linux/arch/powerpc/mm/Makefile

39 lines
1.4 KiB
Makefile
Raw Normal View History

#
# Makefile for the linux ppc-specific parts of the memory manager.
#
subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
ccflags-$(CONFIG_PPC64) := $(NO_MINIMAL_TOC)
powerpc/mm: Make mmap_64.c compile on 32bit powerpc There appears to be no good reason to keep this as 64bit only. It works on 32bit also, and has checks so that it can work correctly with 32bit binaries on 64bit hardware which is why I think this works. I tested this on qemu using the virtex-ml507 machine type. Before, /bin2 # ./test & cat /proc/${!}/maps 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test 48000000-48020000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so 48021000-48023000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfd03000-bfd24000 rw-p 00000000 00:00 0 [stack] /bin2 # ./test & cat /proc/${!}/maps 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 0fe6e000-0ffd8000 r-xp 00000000 00:01 214 /lib/libc-2.11.3.so 0ffd8000-0ffe8000 ---p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffe8000-0ffed000 rw-p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffed000-0fff0000 rw-p 00000000 00:00 0 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test 48000000-48020000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so 48020000-48021000 rw-p 00000000 00:00 0 48021000-48023000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bf98a000-bf9ab000 rw-p 00000000 00:00 0 [stack] /bin2 # ./test & cat /proc/${!}/maps 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 0fe6e000-0ffd8000 r-xp 00000000 00:01 214 /lib/libc-2.11.3.so 0ffd8000-0ffe8000 ---p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffe8000-0ffed000 rw-p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffed000-0fff0000 rw-p 00000000 00:00 0 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test 48000000-48020000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so 48020000-48021000 rw-p 00000000 00:00 0 48021000-48023000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfa54000-bfa75000 rw-p 00000000 00:00 0 [stack] After, bash-4.1# ./test & cat /proc/${!}/maps [7] 803 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test b7eb0000-b7ed0000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so b7ed1000-b7ed3000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfbc0000-bfbe1000 rw-p 00000000 00:00 0 [stack] bash-4.1# ./test & cat /proc/${!}/maps [8] 805 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test b7b03000-b7b23000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so b7b24000-b7b26000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfc27000-bfc48000 rw-p 00000000 00:00 0 [stack] bash-4.1# ./test & cat /proc/${!}/maps [9] 807 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test b7f37000-b7f57000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so b7f58000-b7f5a000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bff96000-bffb7000 rw-p 00000000 00:00 0 [stack] Signed-off-by: Daniel Walker <dwalker@fifo90.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-04-24 02:50:33 +02:00
obj-y := fault.o mem.o pgtable.o gup.o mmap.o \
init_$(CONFIG_WORD_SIZE).o \
pgtable_$(CONFIG_WORD_SIZE).o
obj-$(CONFIG_PPC_MMU_NOHASH) += mmu_context_nohash.o tlb_nohash.o \
tlb_nohash_low.o
obj-$(CONFIG_PPC_BOOK3E) += tlb_low_$(CONFIG_WORD_SIZE)e.o
hash64-$(CONFIG_PPC_NATIVE) := hash_native_64.o
obj-$(CONFIG_PPC_STD_MMU_64) += hash_utils_64.o \
slb_low.o slb.o stab.o \
powerpc/mm: Make mmap_64.c compile on 32bit powerpc There appears to be no good reason to keep this as 64bit only. It works on 32bit also, and has checks so that it can work correctly with 32bit binaries on 64bit hardware which is why I think this works. I tested this on qemu using the virtex-ml507 machine type. Before, /bin2 # ./test & cat /proc/${!}/maps 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test 48000000-48020000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so 48021000-48023000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfd03000-bfd24000 rw-p 00000000 00:00 0 [stack] /bin2 # ./test & cat /proc/${!}/maps 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 0fe6e000-0ffd8000 r-xp 00000000 00:01 214 /lib/libc-2.11.3.so 0ffd8000-0ffe8000 ---p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffe8000-0ffed000 rw-p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffed000-0fff0000 rw-p 00000000 00:00 0 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test 48000000-48020000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so 48020000-48021000 rw-p 00000000 00:00 0 48021000-48023000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bf98a000-bf9ab000 rw-p 00000000 00:00 0 [stack] /bin2 # ./test & cat /proc/${!}/maps 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 0fe6e000-0ffd8000 r-xp 00000000 00:01 214 /lib/libc-2.11.3.so 0ffd8000-0ffe8000 ---p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffe8000-0ffed000 rw-p 0016a000 00:01 214 /lib/libc-2.11.3.so 0ffed000-0fff0000 rw-p 00000000 00:00 0 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test 48000000-48020000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so 48020000-48021000 rw-p 00000000 00:00 0 48021000-48023000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfa54000-bfa75000 rw-p 00000000 00:00 0 [stack] After, bash-4.1# ./test & cat /proc/${!}/maps [7] 803 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test b7eb0000-b7ed0000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so b7ed1000-b7ed3000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfbc0000-bfbe1000 rw-p 00000000 00:00 0 [stack] bash-4.1# ./test & cat /proc/${!}/maps [8] 805 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test b7b03000-b7b23000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so b7b24000-b7b26000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bfc27000-bfc48000 rw-p 00000000 00:00 0 [stack] bash-4.1# ./test & cat /proc/${!}/maps [9] 807 00100000-00103000 r-xp 00000000 00:00 0 [vdso] 10000000-10007000 r-xp 00000000 00:01 454 /bin2/test 10017000-10018000 rw-p 00007000 00:01 454 /bin2/test b7f37000-b7f57000 r-xp 00000000 00:01 224 /lib/ld-2.11.3.so b7f58000-b7f5a000 rw-p 00021000 00:01 224 /lib/ld-2.11.3.so bff96000-bffb7000 rw-p 00000000 00:00 0 [stack] Signed-off-by: Daniel Walker <dwalker@fifo90.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-04-24 02:50:33 +02:00
$(hash64-y)
obj-$(CONFIG_PPC_STD_MMU_32) += ppc_mmu_32.o
obj-$(CONFIG_PPC_STD_MMU) += hash_low_$(CONFIG_WORD_SIZE).o \
tlb_hash$(CONFIG_WORD_SIZE).o \
mmu_context_hash$(CONFIG_WORD_SIZE).o
obj-$(CONFIG_PPC_ICSWX) += icswx.o
obj-$(CONFIG_PPC_ICSWX_PID) += icswx_pid.o
obj-$(CONFIG_40x) += 40x_mmu.o
obj-$(CONFIG_44x) += 44x_mmu.o
obj-$(CONFIG_PPC_FSL_BOOK3E) += fsl_booke_mmu.o
obj-$(CONFIG_NEED_MULTIPLE_NODES) += numa.o
[POWERPC] Introduce address space "slices" The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-08 08:27:27 +02:00
obj-$(CONFIG_PPC_MM_SLICES) += slice.o
obj-y += hugetlbpage.o
ifeq ($(CONFIG_HUGETLB_PAGE),y)
obj-$(CONFIG_PPC_STD_MMU_64) += hugetlbpage-hash64.o
obj-$(CONFIG_PPC_BOOK3E_MMU) += hugetlbpage-book3e.o
endif
obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += hugepage-hash64.o
[POWERPC] Provide a way to protect 4k subpages when using 64k pages Using 64k pages on 64-bit PowerPC systems makes life difficult for emulators that are trying to emulate an ISA, such as x86, which use a smaller page size, since the emulator can no longer use the MMU and the normal system calls for controlling page protections. Of course, the emulator can emulate the MMU by checking and possibly remapping the address for each memory access in software, but that is pretty slow. This provides a facility for such programs to control the access permissions on individual 4k sub-pages of 64k pages. The idea is that the emulator supplies an array of protection masks to apply to a specified range of virtual addresses. These masks are applied at the level where hardware PTEs are inserted into the hardware page table based on the Linux PTEs, so the Linux PTEs are not affected. Note that this new mechanism does not allow any access that would otherwise be prohibited; it can only prohibit accesses that would otherwise be allowed. This new facility is only available on 64-bit PowerPC and only when the kernel is configured for 64k pages. The masks are supplied using a new subpage_prot system call, which takes a starting virtual address and length, and a pointer to an array of protection masks in memory. The array has a 32-bit word per 64k page to be protected; each 32-bit word consists of 16 2-bit fields, for which 0 allows any access (that is otherwise allowed), 1 prevents write accesses, and 2 or 3 prevent any access. Implicit in this is that the regions of the address space that are protected are switched to use 4k hardware pages rather than 64k hardware pages (on machines with hardware 64k page support). In fact the whole process is switched to use 4k hardware pages when the subpage_prot system call is used, but this could be improved in future to switch only the affected segments. The subpage protection bits are stored in a 3 level tree akin to the page table tree. The top level of this tree is stored in a structure that is appended to the top level of the page table tree, i.e., the pgd array. Since it will often only be 32-bit addresses (below 4GB) that are protected, the pointers to the first four bottom level pages are also stored in this structure (each bottom level page contains the protection bits for 1GB of address space), so the protection bits for addresses below 4GB can be accessed with one fewer loads than those for higher addresses. Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-01-23 22:35:13 +01:00
obj-$(CONFIG_PPC_SUBPAGE_PROT) += subpage-prot.o
obj-$(CONFIG_NOT_COHERENT_CACHE) += dma-noncoherent.o
obj-$(CONFIG_HIGHMEM) += highmem.o