2016-10-29 00:04:40 +02:00
|
|
|
User Interface for Resource Allocation in Intel Resource Director Technology
|
|
|
|
|
|
|
|
Copyright (C) 2016 Intel Corporation
|
|
|
|
|
|
|
|
Fenghua Yu <fenghua.yu@intel.com>
|
|
|
|
Tony Luck <tony.luck@intel.com>
|
2017-04-08 02:33:50 +02:00
|
|
|
Vikas Shivappa <vikas.shivappa@intel.com>
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
This feature is enabled by the CONFIG_INTEL_RDT Kconfig and the
|
|
|
|
X86 /proc/cpuinfo flag bits "rdt", "cqm", "cat_l3" and "cdp_l3".
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
To use the feature mount the file system:
|
|
|
|
|
|
|
|
# mount -t resctrl resctrl [-o cdp] /sys/fs/resctrl
|
|
|
|
|
|
|
|
mount options are:
|
|
|
|
|
|
|
|
"cdp": Enable code/data prioritization in L3 cache allocations.
|
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
RDT features are orthogonal. A particular system may support only
|
|
|
|
monitoring, only control, or both monitoring and control.
|
|
|
|
|
|
|
|
The mount succeeds if either of allocation or monitoring is present, but
|
|
|
|
only those files and directories supported by the system will be created.
|
|
|
|
For more details on the behavior of the interface during monitoring
|
|
|
|
and allocation, see the "Resource alloc and monitor groups" section.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2016-11-07 11:58:12 +01:00
|
|
|
Info directory
|
|
|
|
--------------
|
|
|
|
|
|
|
|
The 'info' directory contains information about the enabled
|
|
|
|
resources. Each resource has its own subdirectory. The subdirectory
|
2017-04-08 02:33:50 +02:00
|
|
|
names reflect the resource names.
|
2017-07-25 23:14:21 +02:00
|
|
|
|
|
|
|
Each subdirectory contains the following files with respect to
|
|
|
|
allocation:
|
|
|
|
|
|
|
|
Cache resource(L3/L2) subdirectory contains the following files
|
|
|
|
related to allocation:
|
2016-11-07 11:58:12 +01:00
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
"num_closids": The number of CLOSIDs which are valid for this
|
|
|
|
resource. The kernel uses the smallest number of
|
|
|
|
CLOSIDs of all enabled resources as limit.
|
2016-11-07 11:58:12 +01:00
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
"cbm_mask": The bitmask which is valid for this resource.
|
|
|
|
This mask is equivalent to 100%.
|
2016-11-07 11:58:12 +01:00
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
"min_cbm_bits": The minimum number of consecutive bits which
|
|
|
|
must be set when writing a mask.
|
2016-11-07 11:58:12 +01:00
|
|
|
|
2017-07-26 00:39:04 +02:00
|
|
|
"shareable_bits": Bitmask of shareable resource with other executing
|
|
|
|
entities (e.g. I/O). User can use this when
|
|
|
|
setting up exclusive cache partitions. Note that
|
|
|
|
some platforms support devices that have their
|
|
|
|
own settings for cache use which can over-ride
|
|
|
|
these bits.
|
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
Memory bandwitdh(MB) subdirectory contains the following files
|
|
|
|
with respect to allocation:
|
2017-04-08 02:33:50 +02:00
|
|
|
|
|
|
|
"min_bandwidth": The minimum memory bandwidth percentage which
|
|
|
|
user can request.
|
|
|
|
|
|
|
|
"bandwidth_gran": The granularity in which the memory bandwidth
|
|
|
|
percentage is allocated. The allocated
|
|
|
|
b/w percentage is rounded off to the next
|
|
|
|
control step available on the hardware. The
|
|
|
|
available bandwidth control steps are:
|
|
|
|
min_bandwidth + N * bandwidth_gran.
|
|
|
|
|
|
|
|
"delay_linear": Indicates if the delay scale is linear or
|
|
|
|
non-linear. This field is purely informational
|
|
|
|
only.
|
2016-11-07 11:58:12 +01:00
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
If RDT monitoring is available there will be an "L3_MON" directory
|
|
|
|
with the following files:
|
|
|
|
|
|
|
|
"num_rmids": The number of RMIDs available. This is the
|
|
|
|
upper bound for how many "CTRL_MON" + "MON"
|
|
|
|
groups can be created.
|
|
|
|
|
|
|
|
"mon_features": Lists the monitoring events if
|
|
|
|
monitoring is enabled for the resource.
|
|
|
|
|
|
|
|
"max_threshold_occupancy":
|
|
|
|
Read/write file provides the largest value (in
|
|
|
|
bytes) at which a previously used LLC_occupancy
|
|
|
|
counter can be considered for re-use.
|
|
|
|
|
2017-09-26 01:39:38 +02:00
|
|
|
Finally, in the top level of the "info" directory there is a file
|
|
|
|
named "last_cmd_status". This is reset with every "command" issued
|
|
|
|
via the file system (making new directories or writing to any of the
|
|
|
|
control files). If the command was successful, it will read as "ok".
|
|
|
|
If the command failed, it will provide more information that can be
|
|
|
|
conveyed in the error returns from file operations. E.g.
|
|
|
|
|
|
|
|
# echo L3:0=f7 > schemata
|
|
|
|
bash: echo: write error: Invalid argument
|
|
|
|
# cat info/last_cmd_status
|
|
|
|
mask f7 has non-consecutive 1-bits
|
2017-07-25 23:14:21 +02:00
|
|
|
|
|
|
|
Resource alloc and monitor groups
|
|
|
|
---------------------------------
|
|
|
|
|
2016-10-29 00:04:40 +02:00
|
|
|
Resource groups are represented as directories in the resctrl file
|
2017-07-25 23:14:21 +02:00
|
|
|
system. The default group is the root directory which, immediately
|
|
|
|
after mounting, owns all the tasks and cpus in the system and can make
|
|
|
|
full use of all resources.
|
|
|
|
|
|
|
|
On a system with RDT control features additional directories can be
|
|
|
|
created in the root directory that specify different amounts of each
|
|
|
|
resource (see "schemata" below). The root and these additional top level
|
|
|
|
directories are referred to as "CTRL_MON" groups below.
|
|
|
|
|
|
|
|
On a system with RDT monitoring the root directory and other top level
|
|
|
|
directories contain a directory named "mon_groups" in which additional
|
|
|
|
directories can be created to monitor subsets of tasks in the CTRL_MON
|
|
|
|
group that is their ancestor. These are called "MON" groups in the rest
|
|
|
|
of this document.
|
|
|
|
|
|
|
|
Removing a directory will move all tasks and cpus owned by the group it
|
|
|
|
represents to the parent. Removing one of the created CTRL_MON groups
|
|
|
|
will automatically remove all MON groups below it.
|
|
|
|
|
|
|
|
All groups contain the following files:
|
|
|
|
|
|
|
|
"tasks":
|
|
|
|
Reading this file shows the list of all tasks that belong to
|
|
|
|
this group. Writing a task id to the file will add a task to the
|
|
|
|
group. If the group is a CTRL_MON group the task is removed from
|
|
|
|
whichever previous CTRL_MON group owned the task and also from
|
|
|
|
any MON group that owned the task. If the group is a MON group,
|
|
|
|
then the task must already belong to the CTRL_MON parent of this
|
|
|
|
group. The task is removed from any previous MON group.
|
|
|
|
|
|
|
|
|
|
|
|
"cpus":
|
|
|
|
Reading this file shows a bitmask of the logical CPUs owned by
|
|
|
|
this group. Writing a mask to this file will add and remove
|
|
|
|
CPUs to/from this group. As with the tasks file a hierarchy is
|
|
|
|
maintained where MON groups may only include CPUs owned by the
|
|
|
|
parent CTRL_MON group.
|
|
|
|
|
|
|
|
|
|
|
|
"cpus_list":
|
|
|
|
Just like "cpus", only using ranges of CPUs instead of bitmasks.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
When control is enabled all CTRL_MON groups will also contain:
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
"schemata":
|
|
|
|
A list of all the resources available to this group.
|
|
|
|
Each resource has its own line and format - see below for details.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
When monitoring is enabled all MON groups will also contain:
|
2017-04-10 16:52:32 +02:00
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
"mon_data":
|
|
|
|
This contains a set of files organized by L3 domain and by
|
|
|
|
RDT event. E.g. on a system with two L3 domains there will
|
|
|
|
be subdirectories "mon_L3_00" and "mon_L3_01". Each of these
|
|
|
|
directories have one file per event (e.g. "llc_occupancy",
|
|
|
|
"mbm_total_bytes", and "mbm_local_bytes"). In a MON group these
|
|
|
|
files provide a read out of the current value of the event for
|
|
|
|
all tasks in the group. In CTRL_MON groups these files provide
|
|
|
|
the sum for all tasks in the CTRL_MON group and all tasks in
|
|
|
|
MON groups. Please see example section for more details on usage.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
Resource allocation rules
|
|
|
|
-------------------------
|
|
|
|
When a task is running the following rules define which resources are
|
|
|
|
available to it:
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
1) If the task is a member of a non-default group, then the schemata
|
2017-07-25 23:14:21 +02:00
|
|
|
for that group is used.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
2) Else if the task belongs to the default group, but is running on a
|
2017-07-25 23:14:21 +02:00
|
|
|
CPU that is assigned to some specific group, then the schemata for the
|
|
|
|
CPU's group is used.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
3) Otherwise the schemata for the default group is used.
|
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
Resource monitoring rules
|
|
|
|
-------------------------
|
|
|
|
1) If a task is a member of a MON group, or non-default CTRL_MON group
|
|
|
|
then RDT events for the task will be reported in that group.
|
|
|
|
|
|
|
|
2) If a task is a member of the default CTRL_MON group, but is running
|
|
|
|
on a CPU that is assigned to some specific group, then the RDT events
|
|
|
|
for the task will be reported in that group.
|
|
|
|
|
|
|
|
3) Otherwise RDT events for the task will be reported in the root level
|
|
|
|
"mon_data" group.
|
|
|
|
|
|
|
|
|
|
|
|
Notes on cache occupancy monitoring and control
|
|
|
|
-----------------------------------------------
|
|
|
|
When moving a task from one group to another you should remember that
|
|
|
|
this only affects *new* cache allocations by the task. E.g. you may have
|
|
|
|
a task in a monitor group showing 3 MB of cache occupancy. If you move
|
|
|
|
to a new group and immediately check the occupancy of the old and new
|
|
|
|
groups you will likely see that the old group is still showing 3 MB and
|
|
|
|
the new group zero. When the task accesses locations still in cache from
|
|
|
|
before the move, the h/w does not update any counters. On a busy system
|
|
|
|
you will likely see the occupancy in the old group go down as cache lines
|
|
|
|
are evicted and re-used while the occupancy in the new group rises as
|
|
|
|
the task accesses memory and loads into the cache are counted based on
|
|
|
|
membership in the new group.
|
|
|
|
|
|
|
|
The same applies to cache allocation control. Moving a task to a group
|
|
|
|
with a smaller cache partition will not evict any cache lines. The
|
|
|
|
process may continue to use them from the old partition.
|
|
|
|
|
|
|
|
Hardware uses CLOSid(Class of service ID) and an RMID(Resource monitoring ID)
|
|
|
|
to identify a control group and a monitoring group respectively. Each of
|
|
|
|
the resource groups are mapped to these IDs based on the kind of group. The
|
|
|
|
number of CLOSid and RMID are limited by the hardware and hence the creation of
|
|
|
|
a "CTRL_MON" directory may fail if we run out of either CLOSID or RMID
|
|
|
|
and creation of "MON" group may fail if we run out of RMIDs.
|
|
|
|
|
|
|
|
max_threshold_occupancy - generic concepts
|
|
|
|
------------------------------------------
|
|
|
|
|
|
|
|
Note that an RMID once freed may not be immediately available for use as
|
|
|
|
the RMID is still tagged the cache lines of the previous user of RMID.
|
|
|
|
Hence such RMIDs are placed on limbo list and checked back if the cache
|
|
|
|
occupancy has gone down. If there is a time when system has a lot of
|
|
|
|
limbo RMIDs but which are not ready to be used, user may see an -EBUSY
|
|
|
|
during mkdir.
|
|
|
|
|
|
|
|
max_threshold_occupancy is a user configurable value to determine the
|
|
|
|
occupancy at which an RMID can be freed.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
Schemata files - general concepts
|
|
|
|
---------------------------------
|
|
|
|
Each line in the file describes one resource. The line starts with
|
|
|
|
the name of the resource, followed by specific values to be applied
|
|
|
|
in each of the instances of that resource on the system.
|
|
|
|
|
|
|
|
Cache IDs
|
|
|
|
---------
|
|
|
|
On current generation systems there is one L3 cache per socket and L2
|
|
|
|
caches are generally just shared by the hyperthreads on a core, but this
|
|
|
|
isn't an architectural requirement. We could have multiple separate L3
|
|
|
|
caches on a socket, multiple cores could share an L2 cache. So instead
|
|
|
|
of using "socket" or "core" to define the set of logical cpus sharing
|
|
|
|
a resource we use a "Cache ID". At a given cache level this will be a
|
|
|
|
unique number across the whole system (but it isn't guaranteed to be a
|
|
|
|
contiguous sequence, there may be gaps). To find the ID for each logical
|
|
|
|
CPU look in /sys/devices/system/cpu/cpu*/cache/index*/id
|
|
|
|
|
|
|
|
Cache Bit Masks (CBM)
|
|
|
|
---------------------
|
|
|
|
For cache resources we describe the portion of the cache that is available
|
|
|
|
for allocation using a bitmask. The maximum value of the mask is defined
|
|
|
|
by each cpu model (and may be different for different cache levels). It
|
|
|
|
is found using CPUID, but is also provided in the "info" directory of
|
|
|
|
the resctrl file system in "info/{resource}/cbm_mask". X86 hardware
|
|
|
|
requires that these masks have all the '1' bits in a contiguous block. So
|
|
|
|
0x3, 0x6 and 0xC are legal 4-bit masks with two bits set, but 0x5, 0x9
|
|
|
|
and 0xA are not. On a system with a 20-bit mask each bit represents 5%
|
|
|
|
of the capacity of the cache. You could partition the cache into four
|
|
|
|
equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000.
|
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
Memory bandwidth(b/w) percentage
|
|
|
|
--------------------------------
|
|
|
|
For Memory b/w resource, user controls the resource by indicating the
|
|
|
|
percentage of total memory b/w.
|
|
|
|
|
|
|
|
The minimum bandwidth percentage value for each cpu model is predefined
|
|
|
|
and can be looked up through "info/MB/min_bandwidth". The bandwidth
|
|
|
|
granularity that is allocated is also dependent on the cpu model and can
|
|
|
|
be looked up at "info/MB/bandwidth_gran". The available bandwidth
|
|
|
|
control steps are: min_bw + N * bw_gran. Intermediate values are rounded
|
|
|
|
to the next control step available on the hardware.
|
|
|
|
|
|
|
|
The bandwidth throttling is a core specific mechanism on some of Intel
|
|
|
|
SKUs. Using a high bandwidth and a low bandwidth setting on two threads
|
|
|
|
sharing a core will result in both threads being throttled to use the
|
|
|
|
low bandwidth.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
L3 schemata file details (code and data prioritization disabled)
|
|
|
|
----------------------------------------------------------------
|
2016-10-29 00:04:40 +02:00
|
|
|
With CDP disabled the L3 schemata format is:
|
|
|
|
|
|
|
|
L3:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
|
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
L3 schemata file details (CDP enabled via mount option to resctrl)
|
|
|
|
------------------------------------------------------------------
|
2016-10-29 00:04:40 +02:00
|
|
|
When CDP is enabled L3 control is split into two separate resources
|
|
|
|
so you can specify independent masks for code and data like this:
|
|
|
|
|
|
|
|
L3data:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
|
|
|
|
L3code:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
|
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
L2 schemata file details
|
|
|
|
------------------------
|
2016-10-29 00:04:40 +02:00
|
|
|
L2 cache does not support code and data prioritization, so the
|
|
|
|
schemata format is always:
|
|
|
|
|
|
|
|
L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
|
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
Memory b/w Allocation details
|
|
|
|
-----------------------------
|
|
|
|
|
|
|
|
Memory b/w domain is L3 cache.
|
|
|
|
|
|
|
|
MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;...
|
|
|
|
|
2017-04-03 23:44:16 +02:00
|
|
|
Reading/writing the schemata file
|
|
|
|
---------------------------------
|
|
|
|
Reading the schemata file will show the state of all resources
|
|
|
|
on all domains. When writing you only need to specify those values
|
|
|
|
which you wish to change. E.g.
|
|
|
|
|
|
|
|
# cat schemata
|
|
|
|
L3DATA:0=fffff;1=fffff;2=fffff;3=fffff
|
|
|
|
L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
|
|
|
|
# echo "L3DATA:2=3c0;" > schemata
|
|
|
|
# cat schemata
|
|
|
|
L3DATA:0=fffff;1=fffff;2=3c0;3=fffff
|
|
|
|
L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
|
|
|
|
|
2017-07-25 23:14:21 +02:00
|
|
|
Examples for RDT allocation usage:
|
|
|
|
|
2016-10-29 00:04:40 +02:00
|
|
|
Example 1
|
|
|
|
---------
|
|
|
|
On a two socket machine (one L3 cache per socket) with just four bits
|
2017-04-08 02:33:50 +02:00
|
|
|
for cache bit masks, minimum b/w of 10% with a memory bandwidth
|
|
|
|
granularity of 10%
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
# mount -t resctrl resctrl /sys/fs/resctrl
|
|
|
|
# cd /sys/fs/resctrl
|
|
|
|
# mkdir p0 p1
|
2017-04-08 02:33:50 +02:00
|
|
|
# echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata
|
|
|
|
# echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
The default resource group is unmodified, so we have access to all parts
|
|
|
|
of all caches (its schemata file reads "L3:0=f;1=f").
|
|
|
|
|
|
|
|
Tasks that are under the control of group "p0" may only allocate from the
|
|
|
|
"lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
|
|
|
|
Tasks in group "p1" use the "lower" 50% of cache on both sockets.
|
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
Similarly, tasks that are under the control of group "p0" may use a
|
|
|
|
maximum memory b/w of 50% on socket0 and 50% on socket 1.
|
|
|
|
Tasks in group "p1" may also use 50% memory b/w on both sockets.
|
|
|
|
Note that unlike cache masks, memory b/w cannot specify whether these
|
|
|
|
allocations can overlap or not. The allocations specifies the maximum
|
|
|
|
b/w that the group may be able to use and the system admin can configure
|
|
|
|
the b/w accordingly.
|
|
|
|
|
2016-10-29 00:04:40 +02:00
|
|
|
Example 2
|
|
|
|
---------
|
|
|
|
Again two sockets, but this time with a more realistic 20-bit mask.
|
|
|
|
|
|
|
|
Two real time tasks pid=1234 running on processor 0 and pid=5678 running on
|
|
|
|
processor 1 on socket 0 on a 2-socket and dual core machine. To avoid noisy
|
|
|
|
neighbors, each of the two real-time tasks exclusively occupies one quarter
|
|
|
|
of L3 cache on socket 0.
|
|
|
|
|
|
|
|
# mount -t resctrl resctrl /sys/fs/resctrl
|
|
|
|
# cd /sys/fs/resctrl
|
|
|
|
|
|
|
|
First we reset the schemata for the default group so that the "upper"
|
2017-04-08 02:33:50 +02:00
|
|
|
50% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by
|
|
|
|
ordinary tasks:
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
# echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
Next we make a resource group for our first real time task and give
|
|
|
|
it access to the "top" 25% of the cache on socket 0.
|
|
|
|
|
|
|
|
# mkdir p0
|
|
|
|
# echo "L3:0=f8000;1=fffff" > p0/schemata
|
|
|
|
|
|
|
|
Finally we move our first real time task into this resource group. We
|
|
|
|
also use taskset(1) to ensure the task always runs on a dedicated CPU
|
|
|
|
on socket 0. Most uses of resource groups will also constrain which
|
|
|
|
processors tasks run on.
|
|
|
|
|
|
|
|
# echo 1234 > p0/tasks
|
|
|
|
# taskset -cp 1 1234
|
|
|
|
|
|
|
|
Ditto for the second real time task (with the remaining 25% of cache):
|
|
|
|
|
|
|
|
# mkdir p1
|
|
|
|
# echo "L3:0=7c00;1=fffff" > p1/schemata
|
|
|
|
# echo 5678 > p1/tasks
|
|
|
|
# taskset -cp 2 5678
|
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
For the same 2 socket system with memory b/w resource and CAT L3 the
|
|
|
|
schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is
|
|
|
|
10):
|
|
|
|
|
|
|
|
For our first real time task this would request 20% memory b/w on socket
|
|
|
|
0.
|
|
|
|
|
|
|
|
# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
|
|
|
|
|
|
|
|
For our second real time task this would request an other 20% memory b/w
|
|
|
|
on socket 0.
|
|
|
|
|
|
|
|
# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata
|
|
|
|
|
2016-10-29 00:04:40 +02:00
|
|
|
Example 3
|
|
|
|
---------
|
|
|
|
|
|
|
|
A single socket system which has real-time tasks running on core 4-7 and
|
|
|
|
non real-time workload assigned to core 0-3. The real-time tasks share text
|
|
|
|
and data, so a per task association is not required and due to interaction
|
|
|
|
with the kernel it's desired that the kernel on these cores shares L3 with
|
|
|
|
the tasks.
|
|
|
|
|
|
|
|
# mount -t resctrl resctrl /sys/fs/resctrl
|
|
|
|
# cd /sys/fs/resctrl
|
|
|
|
|
|
|
|
First we reset the schemata for the default group so that the "upper"
|
2017-04-08 02:33:50 +02:00
|
|
|
50% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0
|
|
|
|
cannot be used by ordinary tasks:
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
# echo "L3:0=3ff\nMB:0=50" > schemata
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-04-08 02:33:50 +02:00
|
|
|
Next we make a resource group for our real time cores and give it access
|
|
|
|
to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on
|
|
|
|
socket 0.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
# mkdir p0
|
2017-04-08 02:33:50 +02:00
|
|
|
# echo "L3:0=ffc00\nMB:0=50" > p0/schemata
|
2016-10-29 00:04:40 +02:00
|
|
|
|
|
|
|
Finally we move core 4-7 over to the new group and make sure that the
|
2017-04-08 02:33:50 +02:00
|
|
|
kernel and the tasks running there get 50% of the cache. They should
|
|
|
|
also get 50% of memory bandwidth assuming that the cores 4-7 are SMT
|
|
|
|
siblings and only the real time threads are scheduled on the cores 4-7.
|
2016-10-29 00:04:40 +02:00
|
|
|
|
2017-05-03 05:15:56 +02:00
|
|
|
# echo F0 > p0/cpus
|
2016-12-14 18:08:37 +01:00
|
|
|
|
|
|
|
4) Locking between applications
|
|
|
|
|
|
|
|
Certain operations on the resctrl filesystem, composed of read/writes
|
|
|
|
to/from multiple files, must be atomic.
|
|
|
|
|
|
|
|
As an example, the allocation of an exclusive reservation of L3 cache
|
|
|
|
involves:
|
|
|
|
|
|
|
|
1. Read the cbmmasks from each directory
|
|
|
|
2. Find a contiguous set of bits in the global CBM bitmask that is clear
|
|
|
|
in any of the directory cbmmasks
|
|
|
|
3. Create a new directory
|
|
|
|
4. Set the bits found in step 2 to the new directory "schemata" file
|
|
|
|
|
|
|
|
If two applications attempt to allocate space concurrently then they can
|
|
|
|
end up allocating the same bits so the reservations are shared instead of
|
|
|
|
exclusive.
|
|
|
|
|
|
|
|
To coordinate atomic operations on the resctrlfs and to avoid the problem
|
|
|
|
above, the following locking procedure is recommended:
|
|
|
|
|
|
|
|
Locking is based on flock, which is available in libc and also as a shell
|
|
|
|
script command
|
|
|
|
|
|
|
|
Write lock:
|
|
|
|
|
|
|
|
A) Take flock(LOCK_EX) on /sys/fs/resctrl
|
|
|
|
B) Read/write the directory structure.
|
|
|
|
C) funlock
|
|
|
|
|
|
|
|
Read lock:
|
|
|
|
|
|
|
|
A) Take flock(LOCK_SH) on /sys/fs/resctrl
|
|
|
|
B) If success read the directory structure.
|
|
|
|
C) funlock
|
|
|
|
|
|
|
|
Example with bash:
|
|
|
|
|
|
|
|
# Atomically read directory structure
|
|
|
|
$ flock -s /sys/fs/resctrl/ find /sys/fs/resctrl
|
|
|
|
|
|
|
|
# Read directory contents and create new subdirectory
|
|
|
|
|
|
|
|
$ cat create-dir.sh
|
|
|
|
find /sys/fs/resctrl/ > output.txt
|
|
|
|
mask = function-of(output.txt)
|
|
|
|
mkdir /sys/fs/resctrl/newres/
|
|
|
|
echo mask > /sys/fs/resctrl/newres/schemata
|
|
|
|
|
|
|
|
$ flock /sys/fs/resctrl/ ./create-dir.sh
|
|
|
|
|
|
|
|
Example with C:
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Example code do take advisory locks
|
|
|
|
* before accessing resctrl filesystem
|
|
|
|
*/
|
|
|
|
#include <sys/file.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
void resctrl_take_shared_lock(int fd)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* take shared lock on resctrl filesystem */
|
|
|
|
ret = flock(fd, LOCK_SH);
|
|
|
|
if (ret) {
|
|
|
|
perror("flock");
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void resctrl_take_exclusive_lock(int fd)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* release lock on resctrl filesystem */
|
|
|
|
ret = flock(fd, LOCK_EX);
|
|
|
|
if (ret) {
|
|
|
|
perror("flock");
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void resctrl_release_lock(int fd)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* take shared lock on resctrl filesystem */
|
|
|
|
ret = flock(fd, LOCK_UN);
|
|
|
|
if (ret) {
|
|
|
|
perror("flock");
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void main(void)
|
|
|
|
{
|
|
|
|
int fd, ret;
|
|
|
|
|
|
|
|
fd = open("/sys/fs/resctrl", O_DIRECTORY);
|
|
|
|
if (fd == -1) {
|
|
|
|
perror("open");
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
resctrl_take_shared_lock(fd);
|
|
|
|
/* code to read directory contents */
|
|
|
|
resctrl_release_lock(fd);
|
|
|
|
|
|
|
|
resctrl_take_exclusive_lock(fd);
|
|
|
|
/* code to read and write directory contents */
|
|
|
|
resctrl_release_lock(fd);
|
|
|
|
}
|
2017-07-25 23:14:21 +02:00
|
|
|
|
|
|
|
Examples for RDT Monitoring along with allocation usage:
|
|
|
|
|
|
|
|
Reading monitored data
|
|
|
|
----------------------
|
|
|
|
Reading an event file (for ex: mon_data/mon_L3_00/llc_occupancy) would
|
|
|
|
show the current snapshot of LLC occupancy of the corresponding MON
|
|
|
|
group or CTRL_MON group.
|
|
|
|
|
|
|
|
|
|
|
|
Example 1 (Monitor CTRL_MON group and subset of tasks in CTRL_MON group)
|
|
|
|
---------
|
|
|
|
On a two socket machine (one L3 cache per socket) with just four bits
|
|
|
|
for cache bit masks
|
|
|
|
|
|
|
|
# mount -t resctrl resctrl /sys/fs/resctrl
|
|
|
|
# cd /sys/fs/resctrl
|
|
|
|
# mkdir p0 p1
|
|
|
|
# echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata
|
|
|
|
# echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata
|
|
|
|
# echo 5678 > p1/tasks
|
|
|
|
# echo 5679 > p1/tasks
|
|
|
|
|
|
|
|
The default resource group is unmodified, so we have access to all parts
|
|
|
|
of all caches (its schemata file reads "L3:0=f;1=f").
|
|
|
|
|
|
|
|
Tasks that are under the control of group "p0" may only allocate from the
|
|
|
|
"lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
|
|
|
|
Tasks in group "p1" use the "lower" 50% of cache on both sockets.
|
|
|
|
|
|
|
|
Create monitor groups and assign a subset of tasks to each monitor group.
|
|
|
|
|
|
|
|
# cd /sys/fs/resctrl/p1/mon_groups
|
|
|
|
# mkdir m11 m12
|
|
|
|
# echo 5678 > m11/tasks
|
|
|
|
# echo 5679 > m12/tasks
|
|
|
|
|
|
|
|
fetch data (data shown in bytes)
|
|
|
|
|
|
|
|
# cat m11/mon_data/mon_L3_00/llc_occupancy
|
|
|
|
16234000
|
|
|
|
# cat m11/mon_data/mon_L3_01/llc_occupancy
|
|
|
|
14789000
|
|
|
|
# cat m12/mon_data/mon_L3_00/llc_occupancy
|
|
|
|
16789000
|
|
|
|
|
|
|
|
The parent ctrl_mon group shows the aggregated data.
|
|
|
|
|
|
|
|
# cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
|
|
|
|
31234000
|
|
|
|
|
|
|
|
Example 2 (Monitor a task from its creation)
|
|
|
|
---------
|
|
|
|
On a two socket machine (one L3 cache per socket)
|
|
|
|
|
|
|
|
# mount -t resctrl resctrl /sys/fs/resctrl
|
|
|
|
# cd /sys/fs/resctrl
|
|
|
|
# mkdir p0 p1
|
|
|
|
|
|
|
|
An RMID is allocated to the group once its created and hence the <cmd>
|
|
|
|
below is monitored from its creation.
|
|
|
|
|
|
|
|
# echo $$ > /sys/fs/resctrl/p1/tasks
|
|
|
|
# <cmd>
|
|
|
|
|
|
|
|
Fetch the data
|
|
|
|
|
|
|
|
# cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
|
|
|
|
31789000
|
|
|
|
|
|
|
|
Example 3 (Monitor without CAT support or before creating CAT groups)
|
|
|
|
---------
|
|
|
|
|
|
|
|
Assume a system like HSW has only CQM and no CAT support. In this case
|
|
|
|
the resctrl will still mount but cannot create CTRL_MON directories.
|
|
|
|
But user can create different MON groups within the root group thereby
|
|
|
|
able to monitor all tasks including kernel threads.
|
|
|
|
|
|
|
|
This can also be used to profile jobs cache size footprint before being
|
|
|
|
able to allocate them to different allocation groups.
|
|
|
|
|
|
|
|
# mount -t resctrl resctrl /sys/fs/resctrl
|
|
|
|
# cd /sys/fs/resctrl
|
|
|
|
# mkdir mon_groups/m01
|
|
|
|
# mkdir mon_groups/m02
|
|
|
|
|
|
|
|
# echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks
|
|
|
|
# echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks
|
|
|
|
|
|
|
|
Monitor the groups separately and also get per domain data. From the
|
|
|
|
below its apparent that the tasks are mostly doing work on
|
|
|
|
domain(socket) 0.
|
|
|
|
|
|
|
|
# cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy
|
|
|
|
31234000
|
|
|
|
# cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy
|
|
|
|
34555
|
|
|
|
# cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy
|
|
|
|
31234000
|
|
|
|
# cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy
|
|
|
|
32789
|
|
|
|
|
|
|
|
|
|
|
|
Example 4 (Monitor real time tasks)
|
|
|
|
-----------------------------------
|
|
|
|
|
|
|
|
A single socket system which has real time tasks running on cores 4-7
|
|
|
|
and non real time tasks on other cpus. We want to monitor the cache
|
|
|
|
occupancy of the real time threads on these cores.
|
|
|
|
|
|
|
|
# mount -t resctrl resctrl /sys/fs/resctrl
|
|
|
|
# cd /sys/fs/resctrl
|
|
|
|
# mkdir p1
|
|
|
|
|
|
|
|
Move the cpus 4-7 over to p1
|
|
|
|
# echo f0 > p0/cpus
|
|
|
|
|
|
|
|
View the llc occupancy snapshot
|
|
|
|
|
|
|
|
# cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
|
|
|
|
11234000
|