -= len;
addr += len;
}
}
prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
}
static unsigned int nv_swncq_issue_atacmd(struct ata_port *ap,
struct ata_queued_cmd *qc)
{
struct nv_swncq_port_priv *pp = ap->private_data;
if (qc == NULL)
return 0;
DPRINTK("Enter\n");
writel((1 << qc->tag), pp->sactive_block);
pp->last_issue_tag = qc->tag;
pp->dhfis_bits &= ~(1 << qc->tag);
pp->dmafis_bits &= ~(1 << qc->tag);
pp->qc_active |= (0x1 << qc->tag);
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
ap->ops->exec_command(ap, &qc->tf);
DPRINTK("Issued tag %u\n", qc->tag);
return 0;
}
static unsigned int nv_swncq_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct nv_swncq_port_priv *pp = ap->private_data;
if (qc->tf.protocol != ATA_PROT_NCQ)
return ata_qc_issue_prot(qc);
DPRINTK("Enter\n");
if (!pp->qc_active)
nv_swncq_issue_atacmd(ap, qc);
else
nv_swncq_qc_to_dq(ap, qc); /* add qc to defer queue */
return 0;
}
static void nv_swncq_hotplug(struct ata_port *ap, u32 fis)
{
u32 serror;
struct ata_eh_info *ehi = &ap->link.eh_info;
ata_ehi_clear_desc(ehi);
/* AHCI needs SError cleared; otherwise, it might lock up */
sata_scr_read(&ap->link, SCR_ERROR, &serror);
sata_scr_write(&ap->link, SCR_ERROR, serror);
/* analyze @irq_stat */
if (fis & NV_SWNCQ_IRQ_ADDED)
ata_ehi_push_desc(ehi, "hot plug");
else if (fis & NV_SWNCQ_IRQ_REMOVED)
ata_ehi_push_desc(ehi, "hot unplug");
ata_ehi_hotplugged(ehi);
/* okay, let's hand over to EH */
ehi->serror |= serror;
ata_port_freeze(ap);
}
static int nv_swncq_sdbfis(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
struct nv_swncq_port_priv *pp = ap->private_data;
struct ata_eh_info *ehi = &ap->link.eh_info;
u32 sactive;
int nr_done = 0;
u32 done_mask;
int i;
u8 host_stat;
u8 lack_dhfis = 0;
host_stat = ap->ops->bmdma_status(ap);
if (unlikely(host_stat & ATA_DMA_ERR)) {
/* error when transfering data to/from memory */
ata_ehi_clear_desc(ehi);
ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
ehi->err_mask |= AC_ERR_HOST_BUS;
ehi->action |= ATA_EH_SOFTRESET;
return -EINVAL;
}
ap->ops->irq_clear(ap);
__ata_bmdma_stop(ap);
sactive = readl(pp->sactive_block);
done_mask = pp->qc_active ^ sactive;
if (unlikely(done_mask & sactive)) {
ata_ehi_clear_desc(ehi);
ata_ehi_push_desc(ehi, "illegal SWNCQ:qc_active transition"
"(%08x->%08x)", pp->qc_active, sactive);
ehi->err_mask |= AC_ERR_HSM;
ehi->action |= ATA_EH_HARDRESET;
return -EINVAL;
}
for (i = 0; i < ATA_MAX_QUEUE; i++) {
if (!(done_mask & (1 << i)))
continue;
qc = ata_qc_from_tag(ap, i);
if (qc) {
ata_qc_complete(qc);
pp->qc_active &= ~(1 << i);
pp->dhfis_bits &= ~(1 << i);
pp->dmafis_bits &= ~(1 << i);
pp->sdbfis_bits |= (1 << i);
nr_done++;
}
}
if (!ap->qc_active) {
DPRINTK("over\n");
nv_swncq_pp_reinit(ap);
return nr_done;
}
if (pp->qc_active & pp->dhfis_bits)
return nr_done;
if ((pp->ncq_flags & ncq_saw_backout) ||
(pp->qc_active ^ pp->dhfis_bits))
/* if the controller cann't get a device to host register FIS,
* The driver needs to reissue the new command.
*/
lack_dhfis = 1;
DPRINTK("id 0x%x QC: qc_active 0x%x,"
"SWNCQ:qc_active 0x%X defer_bits %X "
"dhfis 0x%X dmafis 0x%X last_issue_tag %x\n",
ap->print_id, ap->qc_active, pp->qc_active,
pp->defer_queue.defer_bits, pp->dhfis_bits,
pp->dmafis_bits, pp->last_issue_tag);
nv_swncq_fis_reinit(ap);
if (lack_dhfis) {
qc = ata_qc_from_tag(ap, pp->last_issue_tag);
nv_swncq_issue_atacmd(ap, qc);
return nr_done;
}
if (pp->defer_queue.defer_bits) {
/* send deferral queue command */
qc = nv_swncq_qc_from_dq(ap);
WARN_ON(qc == NULL);
nv_swncq_issue_atacmd(ap, qc);
}
return nr_done;
}
static inline u32 nv_swncq_tag(struct ata_port *ap)
{
struct nv_swncq_port_priv *pp = ap->private_data;
u32 tag;
tag = readb(pp->tag_block) >> 2;
return (tag & 0x1f);
}
static int nv_swncq_dmafis(struct ata_port *ap)
{
struct ata_queued_cmd *qc;
unsigned int rw;
u8 dmactl;
u32 tag;
struct nv_swncq_port_priv *pp = ap->private_data;
__ata_bmdma_stop(ap);
tag = nv_swncq_tag(ap);
DPRINTK("dma setup tag 0x%x\n", tag);
qc = ata_qc_from_tag(ap, tag);
if (unlikely(!qc))
return 0;
rw = qc->tf.flags & ATA_TFLAG_WRITE;
/* load PRD table addr. */
iowrite32(pp->prd_dma + ATA_PRD_TBL_SZ * qc->tag,
ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
/* specify data direction, triple-check start bit is clear */
dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
dmactl &= ~ATA_DMA_WR;
if (!rw)
dmactl |= ATA_DMA_WR;
iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
return 1;
}
static void nv_swncq_host_interrupt(struct ata_port *ap, u16 fis)
{
struct nv_swncq_port_priv *pp = ap->private_data;
struct ata_queued_cmd *qc;
struct ata_eh_info *ehi = &ap->link.eh_info;
u32 serror;
u8 ata_stat;
int rc = 0;
ata_stat = ap->ops->check_status(ap);
nv_swncq_irq_clear(ap, fis);
if (!fis)
return;
if (ap->pflags & ATA_PFLAG_FROZEN)
return;
if (fis & NV_SWNCQ_IRQ_HOTPLUG) {
nv_swncq_hotplug(ap, fis);
return;
}
if (!pp->qc_active)
return;
if (ap->ops->scr_read(ap, SCR_ERROR, &serror))
return;
ap->ops->scr_write(ap, SCR_ERROR, serror);
if (ata_stat & ATA_ERR) {
ata_ehi_clear_desc(ehi);
ata_ehi_push_desc(ehi, "Ata error. fis:0x%X", fis);
ehi->err_mask |= AC_ERR_DEV;
ehi->serror |= serror;
ehi->action |= ATA_EH_SOFTRESET;
ata_port_freeze(ap);
return;
}
if (fis & NV_SWNCQ_IRQ_BACKOUT) {
/* If the IRQ is backout, driver must issue
* the new command again some time later.
*/
pp->ncq_flags |= ncq_saw_backout;
}
if (fis & NV_SWNCQ_IRQ_SDBFIS) {
pp->ncq_flags |= ncq_saw_sdb;
DPRINTK("id 0x%x SWNCQ: qc_active 0x%X "
"dhfis 0x%X dmafis 0x%X sactive 0x%X\n",
ap->print_id, pp->qc_active, pp->dhfis_bits,
pp->dmafis_bits, readl(pp->sactive_block));
rc = nv_swncq_sdbfis(ap);
if (rc < 0)
goto irq_error;
}
if (fis & NV_SWNCQ_IRQ_DHREGFIS) {
/* The interrupt indicates the new command
* was transmitted correctly to the drive.
*/
pp->dhfis_bits |= (0x1 << pp->last_issue_tag);
pp->ncq_flags |= ncq_saw_d2h;
if (pp->ncq_flags & (ncq_saw_sdb | ncq_saw_backout)) {
ata_ehi_push_desc(ehi, "illegal fis transaction");
ehi->err_mask |= AC_ERR_HSM;
ehi->action |= ATA_EH_HARDRESET;
goto irq_error;
}
if (!(fis & NV_SWNCQ_IRQ_DMASETUP) &&
!(pp->ncq_flags & ncq_saw_dmas)) {
ata_stat = ap->ops->check_status(ap);
if (ata_stat & ATA_BUSY)
goto irq_exit;
if (pp->defer_queue.defer_bits) {
DPRINTK("send next command\n");
qc = nv_swncq_qc_from_dq(ap);
nv_swncq_issue_atacmd(ap, qc);
}
}
}
if (fis & NV_SWNCQ_IRQ_DMASETUP) {
/* program the dma controller with appropriate PRD buffers
* and start the DMA transfer for requested command.
*/
pp->dmafis_bits |= (0x1 << nv_swncq_tag(ap));
pp->ncq_flags |= ncq_saw_dmas;
rc = nv_swncq_dmafis(ap);
}
irq_exit:
return;
irq_error:
ata_ehi_push_desc(ehi, "fis:0x%x", fis);
ata_port_freeze(ap);
return;
}
static irqreturn_t nv_swncq_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
unsigned int i;
unsigned int handled = 0;
unsigned long flags;
u32 irq_stat;
spin_lock_irqsave(&host->lock, flags);
irq_stat = readl(host->iomap[NV_MMIO_BAR] + NV_INT_STATUS_MCP55);
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
if (ap->link.sactive) {
nv_swncq_host_interrupt(ap, (u16)irq_stat);
handled = 1;
} else {
if (irq_stat) /* reserve Hotplug */
nv_swncq_irq_clear(ap, 0xfff0);
handled += nv_host_intr(ap, (u8)irq_stat);
}
}
irq_stat >>= NV_INT_PORT_SHIFT_MCP55;
}
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static int nv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int printed_version;
libata: clean up SFF init mess The intention of using port_mask in SFF init helpers was to eventually support exoctic configurations such as combination of legacy and native port on the same controller. This never became actually necessary and the related code always has been subtly broken one way or the other. Now that new init model is in place, there is no reason to make common helpers capable of handling all corner cases. Exotic cases can simply dealt within LLDs as necessary. This patch removes port_mask handling in SFF init helpers. SFF init helpers don't take n_ports argument and interpret it into port_mask anymore. All information is carried via port_info. n_ports argument is dropped and always two ports are allocated. LLD can tell SFF to skip certain port by marking it dummy. Note that SFF code has been treating unuvailable ports this way for a long time until recent breakage fix from Linus and is consistent with how other drivers handle with unavailable ports. This fixes 1-port legacy host handling still broken after the recent native mode fix and simplifies SFF init logic. The following changes are made... * ata_pci_init_native_host() and ata_init_legacy_host() both now try to initialized whatever they can and mark failed ports dummy. They return 0 if any port is successfully initialized. * ata_pci_prepare_native_host() and ata_pci_init_one() now doesn't take n_ports argument. All info should be specified via port_info array. Always two ports are allocated. * ata_pci_init_bmdma() exported to be used by LLDs in exotic cases. * port_info handling in all LLDs are standardized - all port_info arrays are const stack variable named ppi. Unless the second port is different from the first, its port_info is specified as NULL (tells libata that it's identical to the last non-NULL port_info). * pata_hpt37x/hpt3x2n: don't modify static variable directly. Make an on-stack copy instead as ata_piix does. * pata_uli: It has 4 ports instead of 2. Don't use ata_pci_prepare_native_host(). Allocate the host explicitly and use init helpers. It's simple enough. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-04 12:43:58 +02:00
const struct ata_port_info *ppi[] = { NULL, NULL };
struct ata_host *host;
struct nv_host_priv *hpriv;
int rc;
u32 bar;
void __iomem *base;
unsigned long type = ent->driver_data;
// Make sure this is a SATA controller by counting the number of bars
// (NVIDIA SATA controllers will always have six bars). Otherwise,
// it's an IDE controller and we ignore it.
for (bar = 0; bar < 6; bar++)
if (pci_resource_start(pdev, bar) == 0)
return -ENODEV;
if (!printed_version++)
dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
rc = pcim_enable_device(pdev);
if (rc)
return rc;
/* determine type and allocate host */
if (type == CK804 && adma_enabled) {
dev_printk(KERN_NOTICE, &pdev->dev, "Using ADMA mode\n");
type = ADMA;
}
if (type == SWNCQ) {
if (swncq_enabled)
dev_printk(KERN_NOTICE, &pdev->dev,
"Using SWNCQ mode\n");
else
type = GENERIC;
}
libata: clean up SFF init mess The intention of using port_mask in SFF init helpers was to eventually support exoctic configurations such as combination of legacy and native port on the same controller. This never became actually necessary and the related code always has been subtly broken one way or the other. Now that new init model is in place, there is no reason to make common helpers capable of handling all corner cases. Exotic cases can simply dealt within LLDs as necessary. This patch removes port_mask handling in SFF init helpers. SFF init helpers don't take n_ports argument and interpret it into port_mask anymore. All information is carried via port_info. n_ports argument is dropped and always two ports are allocated. LLD can tell SFF to skip certain port by marking it dummy. Note that SFF code has been treating unuvailable ports this way for a long time until recent breakage fix from Linus and is consistent with how other drivers handle with unavailable ports. This fixes 1-port legacy host handling still broken after the recent native mode fix and simplifies SFF init logic. The following changes are made... * ata_pci_init_native_host() and ata_init_legacy_host() both now try to initialized whatever they can and mark failed ports dummy. They return 0 if any port is successfully initialized. * ata_pci_prepare_native_host() and ata_pci_init_one() now doesn't take n_ports argument. All info should be specified via port_info array. Always two ports are allocated. * ata_pci_init_bmdma() exported to be used by LLDs in exotic cases. * port_info handling in all LLDs are standardized - all port_info arrays are const stack variable named ppi. Unless the second port is different from the first, its port_info is specified as NULL (tells libata that it's identical to the last non-NULL port_info). * pata_hpt37x/hpt3x2n: don't modify static variable directly. Make an on-stack copy instead as ata_piix does. * pata_uli: It has 4 ports instead of 2. Don't use ata_pci_prepare_native_host(). Allocate the host explicitly and use init helpers. It's simple enough. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-05-04 12:43:58 +02:00
ppi[0] = &nv_port_info[type];
rc = ata_pci_prepare_sff_host(pdev, ppi, &host);
if (rc)
return rc;
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
if (!hpriv)
return -ENOMEM;
hpriv->type = type;
host->private_data = hpriv;
/* set 64bit dma masks, may fail */
if (type == ADMA) {
if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0)
pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
}
/* request and iomap NV_MMIO_BAR */
rc = pcim_iomap_regions(pdev, 1 << NV_MMIO_BAR, DRV_NAME);
if (rc)
return rc;
/* configure SCR access */
base = host->iomap[NV_MMIO_BAR];
host->ports[0]->ioaddr.scr_addr = base + NV_PORT0_SCR_REG_OFFSET;
host->ports[1]->ioaddr.scr_addr = base + NV_PORT1_SCR_REG_OFFSET;
/* enable SATA space for CK804 */
if (type >= CK804) {
u8 regval;
pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
}
/* init ADMA */
if (type == ADMA) {
rc = nv_adma_host_init(host);
if (rc)
return rc;
} else if (type == SWNCQ)
nv_swncq_host_init(host);
pci_set_master(pdev);
return ata_host_activate(host, pdev->irq, ppi[0]->irq_handler,
IRQF_SHARED, ppi[0]->sht);
}
#ifdef CONFIG_PM
static int nv_pci_device_resume(struct pci_dev *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
struct nv_host_priv *hpriv = host->private_data;
int rc;
rc = ata_pci_device_do_resume(pdev);
if (rc)
return rc;
if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
if (hpriv->type >= CK804) {
u8 regval;
pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
regval |= NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
}
if (hpriv->type == ADMA) {
u32 tmp32;
struct nv_adma_port_priv *pp;
/* enable/disable ADMA on the ports appropriately */
pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
pp = host->ports[0]->private_data;
if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
else
tmp32 |= (NV_MCP_SATA_CFG_20_PORT0_EN |
NV_MCP_SATA_CFG_20_PORT0_PWB_EN);
pp = host->ports[1]->private_data;
if (pp->flags & NV_ADMA_ATAPI_SETUP_COMPLETE)
tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT1_EN |
NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
else
tmp32 |= (NV_MCP_SATA_CFG_20_PORT1_EN |
NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
}
}
ata_host_resume(host);
return 0;
}
#endif
static void nv_ck804_host_stop(struct ata_host *host)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
u8 regval;
/* disable SATA space for CK804 */
pci_read_config_byte(pdev, NV_MCP_SATA_CFG_20, &regval);
regval &= ~NV_MCP_SATA_CFG_20_SATA_SPACE_EN;
pci_write_config_byte(pdev, NV_MCP_SATA_CFG_20, regval);
}
static void nv_adma_host_stop(struct ata_host *host)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
u32 tmp32;
/* disable ADMA on the ports */
pci_read_config_dword(pdev, NV_MCP_SATA_CFG_20, &tmp32);
tmp32 &= ~(NV_MCP_SATA_CFG_20_PORT0_EN |
NV_MCP_SATA_CFG_20_PORT0_PWB_EN |
NV_MCP_SATA_CFG_20_PORT1_EN |
NV_MCP_SATA_CFG_20_PORT1_PWB_EN);
pci_write_config_dword(pdev, NV_MCP_SATA_CFG_20, tmp32);
nv_ck804_host_stop(host);
}
static int __init nv_init(void)
{
return pci_register_driver(&nv_pci_driver);
}
static void __exit nv_exit(void)
{
pci_unregister_driver(&nv_pci_driver);
}
module_init(nv_init);
module_exit(nv_exit);
module_param_named(adma, adma_enabled, bool, 0444);
MODULE_PARM_DESC(adma, "Enable use of ADMA (Default: true)");
module_param_named(swncq, swncq_enabled, bool, 0444);
MODULE_PARM_DESC(swncq, "Enable use of SWNCQ (Default: false)");