linux/fs/btrfs/extent_io.h

560 lines
18 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef BTRFS_EXTENT_IO_H
#define BTRFS_EXTENT_IO_H
#include <linux/rbtree.h>
#include <linux/refcount.h>
#include "ulist.h"
/* bits for the extent state */
#define EXTENT_DIRTY (1U << 0)
#define EXTENT_UPTODATE (1U << 1)
#define EXTENT_LOCKED (1U << 2)
#define EXTENT_NEW (1U << 3)
#define EXTENT_DELALLOC (1U << 4)
#define EXTENT_DEFRAG (1U << 5)
#define EXTENT_BOUNDARY (1U << 6)
#define EXTENT_NODATASUM (1U << 7)
#define EXTENT_CLEAR_META_RESV (1U << 8)
#define EXTENT_NEED_WAIT (1U << 9)
#define EXTENT_DAMAGED (1U << 10)
#define EXTENT_NORESERVE (1U << 11)
#define EXTENT_QGROUP_RESERVED (1U << 12)
#define EXTENT_CLEAR_DATA_RESV (1U << 13)
#define EXTENT_DELALLOC_NEW (1U << 14)
Btrfs: fix invalid attempt to free reserved space on failure to cow range When attempting to COW a file range (we are starting writeback and doing COW), if we manage to reserve an extent for the range we will write into but fail after reserving it and before creating the respective ordered extent, we end up in an error path where we attempt to decrement the data space's bytes_may_use counter after we already did it while reserving the extent, leading to a warning/trace like the following: [ 847.621524] ------------[ cut here ]------------ [ 847.625441] WARNING: CPU: 5 PID: 4905 at fs/btrfs/extent-tree.c:4316 btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs] [ 847.633704] Modules linked in: btrfs crc32c_generic xor raid6_pq acpi_cpufreq i2c_piix4 ppdev psmouse tpm_tis serio_raw pcspkr parport_pc tpm_tis_core i2c_core sg [ 847.644616] CPU: 5 PID: 4905 Comm: xfs_io Not tainted 4.10.0-rc8-btrfs-next-37+ #2 [ 847.648601] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [ 847.648601] Call Trace: [ 847.648601] dump_stack+0x67/0x90 [ 847.648601] __warn+0xc2/0xdd [ 847.648601] warn_slowpath_null+0x1d/0x1f [ 847.648601] btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs] [ 847.648601] btrfs_clear_bit_hook+0x140/0x258 [btrfs] [ 847.648601] clear_state_bit+0x87/0x128 [btrfs] [ 847.648601] __clear_extent_bit+0x222/0x2b7 [btrfs] [ 847.648601] clear_extent_bit+0x17/0x19 [btrfs] [ 847.648601] extent_clear_unlock_delalloc+0x3b/0x6b [btrfs] [ 847.648601] cow_file_range.isra.39+0x387/0x39a [btrfs] [ 847.648601] run_delalloc_nocow+0x4d7/0x70e [btrfs] [ 847.648601] ? arch_local_irq_save+0x9/0xc [ 847.648601] run_delalloc_range+0xa7/0x2b5 [btrfs] [ 847.648601] writepage_delalloc.isra.31+0xb9/0x15c [btrfs] [ 847.648601] __extent_writepage+0x249/0x2e8 [btrfs] [ 847.648601] extent_write_cache_pages.constprop.33+0x28b/0x36c [btrfs] [ 847.648601] ? arch_local_irq_save+0x9/0xc [ 847.648601] ? mark_lock+0x24/0x201 [ 847.648601] extent_writepages+0x4b/0x5c [btrfs] [ 847.648601] ? btrfs_writepage_start_hook+0xed/0xed [btrfs] [ 847.648601] btrfs_writepages+0x28/0x2a [btrfs] [ 847.648601] do_writepages+0x23/0x2c [ 847.648601] __filemap_fdatawrite_range+0x5a/0x61 [ 847.648601] filemap_fdatawrite_range+0x13/0x15 [ 847.648601] btrfs_fdatawrite_range+0x20/0x46 [btrfs] [ 847.648601] start_ordered_ops+0x19/0x23 [btrfs] [ 847.648601] btrfs_sync_file+0x136/0x42c [btrfs] [ 847.648601] vfs_fsync_range+0x8c/0x9e [ 847.648601] vfs_fsync+0x1c/0x1e [ 847.648601] do_fsync+0x31/0x4a [ 847.648601] SyS_fsync+0x10/0x14 [ 847.648601] entry_SYSCALL_64_fastpath+0x18/0xad [ 847.648601] RIP: 0033:0x7f5b05200800 [ 847.648601] RSP: 002b:00007ffe204f71c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004a [ 847.648601] RAX: ffffffffffffffda RBX: ffffffff8109637b RCX: 00007f5b05200800 [ 847.648601] RDX: 00000000008bd0a0 RSI: 00000000008bd2e0 RDI: 0000000000000003 [ 847.648601] RBP: ffffc90001d67f98 R08: 000000000000ffff R09: 000000000000001f [ 847.648601] R10: 00000000000001f6 R11: 0000000000000246 R12: 0000000000000046 [ 847.648601] R13: ffffc90001d67f78 R14: 00007f5b054be740 R15: 00007f5b054be740 [ 847.648601] ? trace_hardirqs_off_caller+0x3f/0xaa [ 847.685787] ---[ end trace 2a4a3e15382508e8 ]--- So fix this by not attempting to decrement the data space info's bytes_may_use counter if we already reserved the extent and an error happened before creating the ordered extent. We are already correctly freeing the reserved extent if an error happens, so there's no additional measure needed. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2017-03-07 00:04:20 +01:00
#define EXTENT_DO_ACCOUNTING (EXTENT_CLEAR_META_RESV | \
EXTENT_CLEAR_DATA_RESV)
#define EXTENT_CTLBITS (EXTENT_DO_ACCOUNTING)
/*
* Redefined bits above which are used only in the device allocation tree,
* shouldn't be using EXTENT_LOCKED / EXTENT_BOUNDARY / EXTENT_CLEAR_META_RESV
* / EXTENT_CLEAR_DATA_RESV because they have special meaning to the bit
* manipulation functions
*/
#define CHUNK_ALLOCATED EXTENT_DIRTY
#define CHUNK_TRIMMED EXTENT_DEFRAG
/*
* flags for bio submission. The high bits indicate the compression
* type for this bio
*/
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 19:49:59 +01:00
#define EXTENT_BIO_COMPRESSED 1
#define EXTENT_BIO_FLAG_SHIFT 16
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 19:49:59 +01:00
enum {
EXTENT_BUFFER_UPTODATE,
EXTENT_BUFFER_DIRTY,
EXTENT_BUFFER_CORRUPT,
/* this got triggered by readahead */
EXTENT_BUFFER_READAHEAD,
EXTENT_BUFFER_TREE_REF,
EXTENT_BUFFER_STALE,
EXTENT_BUFFER_WRITEBACK,
/* read IO error */
EXTENT_BUFFER_READ_ERR,
EXTENT_BUFFER_UNMAPPED,
EXTENT_BUFFER_IN_TREE,
/* write IO error */
EXTENT_BUFFER_WRITE_ERR,
};
Btrfs: Change btree locking to use explicit blocking points Most of the btrfs metadata operations can be protected by a spinlock, but some operations still need to schedule. So far, btrfs has been using a mutex along with a trylock loop, most of the time it is able to avoid going for the full mutex, so the trylock loop is a big performance gain. This commit is step one for getting rid of the blocking locks entirely. btrfs_tree_lock takes a spinlock, and the code explicitly switches to a blocking lock when it starts an operation that can schedule. We'll be able get rid of the blocking locks in smaller pieces over time. Tracing allows us to find the most common cause of blocking, so we can start with the hot spots first. The basic idea is: btrfs_tree_lock() returns with the spin lock held btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in the extent buffer flags, and then drops the spin lock. The buffer is still considered locked by all of the btrfs code. If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops the spin lock and waits on a wait queue for the blocking bit to go away. Much of the code that needs to set the blocking bit finishes without actually blocking a good percentage of the time. So, an adaptive spin is still used against the blocking bit to avoid very high context switch rates. btrfs_clear_lock_blocking() clears the blocking bit and returns with the spinlock held again. btrfs_tree_unlock() can be called on either blocking or spinning locks, it does the right thing based on the blocking bit. ctree.c has a helper function to set/clear all the locked buffers in a path as blocking. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 15:25:08 +01:00
/* these are flags for __process_pages_contig */
#define PAGE_UNLOCK (1 << 0)
#define PAGE_CLEAR_DIRTY (1 << 1)
#define PAGE_SET_WRITEBACK (1 << 2)
#define PAGE_END_WRITEBACK (1 << 3)
#define PAGE_SET_PRIVATE2 (1 << 4)
#define PAGE_SET_ERROR (1 << 5)
#define PAGE_LOCK (1 << 6)
/*
* page->private values. Every page that is controlled by the extent
* map has page->private set to one.
*/
#define EXTENT_PAGE_PRIVATE 1
/*
* The extent buffer bitmap operations are done with byte granularity instead of
* word granularity for two reasons:
* 1. The bitmaps must be little-endian on disk.
* 2. Bitmap items are not guaranteed to be aligned to a word and therefore a
* single word in a bitmap may straddle two pages in the extent buffer.
*/
#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
#define BITMAP_FIRST_BYTE_MASK(start) \
((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
#define BITMAP_LAST_BYTE_MASK(nbits) \
(BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
struct extent_state;
struct btrfs_root;
struct btrfs_inode;
struct btrfs_io_bio;
struct io_failure_record;
typedef blk_status_t (extent_submit_bio_start_t)(void *private_data,
struct bio *bio, u64 bio_offset);
struct extent_io_ops {
/*
* The following callbacks must be always defined, the function
* pointer will be called unconditionally.
*/
blk_status_t (*submit_bio_hook)(struct inode *inode, struct bio *bio,
int mirror_num, unsigned long bio_flags);
int (*readpage_end_io_hook)(struct btrfs_io_bio *io_bio, u64 phy_offset,
struct page *page, u64 start, u64 end,
int mirror);
};
enum {
IO_TREE_FS_INFO_FREED_EXTENTS0,
IO_TREE_FS_INFO_FREED_EXTENTS1,
IO_TREE_INODE_IO,
IO_TREE_INODE_IO_FAILURE,
IO_TREE_RELOC_BLOCKS,
IO_TREE_TRANS_DIRTY_PAGES,
IO_TREE_ROOT_DIRTY_LOG_PAGES,
IO_TREE_SELFTEST,
};
struct extent_io_tree {
struct rb_root state;
struct btrfs_fs_info *fs_info;
void *private_data;
u64 dirty_bytes;
bool track_uptodate;
/* Who owns this io tree, should be one of IO_TREE_* */
u8 owner;
spinlock_t lock;
const struct extent_io_ops *ops;
};
struct extent_state {
u64 start;
u64 end; /* inclusive */
struct rb_node rb_node;
Btrfs: proper -ENOSPC handling At the start of a transaction we do a btrfs_reserve_metadata_space() and specify how many items we plan on modifying. Then once we've done our modifications and such, just call btrfs_unreserve_metadata_space() for the same number of items we reserved. For keeping track of metadata needed for data I've had to add an extent_io op for when we merge extents. This lets us track space properly when we are doing sequential writes, so we don't end up reserving way more metadata space than what we need. The only place where the metadata space accounting is not done is in the relocation code. This is because Yan is going to be reworking that code in the near future, so running btrfs-vol -b could still possibly result in a ENOSPC related panic. This patch also turns off the metadata_ratio stuff in order to allow users to more efficiently use their disk space. This patch makes it so we track how much metadata we need for an inode's delayed allocation extents by tracking how many extents are currently waiting for allocation. It introduces two new callbacks for the extent_io tree's, merge_extent_hook and split_extent_hook. These help us keep track of when we merge delalloc extents together and split them up. Reservations are handled prior to any actually dirty'ing occurs, and then we unreserve after we dirty. btrfs_unreserve_metadata_for_delalloc() will make the appropriate unreservations as needed based on the number of reservations we currently have and the number of extents we currently have. Doing the reservation outside of doing any of the actual dirty'ing lets us do things like filemap_flush() the inode to try and force delalloc to happen, or as a last resort actually start allocation on all delalloc inodes in the fs. This has survived dbench, fs_mark and an fsx torture test. Signed-off-by: Josef Bacik <jbacik@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 22:12:44 +02:00
/* ADD NEW ELEMENTS AFTER THIS */
wait_queue_head_t wq;
refcount_t refs;
unsigned state;
struct io_failure_record *failrec;
#ifdef CONFIG_BTRFS_DEBUG
struct list_head leak_list;
#endif
};
#define INLINE_EXTENT_BUFFER_PAGES 16
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 14:29:47 +02:00
#define MAX_INLINE_EXTENT_BUFFER_SIZE (INLINE_EXTENT_BUFFER_PAGES * PAGE_SIZE)
struct extent_buffer {
u64 start;
unsigned long len;
Btrfs: Change btree locking to use explicit blocking points Most of the btrfs metadata operations can be protected by a spinlock, but some operations still need to schedule. So far, btrfs has been using a mutex along with a trylock loop, most of the time it is able to avoid going for the full mutex, so the trylock loop is a big performance gain. This commit is step one for getting rid of the blocking locks entirely. btrfs_tree_lock takes a spinlock, and the code explicitly switches to a blocking lock when it starts an operation that can schedule. We'll be able get rid of the blocking locks in smaller pieces over time. Tracing allows us to find the most common cause of blocking, so we can start with the hot spots first. The basic idea is: btrfs_tree_lock() returns with the spin lock held btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in the extent buffer flags, and then drops the spin lock. The buffer is still considered locked by all of the btrfs code. If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops the spin lock and waits on a wait queue for the blocking bit to go away. Much of the code that needs to set the blocking bit finishes without actually blocking a good percentage of the time. So, an adaptive spin is still used against the blocking bit to avoid very high context switch rates. btrfs_clear_lock_blocking() clears the blocking bit and returns with the spinlock held again. btrfs_tree_unlock() can be called on either blocking or spinning locks, it does the right thing based on the blocking bit. ctree.c has a helper function to set/clear all the locked buffers in a path as blocking. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 15:25:08 +01:00
unsigned long bflags;
struct btrfs_fs_info *fs_info;
spinlock_t refs_lock;
atomic_t refs;
atomic_t io_pages;
int read_mirror;
struct rcu_head rcu_head;
pid_t lock_owner;
Btrfs: Change btree locking to use explicit blocking points Most of the btrfs metadata operations can be protected by a spinlock, but some operations still need to schedule. So far, btrfs has been using a mutex along with a trylock loop, most of the time it is able to avoid going for the full mutex, so the trylock loop is a big performance gain. This commit is step one for getting rid of the blocking locks entirely. btrfs_tree_lock takes a spinlock, and the code explicitly switches to a blocking lock when it starts an operation that can schedule. We'll be able get rid of the blocking locks in smaller pieces over time. Tracing allows us to find the most common cause of blocking, so we can start with the hot spots first. The basic idea is: btrfs_tree_lock() returns with the spin lock held btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in the extent buffer flags, and then drops the spin lock. The buffer is still considered locked by all of the btrfs code. If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops the spin lock and waits on a wait queue for the blocking bit to go away. Much of the code that needs to set the blocking bit finishes without actually blocking a good percentage of the time. So, an adaptive spin is still used against the blocking bit to avoid very high context switch rates. btrfs_clear_lock_blocking() clears the blocking bit and returns with the spinlock held again. btrfs_tree_unlock() can be called on either blocking or spinning locks, it does the right thing based on the blocking bit. ctree.c has a helper function to set/clear all the locked buffers in a path as blocking. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 15:25:08 +01:00
atomic_t blocking_writers;
atomic_t blocking_readers;
bool lock_nested;
Btrfs: be aware of btree inode write errors to avoid fs corruption While we have a transaction ongoing, the VM might decide at any time to call btree_inode->i_mapping->a_ops->writepages(), which will start writeback of dirty pages belonging to btree nodes/leafs. This call might return an error or the writeback might finish with an error before we attempt to commit the running transaction. If this happens, we might have no way of knowing that such error happened when we are committing the transaction - because the pages might no longer be marked dirty nor tagged for writeback (if a subsequent modification to the extent buffer didn't happen before the transaction commit) which makes filemap_fdata[write|wait]_range unable to find such pages (even if they're marked with SetPageError). So if this happens we must abort the transaction, otherwise we commit a super block with btree roots that point to btree nodes/leafs whose content on disk is invalid - either garbage or the content of some node/leaf from a past generation that got cowed or deleted and is no longer valid (for this later case we end up getting error messages like "parent transid verify failed on 10826481664 wanted 25748 found 29562" when reading btree nodes/leafs from disk). Note that setting and checking AS_EIO/AS_ENOSPC in the btree inode's i_mapping would not be enough because we need to distinguish between log tree extents (not fatal) vs non-log tree extents (fatal) and because the next call to filemap_fdatawait_range() will catch and clear such errors in the mapping - and that call might be from a log sync and not from a transaction commit, which means we would not know about the error at transaction commit time. Also, checking for the eb flag EXTENT_BUFFER_IOERR at transaction commit time isn't done and would not be completely reliable, as the eb might be removed from memory and read back when trying to get it, which clears that flag right before reading the eb's pages from disk, making us not know about the previous write error. Using the new 3 flags for the btree inode also makes us achieve the goal of AS_EIO/AS_ENOSPC when writepages() returns success, started writeback for all dirty pages and before filemap_fdatawait_range() is called, the writeback for all dirty pages had already finished with errors - because we were not using AS_EIO/AS_ENOSPC, filemap_fdatawait_range() would return success, as it could not know that writeback errors happened (the pages were no longer tagged for writeback). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-09-26 13:25:56 +02:00
/* >= 0 if eb belongs to a log tree, -1 otherwise */
short log_index;
/* protects write locks */
rwlock_t lock;
/* readers use lock_wq while they wait for the write
* lock holders to unlock
*/
wait_queue_head_t write_lock_wq;
Btrfs: Change btree locking to use explicit blocking points Most of the btrfs metadata operations can be protected by a spinlock, but some operations still need to schedule. So far, btrfs has been using a mutex along with a trylock loop, most of the time it is able to avoid going for the full mutex, so the trylock loop is a big performance gain. This commit is step one for getting rid of the blocking locks entirely. btrfs_tree_lock takes a spinlock, and the code explicitly switches to a blocking lock when it starts an operation that can schedule. We'll be able get rid of the blocking locks in smaller pieces over time. Tracing allows us to find the most common cause of blocking, so we can start with the hot spots first. The basic idea is: btrfs_tree_lock() returns with the spin lock held btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in the extent buffer flags, and then drops the spin lock. The buffer is still considered locked by all of the btrfs code. If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops the spin lock and waits on a wait queue for the blocking bit to go away. Much of the code that needs to set the blocking bit finishes without actually blocking a good percentage of the time. So, an adaptive spin is still used against the blocking bit to avoid very high context switch rates. btrfs_clear_lock_blocking() clears the blocking bit and returns with the spinlock held again. btrfs_tree_unlock() can be called on either blocking or spinning locks, it does the right thing based on the blocking bit. ctree.c has a helper function to set/clear all the locked buffers in a path as blocking. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 15:25:08 +01:00
/* writers use read_lock_wq while they wait for readers
* to unlock
Btrfs: Change btree locking to use explicit blocking points Most of the btrfs metadata operations can be protected by a spinlock, but some operations still need to schedule. So far, btrfs has been using a mutex along with a trylock loop, most of the time it is able to avoid going for the full mutex, so the trylock loop is a big performance gain. This commit is step one for getting rid of the blocking locks entirely. btrfs_tree_lock takes a spinlock, and the code explicitly switches to a blocking lock when it starts an operation that can schedule. We'll be able get rid of the blocking locks in smaller pieces over time. Tracing allows us to find the most common cause of blocking, so we can start with the hot spots first. The basic idea is: btrfs_tree_lock() returns with the spin lock held btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in the extent buffer flags, and then drops the spin lock. The buffer is still considered locked by all of the btrfs code. If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops the spin lock and waits on a wait queue for the blocking bit to go away. Much of the code that needs to set the blocking bit finishes without actually blocking a good percentage of the time. So, an adaptive spin is still used against the blocking bit to avoid very high context switch rates. btrfs_clear_lock_blocking() clears the blocking bit and returns with the spinlock held again. btrfs_tree_unlock() can be called on either blocking or spinning locks, it does the right thing based on the blocking bit. ctree.c has a helper function to set/clear all the locked buffers in a path as blocking. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 15:25:08 +01:00
*/
wait_queue_head_t read_lock_wq;
struct page *pages[INLINE_EXTENT_BUFFER_PAGES];
#ifdef CONFIG_BTRFS_DEBUG
atomic_t spinning_writers;
atomic_t spinning_readers;
atomic_t read_locks;
atomic_t write_locks;
struct list_head leak_list;
#endif
};
/*
* Structure to record how many bytes and which ranges are set/cleared
*/
struct extent_changeset {
/* How many bytes are set/cleared in this operation */
unsigned int bytes_changed;
/* Changed ranges */
struct ulist range_changed;
};
static inline void extent_changeset_init(struct extent_changeset *changeset)
{
changeset->bytes_changed = 0;
ulist_init(&changeset->range_changed);
}
static inline struct extent_changeset *extent_changeset_alloc(void)
{
struct extent_changeset *ret;
ret = kmalloc(sizeof(*ret), GFP_KERNEL);
if (!ret)
return NULL;
extent_changeset_init(ret);
return ret;
}
static inline void extent_changeset_release(struct extent_changeset *changeset)
{
if (!changeset)
return;
changeset->bytes_changed = 0;
ulist_release(&changeset->range_changed);
}
static inline void extent_changeset_free(struct extent_changeset *changeset)
{
if (!changeset)
return;
extent_changeset_release(changeset);
kfree(changeset);
}
static inline void extent_set_compress_type(unsigned long *bio_flags,
int compress_type)
{
*bio_flags |= compress_type << EXTENT_BIO_FLAG_SHIFT;
}
static inline int extent_compress_type(unsigned long bio_flags)
{
return bio_flags >> EXTENT_BIO_FLAG_SHIFT;
}
struct extent_map_tree;
typedef struct extent_map *(get_extent_t)(struct btrfs_inode *inode,
struct page *page,
size_t pg_offset,
u64 start, u64 len,
int create);
void extent_io_tree_init(struct btrfs_fs_info *fs_info,
struct extent_io_tree *tree, unsigned int owner,
void *private_data);
void extent_io_tree_release(struct extent_io_tree *tree);
int try_release_extent_mapping(struct page *page, gfp_t mask);
int try_release_extent_buffer(struct page *page);
int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
struct extent_state **cached);
static inline int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
{
return lock_extent_bits(tree, start, end, NULL);
}
int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end);
int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
get_extent_t *get_extent, int mirror_num);
int __init extent_io_init(void);
void __cold extent_io_exit(void);
u64 count_range_bits(struct extent_io_tree *tree,
u64 *start, u64 search_end,
u64 max_bytes, unsigned bits, int contig);
void free_extent_state(struct extent_state *state);
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits, int filled,
struct extent_state *cached_state);
int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits, struct extent_changeset *changeset);
int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits, int wake, int delete,
struct extent_state **cached);
int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits, int wake, int delete,
struct extent_state **cached, gfp_t mask,
struct extent_changeset *changeset);
static inline int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
{
return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL);
}
static inline int unlock_extent_cached(struct extent_io_tree *tree, u64 start,
u64 end, struct extent_state **cached)
{
return __clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
GFP_NOFS, NULL);
}
static inline int unlock_extent_cached_atomic(struct extent_io_tree *tree,
u64 start, u64 end, struct extent_state **cached)
{
return __clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
GFP_ATOMIC, NULL);
}
static inline int clear_extent_bits(struct extent_io_tree *tree, u64 start,
u64 end, unsigned bits)
{
int wake = 0;
if (bits & EXTENT_LOCKED)
wake = 1;
return clear_extent_bit(tree, start, end, bits, wake, 0, NULL);
}
int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits, struct extent_changeset *changeset);
int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits, u64 *failed_start,
struct extent_state **cached_state, gfp_t mask);
int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits);
static inline int set_extent_bits(struct extent_io_tree *tree, u64 start,
u64 end, unsigned bits)
{
return set_extent_bit(tree, start, end, bits, NULL, NULL, GFP_NOFS);
}
static inline int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
u64 end, struct extent_state **cached_state)
{
return __clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
cached_state, GFP_NOFS, NULL);
}
static inline int set_extent_dirty(struct extent_io_tree *tree, u64 start,
u64 end, gfp_t mask)
{
return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
NULL, mask);
}
static inline int clear_extent_dirty(struct extent_io_tree *tree, u64 start,
u64 end, struct extent_state **cached)
{
return clear_extent_bit(tree, start, end,
EXTENT_DIRTY | EXTENT_DELALLOC |
EXTENT_DO_ACCOUNTING, 0, 0, cached);
}
int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
unsigned bits, unsigned clear_bits,
struct extent_state **cached_state);
static inline int set_extent_delalloc(struct extent_io_tree *tree, u64 start,
Btrfs: fix reported number of inode blocks after buffered append writes The patch from commit a7e3b975a0f9 ("Btrfs: fix reported number of inode blocks") introduced a regression where if we do a buffered write starting at position equal to or greater than the file's size and then stat(2) the file before writeback is triggered, the number of used blocks does not change (unless there's a prealloc/unwritten extent). Example: $ xfs_io -f -c "pwrite -S 0xab 0 64K" foobar $ du -h foobar 0 foobar $ sync $ du -h foobar 64K foobar The first version of that patch didn't had this regression and the second version, which was the one committed, was made only to address some performance regression detected by the intel test robots using fs_mark. This fixes the regression by setting the new delaloc bit in the range, and doing it at btrfs_dirty_pages() while setting the regular dealloc bit as well, so that this way we set both bits at once avoiding navigation of the inode's io tree twice. Doing it at btrfs_dirty_pages() is also the most meaninful place, as we should set the new dellaloc bit when if we set the delalloc bit, which happens only if we copied bytes into the pages at __btrfs_buffered_write(). This was making some of LTP's du tests fail, which can be quickly run using a command line like the following: $ ./runltp -q -p -l /ltp.log -f commands -s du -d /mnt Fixes: a7e3b975a0f9 ("Btrfs: fix reported number of inode blocks") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-04 01:16:59 +01:00
u64 end, unsigned int extra_bits,
struct extent_state **cached_state)
{
return set_extent_bit(tree, start, end,
Btrfs: fix reported number of inode blocks after buffered append writes The patch from commit a7e3b975a0f9 ("Btrfs: fix reported number of inode blocks") introduced a regression where if we do a buffered write starting at position equal to or greater than the file's size and then stat(2) the file before writeback is triggered, the number of used blocks does not change (unless there's a prealloc/unwritten extent). Example: $ xfs_io -f -c "pwrite -S 0xab 0 64K" foobar $ du -h foobar 0 foobar $ sync $ du -h foobar 64K foobar The first version of that patch didn't had this regression and the second version, which was the one committed, was made only to address some performance regression detected by the intel test robots using fs_mark. This fixes the regression by setting the new delaloc bit in the range, and doing it at btrfs_dirty_pages() while setting the regular dealloc bit as well, so that this way we set both bits at once avoiding navigation of the inode's io tree twice. Doing it at btrfs_dirty_pages() is also the most meaninful place, as we should set the new dellaloc bit when if we set the delalloc bit, which happens only if we copied bytes into the pages at __btrfs_buffered_write(). This was making some of LTP's du tests fail, which can be quickly run using a command line like the following: $ ./runltp -q -p -l /ltp.log -f commands -s du -d /mnt Fixes: a7e3b975a0f9 ("Btrfs: fix reported number of inode blocks") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-04 01:16:59 +01:00
EXTENT_DELALLOC | EXTENT_UPTODATE | extra_bits,
NULL, cached_state, GFP_NOFS);
}
static inline int set_extent_defrag(struct extent_io_tree *tree, u64 start,
u64 end, struct extent_state **cached_state)
{
return set_extent_bit(tree, start, end,
EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
NULL, cached_state, GFP_NOFS);
}
static inline int set_extent_new(struct extent_io_tree *tree, u64 start,
u64 end)
{
return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, NULL,
GFP_NOFS);
}
static inline int set_extent_uptodate(struct extent_io_tree *tree, u64 start,
u64 end, struct extent_state **cached_state, gfp_t mask)
{
return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
cached_state, mask);
}
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, unsigned bits,
struct extent_state **cached_state);
void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, unsigned bits);
int extent_invalidatepage(struct extent_io_tree *tree,
struct page *page, unsigned long offset);
int extent_write_full_page(struct page *page, struct writeback_control *wbc);
int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
int mode);
int extent_writepages(struct address_space *mapping,
struct writeback_control *wbc);
int btree_write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc);
int extent_readpages(struct address_space *mapping, struct list_head *pages,
unsigned nr_pages);
int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
__u64 start, __u64 len);
void set_page_extent_mapped(struct page *page);
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start);
struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start, unsigned long len);
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start);
struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src);
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start);
void free_extent_buffer(struct extent_buffer *eb);
void free_extent_buffer_stale(struct extent_buffer *eb);
#define WAIT_NONE 0
#define WAIT_COMPLETE 1
#define WAIT_PAGE_LOCK 2
int read_extent_buffer_pages(struct extent_buffer *eb, int wait,
int mirror_num);
void wait_on_extent_buffer_writeback(struct extent_buffer *eb);
static inline int num_extent_pages(const struct extent_buffer *eb)
{
return (round_up(eb->start + eb->len, PAGE_SIZE) >> PAGE_SHIFT) -
(eb->start >> PAGE_SHIFT);
}
static inline void extent_buffer_get(struct extent_buffer *eb)
{
atomic_inc(&eb->refs);
}
static inline int extent_buffer_uptodate(struct extent_buffer *eb)
{
return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
}
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
unsigned long start, unsigned long len);
void read_extent_buffer(const struct extent_buffer *eb, void *dst,
unsigned long start,
unsigned long len);
int read_extent_buffer_to_user(const struct extent_buffer *eb,
void __user *dst, unsigned long start,
unsigned long len);
void write_extent_buffer_fsid(struct extent_buffer *eb, const void *src);
void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
const void *src);
void write_extent_buffer(struct extent_buffer *eb, const void *src,
unsigned long start, unsigned long len);
void copy_extent_buffer_full(struct extent_buffer *dst,
struct extent_buffer *src);
void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
unsigned long dst_offset, unsigned long src_offset,
unsigned long len);
void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
unsigned long src_offset, unsigned long len);
void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
unsigned long src_offset, unsigned long len);
void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
unsigned long len);
int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
unsigned long pos);
void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
unsigned long pos, unsigned long len);
void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
unsigned long pos, unsigned long len);
void clear_extent_buffer_dirty(struct extent_buffer *eb);
bool set_extent_buffer_dirty(struct extent_buffer *eb);
void set_extent_buffer_uptodate(struct extent_buffer *eb);
void clear_extent_buffer_uptodate(struct extent_buffer *eb);
int extent_buffer_under_io(struct extent_buffer *eb);
int map_private_extent_buffer(const struct extent_buffer *eb,
unsigned long offset, unsigned long min_len,
char **map, unsigned long *map_start,
unsigned long *map_len);
void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end);
void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end);
void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
u64 delalloc_end, struct page *locked_page,
unsigned bits_to_clear,
unsigned long page_ops);
struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte);
struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs);
struct bio *btrfs_bio_clone(struct bio *bio);
struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size);
struct btrfs_fs_info;
struct btrfs_inode;
int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
u64 length, u64 logical, struct page *page,
unsigned int pg_offset, int mirror_num);
int clean_io_failure(struct btrfs_fs_info *fs_info,
struct extent_io_tree *failure_tree,
struct extent_io_tree *io_tree, u64 start,
struct page *page, u64 ino, unsigned int pg_offset);
void end_extent_writepage(struct page *page, int err, u64 start, u64 end);
int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num);
/*
* When IO fails, either with EIO or csum verification fails, we
* try other mirrors that might have a good copy of the data. This
* io_failure_record is used to record state as we go through all the
* mirrors. If another mirror has good data, the page is set up to date
* and things continue. If a good mirror can't be found, the original
* bio end_io callback is called to indicate things have failed.
*/
struct io_failure_record {
struct page *page;
u64 start;
u64 len;
u64 logical;
unsigned long bio_flags;
int this_mirror;
int failed_mirror;
int in_validation;
};
void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start,
u64 end);
int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
struct io_failure_record **failrec_ret);
bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
struct io_failure_record *failrec, int fail_mirror);
struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
struct io_failure_record *failrec,
struct page *page, int pg_offset, int icsum,
bio_end_io_t *endio_func, void *data);
int free_io_failure(struct extent_io_tree *failure_tree,
struct extent_io_tree *io_tree,
struct io_failure_record *rec);
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
bool find_lock_delalloc_range(struct inode *inode, struct extent_io_tree *tree,
struct page *locked_page, u64 *start,
u64 *end);
#endif
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
u64 start);
#endif