2015-09-05 00:46:00 +02:00
|
|
|
= Userfaultfd =
|
|
|
|
|
|
|
|
== Objective ==
|
|
|
|
|
|
|
|
Userfaults allow the implementation of on-demand paging from userland
|
|
|
|
and more generally they allow userland to take control of various
|
|
|
|
memory page faults, something otherwise only the kernel code could do.
|
|
|
|
|
|
|
|
For example userfaults allows a proper and more optimal implementation
|
|
|
|
of the PROT_NONE+SIGSEGV trick.
|
|
|
|
|
|
|
|
== Design ==
|
|
|
|
|
|
|
|
Userfaults are delivered and resolved through the userfaultfd syscall.
|
|
|
|
|
|
|
|
The userfaultfd (aside from registering and unregistering virtual
|
|
|
|
memory ranges) provides two primary functionalities:
|
|
|
|
|
|
|
|
1) read/POLLIN protocol to notify a userland thread of the faults
|
|
|
|
happening
|
|
|
|
|
|
|
|
2) various UFFDIO_* ioctls that can manage the virtual memory regions
|
|
|
|
registered in the userfaultfd that allows userland to efficiently
|
|
|
|
resolve the userfaults it receives via 1) or to manage the virtual
|
|
|
|
memory in the background
|
|
|
|
|
|
|
|
The real advantage of userfaults if compared to regular virtual memory
|
|
|
|
management of mremap/mprotect is that the userfaults in all their
|
|
|
|
operations never involve heavyweight structures like vmas (in fact the
|
|
|
|
userfaultfd runtime load never takes the mmap_sem for writing).
|
|
|
|
|
|
|
|
Vmas are not suitable for page- (or hugepage) granular fault tracking
|
|
|
|
when dealing with virtual address spaces that could span
|
|
|
|
Terabytes. Too many vmas would be needed for that.
|
|
|
|
|
|
|
|
The userfaultfd once opened by invoking the syscall, can also be
|
|
|
|
passed using unix domain sockets to a manager process, so the same
|
|
|
|
manager process could handle the userfaults of a multitude of
|
|
|
|
different processes without them being aware about what is going on
|
|
|
|
(well of course unless they later try to use the userfaultfd
|
|
|
|
themselves on the same region the manager is already tracking, which
|
|
|
|
is a corner case that would currently return -EBUSY).
|
|
|
|
|
|
|
|
== API ==
|
|
|
|
|
|
|
|
When first opened the userfaultfd must be enabled invoking the
|
|
|
|
UFFDIO_API ioctl specifying a uffdio_api.api value set to UFFD_API (or
|
|
|
|
a later API version) which will specify the read/POLLIN protocol
|
2015-09-05 00:46:37 +02:00
|
|
|
userland intends to speak on the UFFD and the uffdio_api.features
|
|
|
|
userland requires. The UFFDIO_API ioctl if successful (i.e. if the
|
|
|
|
requested uffdio_api.api is spoken also by the running kernel and the
|
|
|
|
requested features are going to be enabled) will return into
|
|
|
|
uffdio_api.features and uffdio_api.ioctls two 64bit bitmasks of
|
|
|
|
respectively all the available features of the read(2) protocol and
|
|
|
|
the generic ioctl available.
|
2015-09-05 00:46:00 +02:00
|
|
|
|
2017-02-24 23:58:34 +01:00
|
|
|
The uffdio_api.features bitmask returned by the UFFDIO_API ioctl
|
|
|
|
defines what memory types are supported by the userfaultfd and what
|
|
|
|
events, except page fault notifications, may be generated.
|
|
|
|
|
|
|
|
If the kernel supports registering userfaultfd ranges on hugetlbfs
|
|
|
|
virtual memory areas, UFFD_FEATURE_MISSING_HUGETLBFS will be set in
|
|
|
|
uffdio_api.features. Similarly, UFFD_FEATURE_MISSING_SHMEM will be
|
|
|
|
set if the kernel supports registering userfaultfd ranges on shared
|
|
|
|
memory (covering all shmem APIs, i.e. tmpfs, IPCSHM, /dev/zero
|
|
|
|
MAP_SHARED, memfd_create, etc).
|
|
|
|
|
|
|
|
The userland application that wants to use userfaultfd with hugetlbfs
|
|
|
|
or shared memory need to set the corresponding flag in
|
|
|
|
uffdio_api.features to enable those features.
|
|
|
|
|
|
|
|
If the userland desires to receive notifications for events other than
|
|
|
|
page faults, it has to verify that uffdio_api.features has appropriate
|
|
|
|
UFFD_FEATURE_EVENT_* bits set. These events are described in more
|
|
|
|
detail below in "Non-cooperative userfaultfd" section.
|
|
|
|
|
2015-09-05 00:46:00 +02:00
|
|
|
Once the userfaultfd has been enabled the UFFDIO_REGISTER ioctl should
|
|
|
|
be invoked (if present in the returned uffdio_api.ioctls bitmask) to
|
|
|
|
register a memory range in the userfaultfd by setting the
|
|
|
|
uffdio_register structure accordingly. The uffdio_register.mode
|
|
|
|
bitmask will specify to the kernel which kind of faults to track for
|
|
|
|
the range (UFFDIO_REGISTER_MODE_MISSING would track missing
|
|
|
|
pages). The UFFDIO_REGISTER ioctl will return the
|
|
|
|
uffdio_register.ioctls bitmask of ioctls that are suitable to resolve
|
|
|
|
userfaults on the range registered. Not all ioctls will necessarily be
|
|
|
|
supported for all memory types depending on the underlying virtual
|
|
|
|
memory backend (anonymous memory vs tmpfs vs real filebacked
|
|
|
|
mappings).
|
|
|
|
|
|
|
|
Userland can use the uffdio_register.ioctls to manage the virtual
|
|
|
|
address space in the background (to add or potentially also remove
|
|
|
|
memory from the userfaultfd registered range). This means a userfault
|
|
|
|
could be triggering just before userland maps in the background the
|
|
|
|
user-faulted page.
|
|
|
|
|
|
|
|
The primary ioctl to resolve userfaults is UFFDIO_COPY. That
|
|
|
|
atomically copies a page into the userfault registered range and wakes
|
|
|
|
up the blocked userfaults (unless uffdio_copy.mode &
|
|
|
|
UFFDIO_COPY_MODE_DONTWAKE is set). Other ioctl works similarly to
|
|
|
|
UFFDIO_COPY. They're atomic as in guaranteeing that nothing can see an
|
|
|
|
half copied page since it'll keep userfaulting until the copy has
|
|
|
|
finished.
|
|
|
|
|
|
|
|
== QEMU/KVM ==
|
|
|
|
|
|
|
|
QEMU/KVM is using the userfaultfd syscall to implement postcopy live
|
|
|
|
migration. Postcopy live migration is one form of memory
|
|
|
|
externalization consisting of a virtual machine running with part or
|
|
|
|
all of its memory residing on a different node in the cloud. The
|
|
|
|
userfaultfd abstraction is generic enough that not a single line of
|
|
|
|
KVM kernel code had to be modified in order to add postcopy live
|
|
|
|
migration to QEMU.
|
|
|
|
|
|
|
|
Guest async page faults, FOLL_NOWAIT and all other GUP features work
|
|
|
|
just fine in combination with userfaults. Userfaults trigger async
|
|
|
|
page faults in the guest scheduler so those guest processes that
|
|
|
|
aren't waiting for userfaults (i.e. network bound) can keep running in
|
|
|
|
the guest vcpus.
|
|
|
|
|
|
|
|
It is generally beneficial to run one pass of precopy live migration
|
|
|
|
just before starting postcopy live migration, in order to avoid
|
|
|
|
generating userfaults for readonly guest regions.
|
|
|
|
|
|
|
|
The implementation of postcopy live migration currently uses one
|
|
|
|
single bidirectional socket but in the future two different sockets
|
|
|
|
will be used (to reduce the latency of the userfaults to the minimum
|
|
|
|
possible without having to decrease /proc/sys/net/ipv4/tcp_wmem).
|
|
|
|
|
|
|
|
The QEMU in the source node writes all pages that it knows are missing
|
|
|
|
in the destination node, into the socket, and the migration thread of
|
|
|
|
the QEMU running in the destination node runs UFFDIO_COPY|ZEROPAGE
|
|
|
|
ioctls on the userfaultfd in order to map the received pages into the
|
|
|
|
guest (UFFDIO_ZEROCOPY is used if the source page was a zero page).
|
|
|
|
|
|
|
|
A different postcopy thread in the destination node listens with
|
|
|
|
poll() to the userfaultfd in parallel. When a POLLIN event is
|
|
|
|
generated after a userfault triggers, the postcopy thread read() from
|
|
|
|
the userfaultfd and receives the fault address (or -EAGAIN in case the
|
|
|
|
userfault was already resolved and waken by a UFFDIO_COPY|ZEROPAGE run
|
|
|
|
by the parallel QEMU migration thread).
|
|
|
|
|
|
|
|
After the QEMU postcopy thread (running in the destination node) gets
|
|
|
|
the userfault address it writes the information about the missing page
|
|
|
|
into the socket. The QEMU source node receives the information and
|
|
|
|
roughly "seeks" to that page address and continues sending all
|
|
|
|
remaining missing pages from that new page offset. Soon after that
|
|
|
|
(just the time to flush the tcp_wmem queue through the network) the
|
|
|
|
migration thread in the QEMU running in the destination node will
|
|
|
|
receive the page that triggered the userfault and it'll map it as
|
|
|
|
usual with the UFFDIO_COPY|ZEROPAGE (without actually knowing if it
|
|
|
|
was spontaneously sent by the source or if it was an urgent page
|
2017-02-27 23:28:47 +01:00
|
|
|
requested through a userfault).
|
2015-09-05 00:46:00 +02:00
|
|
|
|
|
|
|
By the time the userfaults start, the QEMU in the destination node
|
|
|
|
doesn't need to keep any per-page state bitmap relative to the live
|
|
|
|
migration around and a single per-page bitmap has to be maintained in
|
|
|
|
the QEMU running in the source node to know which pages are still
|
|
|
|
missing in the destination node. The bitmap in the source node is
|
|
|
|
checked to find which missing pages to send in round robin and we seek
|
|
|
|
over it when receiving incoming userfaults. After sending each page of
|
|
|
|
course the bitmap is updated accordingly. It's also useful to avoid
|
|
|
|
sending the same page twice (in case the userfault is read by the
|
|
|
|
postcopy thread just before UFFDIO_COPY|ZEROPAGE runs in the migration
|
|
|
|
thread).
|
2017-02-24 23:58:34 +01:00
|
|
|
|
|
|
|
== Non-cooperative userfaultfd ==
|
|
|
|
|
|
|
|
When the userfaultfd is monitored by an external manager, the manager
|
|
|
|
must be able to track changes in the process virtual memory
|
|
|
|
layout. Userfaultfd can notify the manager about such changes using
|
|
|
|
the same read(2) protocol as for the page fault notifications. The
|
|
|
|
manager has to explicitly enable these events by setting appropriate
|
|
|
|
bits in uffdio_api.features passed to UFFDIO_API ioctl:
|
|
|
|
|
|
|
|
UFFD_FEATURE_EVENT_FORK - enable userfaultfd hooks for fork(). When
|
|
|
|
this feature is enabled, the userfaultfd context of the parent process
|
|
|
|
is duplicated into the newly created process. The manager receives
|
|
|
|
UFFD_EVENT_FORK with file descriptor of the new userfaultfd context in
|
|
|
|
the uffd_msg.fork.
|
|
|
|
|
|
|
|
UFFD_FEATURE_EVENT_REMAP - enable notifications about mremap()
|
|
|
|
calls. When the non-cooperative process moves a virtual memory area to
|
|
|
|
a different location, the manager will receive UFFD_EVENT_REMAP. The
|
|
|
|
uffd_msg.remap will contain the old and new addresses of the area and
|
|
|
|
its original length.
|
|
|
|
|
|
|
|
UFFD_FEATURE_EVENT_REMOVE - enable notifications about
|
|
|
|
madvise(MADV_REMOVE) and madvise(MADV_DONTNEED) calls. The event
|
|
|
|
UFFD_EVENT_REMOVE will be generated upon these calls to madvise. The
|
|
|
|
uffd_msg.remove will contain start and end addresses of the removed
|
|
|
|
area.
|
|
|
|
|
|
|
|
UFFD_FEATURE_EVENT_UNMAP - enable notifications about memory
|
|
|
|
unmapping. The manager will get UFFD_EVENT_UNMAP with uffd_msg.remove
|
|
|
|
containing start and end addresses of the unmapped area.
|
|
|
|
|
|
|
|
Although the UFFD_FEATURE_EVENT_REMOVE and UFFD_FEATURE_EVENT_UNMAP
|
|
|
|
are pretty similar, they quite differ in the action expected from the
|
|
|
|
userfaultfd manager. In the former case, the virtual memory is
|
|
|
|
removed, but the area is not, the area remains monitored by the
|
|
|
|
userfaultfd, and if a page fault occurs in that area it will be
|
|
|
|
delivered to the manager. The proper resolution for such page fault is
|
|
|
|
to zeromap the faulting address. However, in the latter case, when an
|
|
|
|
area is unmapped, either explicitly (with munmap() system call), or
|
|
|
|
implicitly (e.g. during mremap()), the area is removed and in turn the
|
|
|
|
userfaultfd context for such area disappears too and the manager will
|
|
|
|
not get further userland page faults from the removed area. Still, the
|
|
|
|
notification is required in order to prevent manager from using
|
|
|
|
UFFDIO_COPY on the unmapped area.
|
|
|
|
|
|
|
|
Unlike userland page faults which have to be synchronous and require
|
|
|
|
explicit or implicit wakeup, all the events are delivered
|
|
|
|
asynchronously and the non-cooperative process resumes execution as
|
|
|
|
soon as manager executes read(). The userfaultfd manager should
|
|
|
|
carefully synchronize calls to UFFDIO_COPY with the events
|
|
|
|
processing. To aid the synchronization, the UFFDIO_COPY ioctl will
|
|
|
|
return -ENOSPC when the monitored process exits at the time of
|
|
|
|
UFFDIO_COPY, and -ENOENT, when the non-cooperative process has changed
|
|
|
|
its virtual memory layout simultaneously with outstanding UFFDIO_COPY
|
|
|
|
operation.
|
|
|
|
|
|
|
|
The current asynchronous model of the event delivery is optimal for
|
|
|
|
single threaded non-cooperative userfaultfd manager implementations. A
|
|
|
|
synchronous event delivery model can be added later as a new
|
|
|
|
userfaultfd feature to facilitate multithreading enhancements of the
|
|
|
|
non cooperative manager, for example to allow UFFDIO_COPY ioctls to
|
|
|
|
run in parallel to the event reception. Single threaded
|
|
|
|
implementations should continue to use the current async event
|
|
|
|
delivery model instead.
|