linux/include/linux/page-flags.h

267 lines
10 KiB
C
Raw Normal View History

/*
* Macros for manipulating and testing page->flags
*/
#ifndef PAGE_FLAGS_H
#define PAGE_FLAGS_H
#include <linux/types.h>
/*
* Various page->flags bits:
*
* PG_reserved is set for special pages, which can never be swapped out. Some
* of them might not even exist (eg empty_bad_page)...
*
* The PG_private bitflag is set if page->private contains a valid value.
*
* During disk I/O, PG_locked is used. This bit is set before I/O and
* reset when I/O completes. page_waitqueue(page) is a wait queue of all tasks
* waiting for the I/O on this page to complete.
*
* PG_uptodate tells whether the page's contents is valid. When a read
* completes, the page becomes uptodate, unless a disk I/O error happened.
*
* For choosing which pages to swap out, inode pages carry a PG_referenced bit,
* which is set any time the system accesses that page through the (mapping,
* index) hash table. This referenced bit, together with the referenced bit
* in the page tables, is used to manipulate page->age and move the page across
* the active, inactive_dirty and inactive_clean lists.
*
* Note that the referenced bit, the page->lru list_head and the active,
* inactive_dirty and inactive_clean lists are protected by the
* zone->lru_lock, and *NOT* by the usual PG_locked bit!
*
* PG_error is set to indicate that an I/O error occurred on this page.
*
* PG_arch_1 is an architecture specific page state bit. The generic code
* guarantees that this bit is cleared for a page when it first is entered into
* the page cache.
*
* PG_highmem pages are not permanently mapped into the kernel virtual address
* space, they need to be kmapped separately for doing IO on the pages. The
* struct page (these bits with information) are always mapped into kernel
* address space...
*/
/*
* Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
* locked- and dirty-page accounting.
*
* The page flags field is split into two parts, the main flags area
* which extends from the low bits upwards, and the fields area which
* extends from the high bits downwards.
*
* | FIELD | ... | FLAGS |
* N-1 ^ 0
* (N-FLAGS_RESERVED)
*
* The fields area is reserved for fields mapping zone, node and SPARSEMEM
* section. The boundry between these two areas is defined by
* FLAGS_RESERVED which defines the width of the fields section
* (see linux/mmzone.h). New flags must _not_ overlap with this area.
*/
#define PG_locked 0 /* Page is locked. Don't touch. */
#define PG_error 1
#define PG_referenced 2
#define PG_uptodate 3
#define PG_dirty 4
#define PG_lru 5
#define PG_active 6
#define PG_slab 7 /* slab debug (Suparna wants this) */
#define PG_checked 8 /* kill me in 2.5.<early>. */
#define PG_arch_1 9
#define PG_reserved 10
#define PG_private 11 /* Has something at ->private */
#define PG_writeback 12 /* Page is under writeback */
#define PG_nosave 13 /* Used for system suspend/resume */
#define PG_compound 14 /* Part of a compound page */
#define PG_swapcache 15 /* Swap page: swp_entry_t in private */
#define PG_mappedtodisk 16 /* Has blocks allocated on-disk */
#define PG_reclaim 17 /* To be reclaimed asap */
#define PG_nosave_free 18 /* Free, should not be written */
#define PG_buddy 19 /* Page is free, on buddy lists */
#if (BITS_PER_LONG > 32)
/*
* 64-bit-only flags build down from bit 31
*
* 32 bit -------------------------------| FIELDS | FLAGS |
* 64 bit | FIELDS | ?????? FLAGS |
* 63 32 0
*/
#define PG_uncached 31 /* Page has been mapped as uncached */
#endif
/*
* Manipulation of page state flags
*/
#define PageLocked(page) \
test_bit(PG_locked, &(page)->flags)
#define SetPageLocked(page) \
set_bit(PG_locked, &(page)->flags)
#define TestSetPageLocked(page) \
test_and_set_bit(PG_locked, &(page)->flags)
#define ClearPageLocked(page) \
clear_bit(PG_locked, &(page)->flags)
#define TestClearPageLocked(page) \
test_and_clear_bit(PG_locked, &(page)->flags)
#define PageError(page) test_bit(PG_error, &(page)->flags)
#define SetPageError(page) set_bit(PG_error, &(page)->flags)
#define ClearPageError(page) clear_bit(PG_error, &(page)->flags)
#define PageReferenced(page) test_bit(PG_referenced, &(page)->flags)
#define SetPageReferenced(page) set_bit(PG_referenced, &(page)->flags)
#define ClearPageReferenced(page) clear_bit(PG_referenced, &(page)->flags)
#define TestClearPageReferenced(page) test_and_clear_bit(PG_referenced, &(page)->flags)
#define PageUptodate(page) test_bit(PG_uptodate, &(page)->flags)
[PATCH] zoned vm counters: create vmstat.c/.h from page_alloc.c/.h NOTE: ZVC are *not* the lightweight event counters. ZVCs are reliable whereas event counters do not need to be. Zone based VM statistics are necessary to be able to determine what the state of memory in one zone is. In a NUMA system this can be helpful for local reclaim and other memory optimizations that may be able to shift VM load in order to get more balanced memory use. It is also useful to know how the computing load affects the memory allocations on various zones. This patchset allows the retrieval of that data from userspace. The patchset introduces a framework for counters that is a cross between the existing page_stats --which are simply global counters split per cpu-- and the approach of deferred incremental updates implemented for nr_pagecache. Small per cpu 8 bit counters are added to struct zone. If the counter exceeds certain thresholds then the counters are accumulated in an array of atomic_long in the zone and in a global array that sums up all zone values. The small 8 bit counters are next to the per cpu page pointers and so they will be in high in the cpu cache when pages are allocated and freed. Access to VM counter information for a zone and for the whole machine is then possible by simply indexing an array (Thanks to Nick Piggin for pointing out that approach). The access to the total number of pages of various types does no longer require the summing up of all per cpu counters. Benefits of this patchset right now: - Ability for UP and SMP configuration to determine how memory is balanced between the DMA, NORMAL and HIGHMEM zones. - loops over all processors are avoided in writeback and reclaim paths. We can avoid caching the writeback information because the needed information is directly accessible. - Special handling for nr_pagecache removed. - zone_reclaim_interval vanishes since VM stats can now determine when it is worth to do local reclaim. - Fast inline per node page state determination. - Accurate counters in /sys/devices/system/node/node*/meminfo. Current counters are counting simply which processor allocated a page somewhere and guestimate based on that. So the counters were not useful to show the actual distribution of page use on a specific zone. - The swap_prefetch patch requires per node statistics in order to figure out when processors of a node can prefetch. This patch provides some of the needed numbers. - Detailed VM counters available in more /proc and /sys status files. References to earlier discussions: V1 http://marc.theaimsgroup.com/?l=linux-kernel&m=113511649910826&w=2 V2 http://marc.theaimsgroup.com/?l=linux-kernel&m=114980851924230&w=2 V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115014697910351&w=2 V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767318740&w=2 Performance tests with AIM7 did not show any regressions. Seems to be a tad faster even. Tested on ia64/NUMA. Builds fine on i386, SMP / UP. Includes fixes for s390/arm/uml arch code. This patch: Move counter code from page_alloc.c/page-flags.h to vmstat.c/h. Create vmstat.c/vmstat.h by separating the counter code and the proc functions. Move the vm_stat_text array before zoneinfo_show. [akpm@osdl.org: s390 build fix] [akpm@osdl.org: HOTPLUG_CPU build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-30 10:55:32 +02:00
#ifdef CONFIG_S390
#define SetPageUptodate(_page) \
do { \
struct page *__page = (_page); \
if (!test_and_set_bit(PG_uptodate, &__page->flags)) \
page_test_and_clear_dirty(_page); \
} while (0)
#else
#define SetPageUptodate(page) set_bit(PG_uptodate, &(page)->flags)
#endif
#define ClearPageUptodate(page) clear_bit(PG_uptodate, &(page)->flags)
#define PageDirty(page) test_bit(PG_dirty, &(page)->flags)
#define SetPageDirty(page) set_bit(PG_dirty, &(page)->flags)
#define TestSetPageDirty(page) test_and_set_bit(PG_dirty, &(page)->flags)
#define ClearPageDirty(page) clear_bit(PG_dirty, &(page)->flags)
#define __ClearPageDirty(page) __clear_bit(PG_dirty, &(page)->flags)
#define TestClearPageDirty(page) test_and_clear_bit(PG_dirty, &(page)->flags)
#define PageLRU(page) test_bit(PG_lru, &(page)->flags)
#define SetPageLRU(page) set_bit(PG_lru, &(page)->flags)
#define ClearPageLRU(page) clear_bit(PG_lru, &(page)->flags)
#define __ClearPageLRU(page) __clear_bit(PG_lru, &(page)->flags)
#define PageActive(page) test_bit(PG_active, &(page)->flags)
#define SetPageActive(page) set_bit(PG_active, &(page)->flags)
#define ClearPageActive(page) clear_bit(PG_active, &(page)->flags)
#define __ClearPageActive(page) __clear_bit(PG_active, &(page)->flags)
#define PageSlab(page) test_bit(PG_slab, &(page)->flags)
#define __SetPageSlab(page) __set_bit(PG_slab, &(page)->flags)
#define __ClearPageSlab(page) __clear_bit(PG_slab, &(page)->flags)
#ifdef CONFIG_HIGHMEM
#define PageHighMem(page) is_highmem(page_zone(page))
#else
#define PageHighMem(page) 0 /* needed to optimize away at compile time */
#endif
#define PageChecked(page) test_bit(PG_checked, &(page)->flags)
#define SetPageChecked(page) set_bit(PG_checked, &(page)->flags)
#define ClearPageChecked(page) clear_bit(PG_checked, &(page)->flags)
#define PageReserved(page) test_bit(PG_reserved, &(page)->flags)
#define SetPageReserved(page) set_bit(PG_reserved, &(page)->flags)
#define ClearPageReserved(page) clear_bit(PG_reserved, &(page)->flags)
#define __ClearPageReserved(page) __clear_bit(PG_reserved, &(page)->flags)
#define SetPagePrivate(page) set_bit(PG_private, &(page)->flags)
#define ClearPagePrivate(page) clear_bit(PG_private, &(page)->flags)
#define PagePrivate(page) test_bit(PG_private, &(page)->flags)
#define __SetPagePrivate(page) __set_bit(PG_private, &(page)->flags)
#define __ClearPagePrivate(page) __clear_bit(PG_private, &(page)->flags)
#define PageWriteback(page) test_bit(PG_writeback, &(page)->flags)
#define SetPageWriteback(page) \
do { \
if (!test_and_set_bit(PG_writeback, \
&(page)->flags)) \
inc_zone_page_state(page, NR_WRITEBACK); \
} while (0)
#define TestSetPageWriteback(page) \
({ \
int ret; \
ret = test_and_set_bit(PG_writeback, \
&(page)->flags); \
if (!ret) \
inc_zone_page_state(page, NR_WRITEBACK); \
ret; \
})
#define ClearPageWriteback(page) \
do { \
if (test_and_clear_bit(PG_writeback, \
&(page)->flags)) \
dec_zone_page_state(page, NR_WRITEBACK); \
} while (0)
#define TestClearPageWriteback(page) \
({ \
int ret; \
ret = test_and_clear_bit(PG_writeback, \
&(page)->flags); \
if (ret) \
dec_zone_page_state(page, NR_WRITEBACK); \
ret; \
})
#define PageNosave(page) test_bit(PG_nosave, &(page)->flags)
#define SetPageNosave(page) set_bit(PG_nosave, &(page)->flags)
#define TestSetPageNosave(page) test_and_set_bit(PG_nosave, &(page)->flags)
#define ClearPageNosave(page) clear_bit(PG_nosave, &(page)->flags)
#define TestClearPageNosave(page) test_and_clear_bit(PG_nosave, &(page)->flags)
#define PageNosaveFree(page) test_bit(PG_nosave_free, &(page)->flags)
#define SetPageNosaveFree(page) set_bit(PG_nosave_free, &(page)->flags)
#define ClearPageNosaveFree(page) clear_bit(PG_nosave_free, &(page)->flags)
#define PageBuddy(page) test_bit(PG_buddy, &(page)->flags)
#define __SetPageBuddy(page) __set_bit(PG_buddy, &(page)->flags)
#define __ClearPageBuddy(page) __clear_bit(PG_buddy, &(page)->flags)
#define PageMappedToDisk(page) test_bit(PG_mappedtodisk, &(page)->flags)
#define SetPageMappedToDisk(page) set_bit(PG_mappedtodisk, &(page)->flags)
#define ClearPageMappedToDisk(page) clear_bit(PG_mappedtodisk, &(page)->flags)
#define PageReclaim(page) test_bit(PG_reclaim, &(page)->flags)
#define SetPageReclaim(page) set_bit(PG_reclaim, &(page)->flags)
#define ClearPageReclaim(page) clear_bit(PG_reclaim, &(page)->flags)
#define TestClearPageReclaim(page) test_and_clear_bit(PG_reclaim, &(page)->flags)
#define PageCompound(page) test_bit(PG_compound, &(page)->flags)
#define __SetPageCompound(page) __set_bit(PG_compound, &(page)->flags)
#define __ClearPageCompound(page) __clear_bit(PG_compound, &(page)->flags)
#ifdef CONFIG_SWAP
#define PageSwapCache(page) test_bit(PG_swapcache, &(page)->flags)
#define SetPageSwapCache(page) set_bit(PG_swapcache, &(page)->flags)
#define ClearPageSwapCache(page) clear_bit(PG_swapcache, &(page)->flags)
#else
#define PageSwapCache(page) 0
#endif
#define PageUncached(page) test_bit(PG_uncached, &(page)->flags)
#define SetPageUncached(page) set_bit(PG_uncached, &(page)->flags)
#define ClearPageUncached(page) clear_bit(PG_uncached, &(page)->flags)
struct page; /* forward declaration */
int test_clear_page_dirty(struct page *page);
int test_clear_page_writeback(struct page *page);
int test_set_page_writeback(struct page *page);
static inline void clear_page_dirty(struct page *page)
{
test_clear_page_dirty(page);
}
static inline void set_page_writeback(struct page *page)
{
test_set_page_writeback(page);
}
#endif /* PAGE_FLAGS_H */