linux/security/dummy.c

959 lines
22 KiB
C
Raw Normal View History

/*
* Stub functions for the default security function pointers in case no
* security model is loaded.
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#undef DEBUG
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/security.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <net/sock.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
#include <linux/ptrace.h>
#include <linux/file.h>
static int dummy_ptrace (struct task_struct *parent, struct task_struct *child)
{
return 0;
}
static int dummy_capget (struct task_struct *target, kernel_cap_t * effective,
kernel_cap_t * inheritable, kernel_cap_t * permitted)
{
*effective = *inheritable = *permitted = 0;
if (!issecure(SECURE_NOROOT)) {
if (target->euid == 0) {
*permitted |= (~0 & ~CAP_FS_MASK);
*effective |= (~0 & ~CAP_TO_MASK(CAP_SETPCAP) & ~CAP_FS_MASK);
}
if (target->fsuid == 0) {
*permitted |= CAP_FS_MASK;
*effective |= CAP_FS_MASK;
}
}
return 0;
}
static int dummy_capset_check (struct task_struct *target,
kernel_cap_t * effective,
kernel_cap_t * inheritable,
kernel_cap_t * permitted)
{
return -EPERM;
}
static void dummy_capset_set (struct task_struct *target,
kernel_cap_t * effective,
kernel_cap_t * inheritable,
kernel_cap_t * permitted)
{
return;
}
static int dummy_acct (struct file *file)
{
return 0;
}
static int dummy_capable (struct task_struct *tsk, int cap)
{
if (cap_raised (tsk->cap_effective, cap))
return 0;
return -EPERM;
}
static int dummy_sysctl (ctl_table * table, int op)
{
return 0;
}
static int dummy_quotactl (int cmds, int type, int id, struct super_block *sb)
{
return 0;
}
static int dummy_quota_on (struct dentry *dentry)
{
return 0;
}
static int dummy_syslog (int type)
{
if ((type != 3 && type != 10) && current->euid)
return -EPERM;
return 0;
}
static int dummy_settime(struct timespec *ts, struct timezone *tz)
{
if (!capable(CAP_SYS_TIME))
return -EPERM;
return 0;
}
static int dummy_vm_enough_memory(long pages)
{
int cap_sys_admin = 0;
if (dummy_capable(current, CAP_SYS_ADMIN) == 0)
cap_sys_admin = 1;
return __vm_enough_memory(pages, cap_sys_admin);
}
static int dummy_bprm_alloc_security (struct linux_binprm *bprm)
{
return 0;
}
static void dummy_bprm_free_security (struct linux_binprm *bprm)
{
return;
}
static void dummy_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
{
if (bprm->e_uid != current->uid || bprm->e_gid != current->gid) {
[PATCH] setuid core dump Add a new `suid_dumpable' sysctl: This value can be used to query and set the core dump mode for setuid or otherwise protected/tainted binaries. The modes are 0 - (default) - traditional behaviour. Any process which has changed privilege levels or is execute only will not be dumped 1 - (debug) - all processes dump core when possible. The core dump is owned by the current user and no security is applied. This is intended for system debugging situations only. Ptrace is unchecked. 2 - (suidsafe) - any binary which normally would not be dumped is dumped readable by root only. This allows the end user to remove such a dump but not access it directly. For security reasons core dumps in this mode will not overwrite one another or other files. This mode is appropriate when adminstrators are attempting to debug problems in a normal environment. (akpm: > > +EXPORT_SYMBOL(suid_dumpable); > > EXPORT_SYMBOL_GPL? No problem to me. > > if (current->euid == current->uid && current->egid == current->gid) > > current->mm->dumpable = 1; > > Should this be SUID_DUMP_USER? Actually the feedback I had from last time was that the SUID_ defines should go because its clearer to follow the numbers. They can go everywhere (and there are lots of places where dumpable is tested/used as a bool in untouched code) > Maybe this should be renamed to `dump_policy' or something. Doing that > would help us catch any code which isn't using the #defines, too. Fair comment. The patch was designed to be easy to maintain for Red Hat rather than for merging. Changing that field would create a gigantic diff because it is used all over the place. ) Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 00:09:43 -07:00
current->mm->dumpable = suid_dumpable;
if ((unsafe & ~LSM_UNSAFE_PTRACE_CAP) && !capable(CAP_SETUID)) {
bprm->e_uid = current->uid;
bprm->e_gid = current->gid;
}
}
current->suid = current->euid = current->fsuid = bprm->e_uid;
current->sgid = current->egid = current->fsgid = bprm->e_gid;
dummy_capget(current, &current->cap_effective, &current->cap_inheritable, &current->cap_permitted);
}
static void dummy_bprm_post_apply_creds (struct linux_binprm *bprm)
{
return;
}
static int dummy_bprm_set_security (struct linux_binprm *bprm)
{
return 0;
}
static int dummy_bprm_check_security (struct linux_binprm *bprm)
{
return 0;
}
static int dummy_bprm_secureexec (struct linux_binprm *bprm)
{
/* The new userland will simply use the value provided
in the AT_SECURE field to decide whether secure mode
is required. Hence, this logic is required to preserve
the legacy decision algorithm used by the old userland. */
return (current->euid != current->uid ||
current->egid != current->gid);
}
static int dummy_sb_alloc_security (struct super_block *sb)
{
return 0;
}
static void dummy_sb_free_security (struct super_block *sb)
{
return;
}
static int dummy_sb_copy_data (struct file_system_type *type,
void *orig, void *copy)
{
return 0;
}
static int dummy_sb_kern_mount (struct super_block *sb, void *data)
{
return 0;
}
static int dummy_sb_statfs (struct super_block *sb)
{
return 0;
}
static int dummy_sb_mount (char *dev_name, struct nameidata *nd, char *type,
unsigned long flags, void *data)
{
return 0;
}
static int dummy_sb_check_sb (struct vfsmount *mnt, struct nameidata *nd)
{
return 0;
}
static int dummy_sb_umount (struct vfsmount *mnt, int flags)
{
return 0;
}
static void dummy_sb_umount_close (struct vfsmount *mnt)
{
return;
}
static void dummy_sb_umount_busy (struct vfsmount *mnt)
{
return;
}
static void dummy_sb_post_remount (struct vfsmount *mnt, unsigned long flags,
void *data)
{
return;
}
static void dummy_sb_post_mountroot (void)
{
return;
}
static void dummy_sb_post_addmount (struct vfsmount *mnt, struct nameidata *nd)
{
return;
}
static int dummy_sb_pivotroot (struct nameidata *old_nd, struct nameidata *new_nd)
{
return 0;
}
static void dummy_sb_post_pivotroot (struct nameidata *old_nd, struct nameidata *new_nd)
{
return;
}
static int dummy_inode_alloc_security (struct inode *inode)
{
return 0;
}
static void dummy_inode_free_security (struct inode *inode)
{
return;
}
[PATCH] security: enable atomic inode security labeling The following patch set enables atomic security labeling of newly created inodes by altering the fs code to invoke a new LSM hook to obtain the security attribute to apply to a newly created inode and to set up the incore inode security state during the inode creation transaction. This parallels the existing processing for setting ACLs on newly created inodes. Otherwise, it is possible for new inodes to be accessed by another thread via the dcache prior to complete security setup (presently handled by the post_create/mkdir/... LSM hooks in the VFS) and a newly created inode may be left unlabeled on the disk in the event of a crash. SELinux presently works around the issue by ensuring that the incore inode security label is initialized to a special SID that is inaccessible to unprivileged processes (in accordance with policy), thereby preventing inappropriate access but potentially causing false denials on legitimate accesses. A simple test program demonstrates such false denials on SELinux, and the patch solves the problem. Similar such false denials have been encountered in real applications. This patch defines a new inode_init_security LSM hook to obtain the security attribute to apply to a newly created inode and to set up the incore inode security state for it, and adds a corresponding hook function implementation to SELinux. Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 13:01:35 -07:00
static int dummy_inode_init_security (struct inode *inode, struct inode *dir,
char **name, void **value, size_t *len)
{
return -EOPNOTSUPP;
}
static int dummy_inode_create (struct inode *inode, struct dentry *dentry,
int mask)
{
return 0;
}
static int dummy_inode_link (struct dentry *old_dentry, struct inode *inode,
struct dentry *new_dentry)
{
return 0;
}
static int dummy_inode_unlink (struct inode *inode, struct dentry *dentry)
{
return 0;
}
static int dummy_inode_symlink (struct inode *inode, struct dentry *dentry,
const char *name)
{
return 0;
}
static int dummy_inode_mkdir (struct inode *inode, struct dentry *dentry,
int mask)
{
return 0;
}
static int dummy_inode_rmdir (struct inode *inode, struct dentry *dentry)
{
return 0;
}
static int dummy_inode_mknod (struct inode *inode, struct dentry *dentry,
int mode, dev_t dev)
{
return 0;
}
static int dummy_inode_rename (struct inode *old_inode,
struct dentry *old_dentry,
struct inode *new_inode,
struct dentry *new_dentry)
{
return 0;
}
static int dummy_inode_readlink (struct dentry *dentry)
{
return 0;
}
static int dummy_inode_follow_link (struct dentry *dentry,
struct nameidata *nameidata)
{
return 0;
}
static int dummy_inode_permission (struct inode *inode, int mask, struct nameidata *nd)
{
return 0;
}
static int dummy_inode_setattr (struct dentry *dentry, struct iattr *iattr)
{
return 0;
}
static int dummy_inode_getattr (struct vfsmount *mnt, struct dentry *dentry)
{
return 0;
}
static void dummy_inode_delete (struct inode *ino)
{
return;
}
static int dummy_inode_setxattr (struct dentry *dentry, char *name, void *value,
size_t size, int flags)
{
if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
static void dummy_inode_post_setxattr (struct dentry *dentry, char *name, void *value,
size_t size, int flags)
{
}
static int dummy_inode_getxattr (struct dentry *dentry, char *name)
{
return 0;
}
static int dummy_inode_listxattr (struct dentry *dentry)
{
return 0;
}
static int dummy_inode_removexattr (struct dentry *dentry, char *name)
{
if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
static int dummy_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size)
{
return -EOPNOTSUPP;
}
static int dummy_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
return -EOPNOTSUPP;
}
static int dummy_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
return 0;
}
static int dummy_file_permission (struct file *file, int mask)
{
return 0;
}
static int dummy_file_alloc_security (struct file *file)
{
return 0;
}
static void dummy_file_free_security (struct file *file)
{
return;
}
static int dummy_file_ioctl (struct file *file, unsigned int command,
unsigned long arg)
{
return 0;
}
static int dummy_file_mmap (struct file *file, unsigned long reqprot,
unsigned long prot,
unsigned long flags)
{
return 0;
}
static int dummy_file_mprotect (struct vm_area_struct *vma,
unsigned long reqprot,
unsigned long prot)
{
return 0;
}
static int dummy_file_lock (struct file *file, unsigned int cmd)
{
return 0;
}
static int dummy_file_fcntl (struct file *file, unsigned int cmd,
unsigned long arg)
{
return 0;
}
static int dummy_file_set_fowner (struct file *file)
{
return 0;
}
static int dummy_file_send_sigiotask (struct task_struct *tsk,
struct fown_struct *fown, int sig)
{
return 0;
}
static int dummy_file_receive (struct file *file)
{
return 0;
}
static int dummy_task_create (unsigned long clone_flags)
{
return 0;
}
static int dummy_task_alloc_security (struct task_struct *p)
{
return 0;
}
static void dummy_task_free_security (struct task_struct *p)
{
return;
}
static int dummy_task_setuid (uid_t id0, uid_t id1, uid_t id2, int flags)
{
return 0;
}
static int dummy_task_post_setuid (uid_t id0, uid_t id1, uid_t id2, int flags)
{
dummy_capget(current, &current->cap_effective, &current->cap_inheritable, &current->cap_permitted);
return 0;
}
static int dummy_task_setgid (gid_t id0, gid_t id1, gid_t id2, int flags)
{
return 0;
}
static int dummy_task_setpgid (struct task_struct *p, pid_t pgid)
{
return 0;
}
static int dummy_task_getpgid (struct task_struct *p)
{
return 0;
}
static int dummy_task_getsid (struct task_struct *p)
{
return 0;
}
static int dummy_task_setgroups (struct group_info *group_info)
{
return 0;
}
static int dummy_task_setnice (struct task_struct *p, int nice)
{
return 0;
}
static int dummy_task_setrlimit (unsigned int resource, struct rlimit *new_rlim)
{
return 0;
}
static int dummy_task_setscheduler (struct task_struct *p, int policy,
struct sched_param *lp)
{
return 0;
}
static int dummy_task_getscheduler (struct task_struct *p)
{
return 0;
}
static int dummy_task_wait (struct task_struct *p)
{
return 0;
}
static int dummy_task_kill (struct task_struct *p, struct siginfo *info,
int sig)
{
return 0;
}
static int dummy_task_prctl (int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
return 0;
}
static void dummy_task_reparent_to_init (struct task_struct *p)
{
p->euid = p->fsuid = 0;
return;
}
static void dummy_task_to_inode(struct task_struct *p, struct inode *inode)
{ }
static int dummy_ipc_permission (struct kern_ipc_perm *ipcp, short flag)
{
return 0;
}
static int dummy_msg_msg_alloc_security (struct msg_msg *msg)
{
return 0;
}
static void dummy_msg_msg_free_security (struct msg_msg *msg)
{
return;
}
static int dummy_msg_queue_alloc_security (struct msg_queue *msq)
{
return 0;
}
static void dummy_msg_queue_free_security (struct msg_queue *msq)
{
return;
}
static int dummy_msg_queue_associate (struct msg_queue *msq,
int msqflg)
{
return 0;
}
static int dummy_msg_queue_msgctl (struct msg_queue *msq, int cmd)
{
return 0;
}
static int dummy_msg_queue_msgsnd (struct msg_queue *msq, struct msg_msg *msg,
int msgflg)
{
return 0;
}
static int dummy_msg_queue_msgrcv (struct msg_queue *msq, struct msg_msg *msg,
struct task_struct *target, long type,
int mode)
{
return 0;
}
static int dummy_shm_alloc_security (struct shmid_kernel *shp)
{
return 0;
}
static void dummy_shm_free_security (struct shmid_kernel *shp)
{
return;
}
static int dummy_shm_associate (struct shmid_kernel *shp, int shmflg)
{
return 0;
}
static int dummy_shm_shmctl (struct shmid_kernel *shp, int cmd)
{
return 0;
}
static int dummy_shm_shmat (struct shmid_kernel *shp, char __user *shmaddr,
int shmflg)
{
return 0;
}
static int dummy_sem_alloc_security (struct sem_array *sma)
{
return 0;
}
static void dummy_sem_free_security (struct sem_array *sma)
{
return;
}
static int dummy_sem_associate (struct sem_array *sma, int semflg)
{
return 0;
}
static int dummy_sem_semctl (struct sem_array *sma, int cmd)
{
return 0;
}
static int dummy_sem_semop (struct sem_array *sma,
struct sembuf *sops, unsigned nsops, int alter)
{
return 0;
}
static int dummy_netlink_send (struct sock *sk, struct sk_buff *skb)
{
NETLINK_CB(skb).eff_cap = current->cap_effective;
return 0;
}
static int dummy_netlink_recv (struct sk_buff *skb)
{
if (!cap_raised (NETLINK_CB (skb).eff_cap, CAP_NET_ADMIN))
return -EPERM;
return 0;
}
#ifdef CONFIG_SECURITY_NETWORK
static int dummy_unix_stream_connect (struct socket *sock,
struct socket *other,
struct sock *newsk)
{
return 0;
}
static int dummy_unix_may_send (struct socket *sock,
struct socket *other)
{
return 0;
}
static int dummy_socket_create (int family, int type,
int protocol, int kern)
{
return 0;
}
static void dummy_socket_post_create (struct socket *sock, int family, int type,
int protocol, int kern)
{
return;
}
static int dummy_socket_bind (struct socket *sock, struct sockaddr *address,
int addrlen)
{
return 0;
}
static int dummy_socket_connect (struct socket *sock, struct sockaddr *address,
int addrlen)
{
return 0;
}
static int dummy_socket_listen (struct socket *sock, int backlog)
{
return 0;
}
static int dummy_socket_accept (struct socket *sock, struct socket *newsock)
{
return 0;
}
static void dummy_socket_post_accept (struct socket *sock,
struct socket *newsock)
{
return;
}
static int dummy_socket_sendmsg (struct socket *sock, struct msghdr *msg,
int size)
{
return 0;
}
static int dummy_socket_recvmsg (struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return 0;
}
static int dummy_socket_getsockname (struct socket *sock)
{
return 0;
}
static int dummy_socket_getpeername (struct socket *sock)
{
return 0;
}
static int dummy_socket_setsockopt (struct socket *sock, int level, int optname)
{
return 0;
}
static int dummy_socket_getsockopt (struct socket *sock, int level, int optname)
{
return 0;
}
static int dummy_socket_shutdown (struct socket *sock, int how)
{
return 0;
}
static int dummy_socket_sock_rcv_skb (struct sock *sk, struct sk_buff *skb)
{
return 0;
}
static int dummy_socket_getpeersec(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return -ENOPROTOOPT;
}
static inline int dummy_sk_alloc_security (struct sock *sk, int family, int priority)
{
return 0;
}
static inline void dummy_sk_free_security (struct sock *sk)
{
}
#endif /* CONFIG_SECURITY_NETWORK */
static int dummy_register_security (const char *name, struct security_operations *ops)
{
return -EINVAL;
}
static int dummy_unregister_security (const char *name, struct security_operations *ops)
{
return -EINVAL;
}
static void dummy_d_instantiate (struct dentry *dentry, struct inode *inode)
{
return;
}
static int dummy_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return -EINVAL;
}
static int dummy_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return -EINVAL;
}
struct security_operations dummy_security_ops;
#define set_to_dummy_if_null(ops, function) \
do { \
if (!ops->function) { \
ops->function = dummy_##function; \
pr_debug("Had to override the " #function \
" security operation with the dummy one.\n");\
} \
} while (0)
void security_fixup_ops (struct security_operations *ops)
{
set_to_dummy_if_null(ops, ptrace);
set_to_dummy_if_null(ops, capget);
set_to_dummy_if_null(ops, capset_check);
set_to_dummy_if_null(ops, capset_set);
set_to_dummy_if_null(ops, acct);
set_to_dummy_if_null(ops, capable);
set_to_dummy_if_null(ops, quotactl);
set_to_dummy_if_null(ops, quota_on);
set_to_dummy_if_null(ops, sysctl);
set_to_dummy_if_null(ops, syslog);
set_to_dummy_if_null(ops, settime);
set_to_dummy_if_null(ops, vm_enough_memory);
set_to_dummy_if_null(ops, bprm_alloc_security);
set_to_dummy_if_null(ops, bprm_free_security);
set_to_dummy_if_null(ops, bprm_apply_creds);
set_to_dummy_if_null(ops, bprm_post_apply_creds);
set_to_dummy_if_null(ops, bprm_set_security);
set_to_dummy_if_null(ops, bprm_check_security);
set_to_dummy_if_null(ops, bprm_secureexec);
set_to_dummy_if_null(ops, sb_alloc_security);
set_to_dummy_if_null(ops, sb_free_security);
set_to_dummy_if_null(ops, sb_copy_data);
set_to_dummy_if_null(ops, sb_kern_mount);
set_to_dummy_if_null(ops, sb_statfs);
set_to_dummy_if_null(ops, sb_mount);
set_to_dummy_if_null(ops, sb_check_sb);
set_to_dummy_if_null(ops, sb_umount);
set_to_dummy_if_null(ops, sb_umount_close);
set_to_dummy_if_null(ops, sb_umount_busy);
set_to_dummy_if_null(ops, sb_post_remount);
set_to_dummy_if_null(ops, sb_post_mountroot);
set_to_dummy_if_null(ops, sb_post_addmount);
set_to_dummy_if_null(ops, sb_pivotroot);
set_to_dummy_if_null(ops, sb_post_pivotroot);
set_to_dummy_if_null(ops, inode_alloc_security);
set_to_dummy_if_null(ops, inode_free_security);
[PATCH] security: enable atomic inode security labeling The following patch set enables atomic security labeling of newly created inodes by altering the fs code to invoke a new LSM hook to obtain the security attribute to apply to a newly created inode and to set up the incore inode security state during the inode creation transaction. This parallels the existing processing for setting ACLs on newly created inodes. Otherwise, it is possible for new inodes to be accessed by another thread via the dcache prior to complete security setup (presently handled by the post_create/mkdir/... LSM hooks in the VFS) and a newly created inode may be left unlabeled on the disk in the event of a crash. SELinux presently works around the issue by ensuring that the incore inode security label is initialized to a special SID that is inaccessible to unprivileged processes (in accordance with policy), thereby preventing inappropriate access but potentially causing false denials on legitimate accesses. A simple test program demonstrates such false denials on SELinux, and the patch solves the problem. Similar such false denials have been encountered in real applications. This patch defines a new inode_init_security LSM hook to obtain the security attribute to apply to a newly created inode and to set up the incore inode security state for it, and adds a corresponding hook function implementation to SELinux. Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-09 13:01:35 -07:00
set_to_dummy_if_null(ops, inode_init_security);
set_to_dummy_if_null(ops, inode_create);
set_to_dummy_if_null(ops, inode_link);
set_to_dummy_if_null(ops, inode_unlink);
set_to_dummy_if_null(ops, inode_symlink);
set_to_dummy_if_null(ops, inode_mkdir);
set_to_dummy_if_null(ops, inode_rmdir);
set_to_dummy_if_null(ops, inode_mknod);
set_to_dummy_if_null(ops, inode_rename);
set_to_dummy_if_null(ops, inode_readlink);
set_to_dummy_if_null(ops, inode_follow_link);
set_to_dummy_if_null(ops, inode_permission);
set_to_dummy_if_null(ops, inode_setattr);
set_to_dummy_if_null(ops, inode_getattr);
set_to_dummy_if_null(ops, inode_delete);
set_to_dummy_if_null(ops, inode_setxattr);
set_to_dummy_if_null(ops, inode_post_setxattr);
set_to_dummy_if_null(ops, inode_getxattr);
set_to_dummy_if_null(ops, inode_listxattr);
set_to_dummy_if_null(ops, inode_removexattr);
set_to_dummy_if_null(ops, inode_getsecurity);
set_to_dummy_if_null(ops, inode_setsecurity);
set_to_dummy_if_null(ops, inode_listsecurity);
set_to_dummy_if_null(ops, file_permission);
set_to_dummy_if_null(ops, file_alloc_security);
set_to_dummy_if_null(ops, file_free_security);
set_to_dummy_if_null(ops, file_ioctl);
set_to_dummy_if_null(ops, file_mmap);
set_to_dummy_if_null(ops, file_mprotect);
set_to_dummy_if_null(ops, file_lock);
set_to_dummy_if_null(ops, file_fcntl);
set_to_dummy_if_null(ops, file_set_fowner);
set_to_dummy_if_null(ops, file_send_sigiotask);
set_to_dummy_if_null(ops, file_receive);
set_to_dummy_if_null(ops, task_create);
set_to_dummy_if_null(ops, task_alloc_security);
set_to_dummy_if_null(ops, task_free_security);
set_to_dummy_if_null(ops, task_setuid);
set_to_dummy_if_null(ops, task_post_setuid);
set_to_dummy_if_null(ops, task_setgid);
set_to_dummy_if_null(ops, task_setpgid);
set_to_dummy_if_null(ops, task_getpgid);
set_to_dummy_if_null(ops, task_getsid);
set_to_dummy_if_null(ops, task_setgroups);
set_to_dummy_if_null(ops, task_setnice);
set_to_dummy_if_null(ops, task_setrlimit);
set_to_dummy_if_null(ops, task_setscheduler);
set_to_dummy_if_null(ops, task_getscheduler);
set_to_dummy_if_null(ops, task_wait);
set_to_dummy_if_null(ops, task_kill);
set_to_dummy_if_null(ops, task_prctl);
set_to_dummy_if_null(ops, task_reparent_to_init);
set_to_dummy_if_null(ops, task_to_inode);
set_to_dummy_if_null(ops, ipc_permission);
set_to_dummy_if_null(ops, msg_msg_alloc_security);
set_to_dummy_if_null(ops, msg_msg_free_security);
set_to_dummy_if_null(ops, msg_queue_alloc_security);
set_to_dummy_if_null(ops, msg_queue_free_security);
set_to_dummy_if_null(ops, msg_queue_associate);
set_to_dummy_if_null(ops, msg_queue_msgctl);
set_to_dummy_if_null(ops, msg_queue_msgsnd);
set_to_dummy_if_null(ops, msg_queue_msgrcv);
set_to_dummy_if_null(ops, shm_alloc_security);
set_to_dummy_if_null(ops, shm_free_security);
set_to_dummy_if_null(ops, shm_associate);
set_to_dummy_if_null(ops, shm_shmctl);
set_to_dummy_if_null(ops, shm_shmat);
set_to_dummy_if_null(ops, sem_alloc_security);
set_to_dummy_if_null(ops, sem_free_security);
set_to_dummy_if_null(ops, sem_associate);
set_to_dummy_if_null(ops, sem_semctl);
set_to_dummy_if_null(ops, sem_semop);
set_to_dummy_if_null(ops, netlink_send);
set_to_dummy_if_null(ops, netlink_recv);
set_to_dummy_if_null(ops, register_security);
set_to_dummy_if_null(ops, unregister_security);
set_to_dummy_if_null(ops, d_instantiate);
set_to_dummy_if_null(ops, getprocattr);
set_to_dummy_if_null(ops, setprocattr);
#ifdef CONFIG_SECURITY_NETWORK
set_to_dummy_if_null(ops, unix_stream_connect);
set_to_dummy_if_null(ops, unix_may_send);
set_to_dummy_if_null(ops, socket_create);
set_to_dummy_if_null(ops, socket_post_create);
set_to_dummy_if_null(ops, socket_bind);
set_to_dummy_if_null(ops, socket_connect);
set_to_dummy_if_null(ops, socket_listen);
set_to_dummy_if_null(ops, socket_accept);
set_to_dummy_if_null(ops, socket_post_accept);
set_to_dummy_if_null(ops, socket_sendmsg);
set_to_dummy_if_null(ops, socket_recvmsg);
set_to_dummy_if_null(ops, socket_getsockname);
set_to_dummy_if_null(ops, socket_getpeername);
set_to_dummy_if_null(ops, socket_setsockopt);
set_to_dummy_if_null(ops, socket_getsockopt);
set_to_dummy_if_null(ops, socket_shutdown);
set_to_dummy_if_null(ops, socket_sock_rcv_skb);
set_to_dummy_if_null(ops, socket_getpeersec);
set_to_dummy_if_null(ops, sk_alloc_security);
set_to_dummy_if_null(ops, sk_free_security);
#endif /* CONFIG_SECURITY_NETWORK */
}