linux/fs/nilfs2/super.c

1489 lines
36 KiB
C
Raw Normal View History

/*
* super.c - NILFS module and super block management.
*
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Written by Ryusuke Konishi <ryusuke@osrg.net>
*/
/*
* linux/fs/ext2/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/parser.h>
#include <linux/crc32.h>
#include <linux/vfs.h>
#include <linux/writeback.h>
#include <linux/seq_file.h>
#include <linux/mount.h>
#include "nilfs.h"
#include "export.h"
#include "mdt.h"
#include "alloc.h"
#include "btree.h"
#include "btnode.h"
#include "page.h"
#include "cpfile.h"
#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
#include "ifile.h"
#include "dat.h"
#include "segment.h"
#include "segbuf.h"
MODULE_AUTHOR("NTT Corp.");
MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
"(NILFS)");
MODULE_LICENSE("GPL");
static struct kmem_cache *nilfs_inode_cachep;
struct kmem_cache *nilfs_transaction_cachep;
struct kmem_cache *nilfs_segbuf_cachep;
struct kmem_cache *nilfs_btree_path_cache;
static int nilfs_setup_super(struct super_block *sb, int is_mount);
static int nilfs_remount(struct super_block *sb, int *flags, char *data);
static void nilfs_set_error(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_super_block **sbp;
down_write(&nilfs->ns_sem);
if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
nilfs->ns_mount_state |= NILFS_ERROR_FS;
sbp = nilfs_prepare_super(sb, 0);
if (likely(sbp)) {
sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
if (sbp[1])
sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
}
}
up_write(&nilfs->ns_sem);
}
/**
* nilfs_error() - report failure condition on a filesystem
*
* nilfs_error() sets an ERROR_FS flag on the superblock as well as
* reporting an error message. It should be called when NILFS detects
* incoherences or defects of meta data on disk. As for sustainable
* errors such as a single-shot I/O error, nilfs_warning() or the printk()
* function should be used instead.
*
* The segment constructor must not call this function because it can
* kill itself.
*/
void nilfs_error(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
sb->s_id, function, &vaf);
va_end(args);
if (!(sb->s_flags & MS_RDONLY)) {
nilfs_set_error(sb);
if (nilfs_test_opt(nilfs, ERRORS_RO)) {
printk(KERN_CRIT "Remounting filesystem read-only\n");
sb->s_flags |= MS_RDONLY;
}
}
if (nilfs_test_opt(nilfs, ERRORS_PANIC))
panic("NILFS (device %s): panic forced after error\n",
sb->s_id);
}
void nilfs_warning(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
sb->s_id, function, &vaf);
va_end(args);
}
struct inode *nilfs_alloc_inode(struct super_block *sb)
{
struct nilfs_inode_info *ii;
ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
if (!ii)
return NULL;
ii->i_bh = NULL;
ii->i_state = 0;
ii->i_cno = 0;
ii->vfs_inode.i_version = 1;
nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
return &ii->vfs_inode;
}
2011-01-07 07:49:49 +01:00
static void nilfs_i_callback(struct rcu_head *head)
{
2011-01-07 07:49:49 +01:00
struct inode *inode = container_of(head, struct inode, i_rcu);
struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
if (mdi) {
kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
kfree(mdi);
}
kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
}
2011-01-07 07:49:49 +01:00
void nilfs_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, nilfs_i_callback);
}
static int nilfs_sync_super(struct super_block *sb, int flag)
{
struct the_nilfs *nilfs = sb->s_fs_info;
int err;
retry:
set_buffer_dirty(nilfs->ns_sbh[0]);
if (nilfs_test_opt(nilfs, BARRIER)) {
err = __sync_dirty_buffer(nilfs->ns_sbh[0],
WRITE_SYNC | WRITE_FLUSH_FUA);
} else {
err = sync_dirty_buffer(nilfs->ns_sbh[0]);
}
if (unlikely(err)) {
printk(KERN_ERR
"NILFS: unable to write superblock (err=%d)\n", err);
if (err == -EIO && nilfs->ns_sbh[1]) {
/*
* sbp[0] points to newer log than sbp[1],
* so copy sbp[0] to sbp[1] to take over sbp[0].
*/
memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
nilfs->ns_sbsize);
nilfs_fall_back_super_block(nilfs);
goto retry;
}
} else {
struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
nilfs->ns_sbwcount++;
/*
* The latest segment becomes trailable from the position
* written in superblock.
*/
clear_nilfs_discontinued(nilfs);
/* update GC protection for recent segments */
if (nilfs->ns_sbh[1]) {
if (flag == NILFS_SB_COMMIT_ALL) {
set_buffer_dirty(nilfs->ns_sbh[1]);
if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
goto out;
}
if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
sbp = nilfs->ns_sbp[1];
}
spin_lock(&nilfs->ns_last_segment_lock);
nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
spin_unlock(&nilfs->ns_last_segment_lock);
}
out:
return err;
}
void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
struct the_nilfs *nilfs)
{
sector_t nfreeblocks;
/* nilfs->ns_sem must be locked by the caller. */
nilfs_count_free_blocks(nilfs, &nfreeblocks);
sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
spin_lock(&nilfs->ns_last_segment_lock);
sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
spin_unlock(&nilfs->ns_last_segment_lock);
}
struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
int flip)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_super_block **sbp = nilfs->ns_sbp;
/* nilfs->ns_sem must be locked by the caller. */
if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
if (sbp[1] &&
sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
} else {
printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
sb->s_id);
return NULL;
}
} else if (sbp[1] &&
sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
}
if (flip && sbp[1])
nilfs_swap_super_block(nilfs);
return sbp;
}
int nilfs_commit_super(struct super_block *sb, int flag)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_super_block **sbp = nilfs->ns_sbp;
time_t t;
/* nilfs->ns_sem must be locked by the caller. */
t = get_seconds();
nilfs->ns_sbwtime = t;
sbp[0]->s_wtime = cpu_to_le64(t);
sbp[0]->s_sum = 0;
sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
(unsigned char *)sbp[0],
nilfs->ns_sbsize));
if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
sbp[1]->s_wtime = sbp[0]->s_wtime;
sbp[1]->s_sum = 0;
sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
(unsigned char *)sbp[1],
nilfs->ns_sbsize));
}
clear_nilfs_sb_dirty(nilfs);
nilfs->ns_flushed_device = 1;
/* make sure store to ns_flushed_device cannot be reordered */
smp_wmb();
return nilfs_sync_super(sb, flag);
}
/**
* nilfs_cleanup_super() - write filesystem state for cleanup
* @sb: super block instance to be unmounted or degraded to read-only
*
* This function restores state flags in the on-disk super block.
* This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
* filesystem was not clean previously.
*/
int nilfs_cleanup_super(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_super_block **sbp;
int flag = NILFS_SB_COMMIT;
int ret = -EIO;
sbp = nilfs_prepare_super(sb, 0);
if (sbp) {
sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
nilfs_set_log_cursor(sbp[0], nilfs);
if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
/*
* make the "clean" flag also to the opposite
* super block if both super blocks point to
* the same checkpoint.
*/
sbp[1]->s_state = sbp[0]->s_state;
flag = NILFS_SB_COMMIT_ALL;
}
ret = nilfs_commit_super(sb, flag);
}
return ret;
}
/**
* nilfs_move_2nd_super - relocate secondary super block
* @sb: super block instance
* @sb2off: new offset of the secondary super block (in bytes)
*/
static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct buffer_head *nsbh;
struct nilfs_super_block *nsbp;
sector_t blocknr, newblocknr;
unsigned long offset;
int sb2i = -1; /* array index of the secondary superblock */
int ret = 0;
/* nilfs->ns_sem must be locked by the caller. */
if (nilfs->ns_sbh[1] &&
nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
sb2i = 1;
blocknr = nilfs->ns_sbh[1]->b_blocknr;
} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
sb2i = 0;
blocknr = nilfs->ns_sbh[0]->b_blocknr;
}
if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
goto out; /* super block location is unchanged */
/* Get new super block buffer */
newblocknr = sb2off >> nilfs->ns_blocksize_bits;
offset = sb2off & (nilfs->ns_blocksize - 1);
nsbh = sb_getblk(sb, newblocknr);
if (!nsbh) {
printk(KERN_WARNING
"NILFS warning: unable to move secondary superblock "
"to block %llu\n", (unsigned long long)newblocknr);
ret = -EIO;
goto out;
}
nsbp = (void *)nsbh->b_data + offset;
memset(nsbp, 0, nilfs->ns_blocksize);
if (sb2i >= 0) {
memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
brelse(nilfs->ns_sbh[sb2i]);
nilfs->ns_sbh[sb2i] = nsbh;
nilfs->ns_sbp[sb2i] = nsbp;
} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
/* secondary super block will be restored to index 1 */
nilfs->ns_sbh[1] = nsbh;
nilfs->ns_sbp[1] = nsbp;
} else {
brelse(nsbh);
}
out:
return ret;
}
/**
* nilfs_resize_fs - resize the filesystem
* @sb: super block instance
* @newsize: new size of the filesystem (in bytes)
*/
int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_super_block **sbp;
__u64 devsize, newnsegs;
loff_t sb2off;
int ret;
ret = -ERANGE;
devsize = i_size_read(sb->s_bdev->bd_inode);
if (newsize > devsize)
goto out;
/*
* Write lock is required to protect some functions depending
* on the number of segments, the number of reserved segments,
* and so forth.
*/
down_write(&nilfs->ns_segctor_sem);
sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
newnsegs = sb2off >> nilfs->ns_blocksize_bits;
do_div(newnsegs, nilfs->ns_blocks_per_segment);
ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
up_write(&nilfs->ns_segctor_sem);
if (ret < 0)
goto out;
ret = nilfs_construct_segment(sb);
if (ret < 0)
goto out;
down_write(&nilfs->ns_sem);
nilfs_move_2nd_super(sb, sb2off);
ret = -EIO;
sbp = nilfs_prepare_super(sb, 0);
if (likely(sbp)) {
nilfs_set_log_cursor(sbp[0], nilfs);
/*
* Drop NILFS_RESIZE_FS flag for compatibility with
* mount-time resize which may be implemented in a
* future release.
*/
sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
~NILFS_RESIZE_FS);
sbp[0]->s_dev_size = cpu_to_le64(newsize);
sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
if (sbp[1])
memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
}
up_write(&nilfs->ns_sem);
/*
* Reset the range of allocatable segments last. This order
* is important in the case of expansion because the secondary
* superblock must be protected from log write until migration
* completes.
*/
if (!ret)
nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
out:
return ret;
}
static void nilfs_put_super(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
nilfs_detach_log_writer(sb);
if (!(sb->s_flags & MS_RDONLY)) {
down_write(&nilfs->ns_sem);
nilfs_cleanup_super(sb);
up_write(&nilfs->ns_sem);
}
iput(nilfs->ns_sufile);
iput(nilfs->ns_cpfile);
iput(nilfs->ns_dat);
destroy_nilfs(nilfs);
sb->s_fs_info = NULL;
}
static int nilfs_sync_fs(struct super_block *sb, int wait)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_super_block **sbp;
int err = 0;
/* This function is called when super block should be written back */
if (wait)
err = nilfs_construct_segment(sb);
down_write(&nilfs->ns_sem);
if (nilfs_sb_dirty(nilfs)) {
sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
if (likely(sbp)) {
nilfs_set_log_cursor(sbp[0], nilfs);
nilfs_commit_super(sb, NILFS_SB_COMMIT);
}
}
up_write(&nilfs->ns_sem);
if (!err)
err = nilfs_flush_device(nilfs);
return err;
}
int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
struct nilfs_root **rootp)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_root *root;
struct nilfs_checkpoint *raw_cp;
struct buffer_head *bh_cp;
int err = -ENOMEM;
root = nilfs_find_or_create_root(
nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
if (!root)
return err;
if (root->ifile)
goto reuse; /* already attached checkpoint */
down_read(&nilfs->ns_segctor_sem);
err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
&bh_cp);
up_read(&nilfs->ns_segctor_sem);
if (unlikely(err)) {
if (err == -ENOENT || err == -EINVAL) {
printk(KERN_ERR
"NILFS: Invalid checkpoint "
"(checkpoint number=%llu)\n",
(unsigned long long)cno);
err = -EINVAL;
}
goto failed;
}
err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
&raw_cp->cp_ifile_inode, &root->ifile);
if (err)
goto failed_bh;
atomic64_set(&root->inodes_count,
le64_to_cpu(raw_cp->cp_inodes_count));
atomic64_set(&root->blocks_count,
le64_to_cpu(raw_cp->cp_blocks_count));
nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
reuse:
*rootp = root;
return 0;
failed_bh:
nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
failed:
nilfs_put_root(root);
return err;
}
static int nilfs_freeze(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
int err;
if (sb->s_flags & MS_RDONLY)
return 0;
/* Mark super block clean */
down_write(&nilfs->ns_sem);
err = nilfs_cleanup_super(sb);
up_write(&nilfs->ns_sem);
return err;
}
static int nilfs_unfreeze(struct super_block *sb)
{
struct the_nilfs *nilfs = sb->s_fs_info;
if (sb->s_flags & MS_RDONLY)
return 0;
down_write(&nilfs->ns_sem);
nilfs_setup_super(sb, false);
up_write(&nilfs->ns_sem);
return 0;
}
static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
struct the_nilfs *nilfs = root->nilfs;
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
unsigned long long blocks;
unsigned long overhead;
unsigned long nrsvblocks;
sector_t nfreeblocks;
u64 nmaxinodes, nfreeinodes;
int err;
/*
* Compute all of the segment blocks
*
* The blocks before first segment and after last segment
* are excluded.
*/
blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
- nilfs->ns_first_data_block;
nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
/*
* Compute the overhead
*
* When distributing meta data blocks outside segment structure,
* We must count them as the overhead.
*/
overhead = 0;
err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
if (unlikely(err))
return err;
err = nilfs_ifile_count_free_inodes(root->ifile,
&nmaxinodes, &nfreeinodes);
if (unlikely(err)) {
printk(KERN_WARNING
"NILFS warning: fail to count free inodes: err %d.\n",
err);
if (err == -ERANGE) {
/*
* If nilfs_palloc_count_max_entries() returns
* -ERANGE error code then we simply treat
* curent inodes count as maximum possible and
* zero as free inodes value.
*/
nmaxinodes = atomic64_read(&root->inodes_count);
nfreeinodes = 0;
err = 0;
} else
return err;
}
buf->f_type = NILFS_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = blocks - overhead;
buf->f_bfree = nfreeblocks;
buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
(buf->f_bfree - nrsvblocks) : 0;
buf->f_files = nmaxinodes;
buf->f_ffree = nfreeinodes;
buf->f_namelen = NILFS_NAME_LEN;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
return 0;
}
static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
{
struct super_block *sb = dentry->d_sb;
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
if (!nilfs_test_opt(nilfs, BARRIER))
seq_puts(seq, ",nobarrier");
if (root->cno != NILFS_CPTREE_CURRENT_CNO)
seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
if (nilfs_test_opt(nilfs, ERRORS_PANIC))
seq_puts(seq, ",errors=panic");
if (nilfs_test_opt(nilfs, ERRORS_CONT))
seq_puts(seq, ",errors=continue");
if (nilfs_test_opt(nilfs, STRICT_ORDER))
seq_puts(seq, ",order=strict");
if (nilfs_test_opt(nilfs, NORECOVERY))
seq_puts(seq, ",norecovery");
if (nilfs_test_opt(nilfs, DISCARD))
seq_puts(seq, ",discard");
return 0;
}
static const struct super_operations nilfs_sops = {
.alloc_inode = nilfs_alloc_inode,
.destroy_inode = nilfs_destroy_inode,
.dirty_inode = nilfs_dirty_inode,
.evict_inode = nilfs_evict_inode,
.put_super = nilfs_put_super,
.sync_fs = nilfs_sync_fs,
.freeze_fs = nilfs_freeze,
.unfreeze_fs = nilfs_unfreeze,
.statfs = nilfs_statfs,
.remount_fs = nilfs_remount,
.show_options = nilfs_show_options
};
enum {
Opt_err_cont, Opt_err_panic, Opt_err_ro,
Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
Opt_discard, Opt_nodiscard, Opt_err,
};
static match_table_t tokens = {
{Opt_err_cont, "errors=continue"},
{Opt_err_panic, "errors=panic"},
{Opt_err_ro, "errors=remount-ro"},
{Opt_barrier, "barrier"},
{Opt_nobarrier, "nobarrier"},
{Opt_snapshot, "cp=%u"},
{Opt_order, "order=%s"},
{Opt_norecovery, "norecovery"},
{Opt_discard, "discard"},
{Opt_nodiscard, "nodiscard"},
{Opt_err, NULL}
};
static int parse_options(char *options, struct super_block *sb, int is_remount)
{
struct the_nilfs *nilfs = sb->s_fs_info;
char *p;
substring_t args[MAX_OPT_ARGS];
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_barrier:
nilfs_set_opt(nilfs, BARRIER);
break;
case Opt_nobarrier:
nilfs_clear_opt(nilfs, BARRIER);
break;
case Opt_order:
if (strcmp(args[0].from, "relaxed") == 0)
/* Ordered data semantics */
nilfs_clear_opt(nilfs, STRICT_ORDER);
else if (strcmp(args[0].from, "strict") == 0)
/* Strict in-order semantics */
nilfs_set_opt(nilfs, STRICT_ORDER);
else
return 0;
break;
case Opt_err_panic:
nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
break;
case Opt_err_ro:
nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
break;
case Opt_err_cont:
nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
break;
case Opt_snapshot:
if (is_remount) {
printk(KERN_ERR
"NILFS: \"%s\" option is invalid "
"for remount.\n", p);
return 0;
}
break;
case Opt_norecovery:
nilfs_set_opt(nilfs, NORECOVERY);
break;
case Opt_discard:
nilfs_set_opt(nilfs, DISCARD);
break;
case Opt_nodiscard:
nilfs_clear_opt(nilfs, DISCARD);
break;
default:
printk(KERN_ERR
"NILFS: Unrecognized mount option \"%s\"\n", p);
return 0;
}
}
return 1;
}
static inline void
nilfs_set_default_options(struct super_block *sb,
struct nilfs_super_block *sbp)
{
struct the_nilfs *nilfs = sb->s_fs_info;
nilfs->ns_mount_opt =
NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
}
static int nilfs_setup_super(struct super_block *sb, int is_mount)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_super_block **sbp;
int max_mnt_count;
int mnt_count;
/* nilfs->ns_sem must be locked by the caller. */
sbp = nilfs_prepare_super(sb, 0);
if (!sbp)
return -EIO;
if (!is_mount)
goto skip_mount_setup;
max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
printk(KERN_WARNING
"NILFS warning: mounting fs with errors\n");
#if 0
} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
printk(KERN_WARNING
"NILFS warning: maximal mount count reached\n");
#endif
}
if (!max_mnt_count)
sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
sbp[0]->s_mtime = cpu_to_le64(get_seconds());
skip_mount_setup:
sbp[0]->s_state =
cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
/* synchronize sbp[1] with sbp[0] */
if (sbp[1])
memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
}
struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
u64 pos, int blocksize,
struct buffer_head **pbh)
{
unsigned long long sb_index = pos;
unsigned long offset;
offset = do_div(sb_index, blocksize);
*pbh = sb_bread(sb, sb_index);
if (!*pbh)
return NULL;
return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
}
int nilfs_store_magic_and_option(struct super_block *sb,
struct nilfs_super_block *sbp,
char *data)
{
struct the_nilfs *nilfs = sb->s_fs_info;
sb->s_magic = le16_to_cpu(sbp->s_magic);
/* FS independent flags */
#ifdef NILFS_ATIME_DISABLE
sb->s_flags |= MS_NOATIME;
#endif
nilfs_set_default_options(sb, sbp);
nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
}
int nilfs_check_feature_compatibility(struct super_block *sb,
struct nilfs_super_block *sbp)
{
__u64 features;
features = le64_to_cpu(sbp->s_feature_incompat) &
~NILFS_FEATURE_INCOMPAT_SUPP;
if (features) {
printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
"optional features (%llx)\n",
(unsigned long long)features);
return -EINVAL;
}
features = le64_to_cpu(sbp->s_feature_compat_ro) &
~NILFS_FEATURE_COMPAT_RO_SUPP;
if (!(sb->s_flags & MS_RDONLY) && features) {
printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
"unsupported optional features (%llx)\n",
(unsigned long long)features);
return -EINVAL;
}
return 0;
}
static int nilfs_get_root_dentry(struct super_block *sb,
struct nilfs_root *root,
struct dentry **root_dentry)
{
struct inode *inode;
struct dentry *dentry;
int ret = 0;
inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
if (IS_ERR(inode)) {
printk(KERN_ERR "NILFS: get root inode failed\n");
ret = PTR_ERR(inode);
goto out;
}
if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
iput(inode);
printk(KERN_ERR "NILFS: corrupt root inode.\n");
ret = -EINVAL;
goto out;
}
if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
dentry = d_find_alias(inode);
if (!dentry) {
dentry = d_make_root(inode);
if (!dentry) {
ret = -ENOMEM;
goto failed_dentry;
}
} else {
iput(inode);
}
} else {
dentry = d_obtain_root(inode);
if (IS_ERR(dentry)) {
ret = PTR_ERR(dentry);
goto failed_dentry;
}
}
*root_dentry = dentry;
out:
return ret;
failed_dentry:
printk(KERN_ERR "NILFS: get root dentry failed\n");
goto out;
}
static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
struct dentry **root_dentry)
{
struct the_nilfs *nilfs = s->s_fs_info;
struct nilfs_root *root;
int ret;
nilfs2: fix deadlock issue between chcp and thaw ioctls An fs-thaw ioctl causes deadlock with a chcp or mkcp -s command: chcp D ffff88013870f3d0 0 1325 1324 0x00000004 ... Call Trace: nilfs_transaction_begin+0x11c/0x1a0 [nilfs2] wake_up_bit+0x20/0x20 copy_from_user+0x18/0x30 [nilfs2] nilfs_ioctl_change_cpmode+0x7d/0xcf [nilfs2] nilfs_ioctl+0x252/0x61a [nilfs2] do_page_fault+0x311/0x34c get_unmapped_area+0x132/0x14e do_vfs_ioctl+0x44b/0x490 __set_task_blocked+0x5a/0x61 vm_mmap_pgoff+0x76/0x87 __set_current_blocked+0x30/0x4a sys_ioctl+0x4b/0x6f system_call_fastpath+0x16/0x1b thaw D ffff88013870d890 0 1352 1351 0x00000004 ... Call Trace: rwsem_down_failed_common+0xdb/0x10f call_rwsem_down_write_failed+0x13/0x20 down_write+0x25/0x27 thaw_super+0x13/0x9e do_vfs_ioctl+0x1f5/0x490 vm_mmap_pgoff+0x76/0x87 sys_ioctl+0x4b/0x6f filp_close+0x64/0x6c system_call_fastpath+0x16/0x1b where the thaw ioctl deadlocked at thaw_super() when called while chcp was waiting at nilfs_transaction_begin() called from nilfs_ioctl_change_cpmode(). This deadlock is 100% reproducible. This is because nilfs_ioctl_change_cpmode() first locks sb->s_umount in read mode and then waits for unfreezing in nilfs_transaction_begin(), whereas thaw_super() locks sb->s_umount in write mode. The locking of sb->s_umount here was intended to make snapshot mounts and the downgrade of snapshots to checkpoints exclusive. This fixes the deadlock issue by replacing the sb->s_umount usage in nilfs_ioctl_change_cpmode() with a dedicated mutex which protects snapshot mounts. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30 23:42:07 +02:00
mutex_lock(&nilfs->ns_snapshot_mount_mutex);
down_read(&nilfs->ns_segctor_sem);
ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
up_read(&nilfs->ns_segctor_sem);
if (ret < 0) {
ret = (ret == -ENOENT) ? -EINVAL : ret;
goto out;
} else if (!ret) {
printk(KERN_ERR "NILFS: The specified checkpoint is "
"not a snapshot (checkpoint number=%llu).\n",
(unsigned long long)cno);
ret = -EINVAL;
goto out;
}
ret = nilfs_attach_checkpoint(s, cno, false, &root);
if (ret) {
printk(KERN_ERR "NILFS: error loading snapshot "
"(checkpoint number=%llu).\n",
(unsigned long long)cno);
goto out;
}
ret = nilfs_get_root_dentry(s, root, root_dentry);
nilfs_put_root(root);
out:
nilfs2: fix deadlock issue between chcp and thaw ioctls An fs-thaw ioctl causes deadlock with a chcp or mkcp -s command: chcp D ffff88013870f3d0 0 1325 1324 0x00000004 ... Call Trace: nilfs_transaction_begin+0x11c/0x1a0 [nilfs2] wake_up_bit+0x20/0x20 copy_from_user+0x18/0x30 [nilfs2] nilfs_ioctl_change_cpmode+0x7d/0xcf [nilfs2] nilfs_ioctl+0x252/0x61a [nilfs2] do_page_fault+0x311/0x34c get_unmapped_area+0x132/0x14e do_vfs_ioctl+0x44b/0x490 __set_task_blocked+0x5a/0x61 vm_mmap_pgoff+0x76/0x87 __set_current_blocked+0x30/0x4a sys_ioctl+0x4b/0x6f system_call_fastpath+0x16/0x1b thaw D ffff88013870d890 0 1352 1351 0x00000004 ... Call Trace: rwsem_down_failed_common+0xdb/0x10f call_rwsem_down_write_failed+0x13/0x20 down_write+0x25/0x27 thaw_super+0x13/0x9e do_vfs_ioctl+0x1f5/0x490 vm_mmap_pgoff+0x76/0x87 sys_ioctl+0x4b/0x6f filp_close+0x64/0x6c system_call_fastpath+0x16/0x1b where the thaw ioctl deadlocked at thaw_super() when called while chcp was waiting at nilfs_transaction_begin() called from nilfs_ioctl_change_cpmode(). This deadlock is 100% reproducible. This is because nilfs_ioctl_change_cpmode() first locks sb->s_umount in read mode and then waits for unfreezing in nilfs_transaction_begin(), whereas thaw_super() locks sb->s_umount in write mode. The locking of sb->s_umount here was intended to make snapshot mounts and the downgrade of snapshots to checkpoints exclusive. This fixes the deadlock issue by replacing the sb->s_umount usage in nilfs_ioctl_change_cpmode() with a dedicated mutex which protects snapshot mounts. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp> Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-30 23:42:07 +02:00
mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
return ret;
}
/**
* nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
* @root_dentry: root dentry of the tree to be shrunk
*
* This function returns true if the tree was in-use.
*/
static bool nilfs_tree_is_busy(struct dentry *root_dentry)
{
shrink_dcache_parent(root_dentry);
return d_count(root_dentry) > 1;
}
int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
{
struct the_nilfs *nilfs = sb->s_fs_info;
struct nilfs_root *root;
struct inode *inode;
struct dentry *dentry;
int ret;
if (cno < 0 || cno > nilfs->ns_cno)
return false;
if (cno >= nilfs_last_cno(nilfs))
return true; /* protect recent checkpoints */
ret = false;
root = nilfs_lookup_root(nilfs, cno);
if (root) {
inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
if (inode) {
dentry = d_find_alias(inode);
if (dentry) {
ret = nilfs_tree_is_busy(dentry);
dput(dentry);
}
iput(inode);
}
nilfs_put_root(root);
}
return ret;
}
/**
* nilfs_fill_super() - initialize a super block instance
* @sb: super_block
* @data: mount options
* @silent: silent mode flag
*
* This function is called exclusively by nilfs->ns_mount_mutex.
* So, the recovery process is protected from other simultaneous mounts.
*/
static int
nilfs_fill_super(struct super_block *sb, void *data, int silent)
{
struct the_nilfs *nilfs;
struct nilfs_root *fsroot;
struct backing_dev_info *bdi;
__u64 cno;
int err;
nilfs = alloc_nilfs(sb->s_bdev);
if (!nilfs)
return -ENOMEM;
sb->s_fs_info = nilfs;
err = init_nilfs(nilfs, sb, (char *)data);
if (err)
goto failed_nilfs;
sb->s_op = &nilfs_sops;
sb->s_export_op = &nilfs_export_ops;
sb->s_root = NULL;
sb->s_time_gran = 1;
sb->s_max_links = NILFS_LINK_MAX;
bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
sb->s_bdi = bdi ? : &default_backing_dev_info;
err = load_nilfs(nilfs, sb);
if (err)
goto failed_nilfs;
cno = nilfs_last_cno(nilfs);
err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
if (err) {
printk(KERN_ERR "NILFS: error loading last checkpoint "
"(checkpoint number=%llu).\n", (unsigned long long)cno);
goto failed_unload;
}
if (!(sb->s_flags & MS_RDONLY)) {
err = nilfs_attach_log_writer(sb, fsroot);
if (err)
goto failed_checkpoint;
}
err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
if (err)
goto failed_segctor;
nilfs_put_root(fsroot);
if (!(sb->s_flags & MS_RDONLY)) {
down_write(&nilfs->ns_sem);
nilfs_setup_super(sb, true);
up_write(&nilfs->ns_sem);
}
return 0;
failed_segctor:
nilfs_detach_log_writer(sb);
failed_checkpoint:
nilfs_put_root(fsroot);
failed_unload:
iput(nilfs->ns_sufile);
iput(nilfs->ns_cpfile);
iput(nilfs->ns_dat);
failed_nilfs:
destroy_nilfs(nilfs);
return err;
}
static int nilfs_remount(struct super_block *sb, int *flags, char *data)
{
struct the_nilfs *nilfs = sb->s_fs_info;
unsigned long old_sb_flags;
unsigned long old_mount_opt;
int err;
fs: push sync_filesystem() down to the file system's remount_fs() Previously, the no-op "mount -o mount /dev/xxx" operation when the file system is already mounted read-write causes an implied, unconditional syncfs(). This seems pretty stupid, and it's certainly documented or guaraunteed to do this, nor is it particularly useful, except in the case where the file system was mounted rw and is getting remounted read-only. However, it's possible that there might be some file systems that are actually depending on this behavior. In most file systems, it's probably fine to only call sync_filesystem() when transitioning from read-write to read-only, and there are some file systems where this is not needed at all (for example, for a pseudo-filesystem or something like romfs). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: linux-fsdevel@vger.kernel.org Cc: Christoph Hellwig <hch@infradead.org> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Evgeniy Dushistov <dushistov@mail.ru> Cc: Jan Kara <jack@suse.cz> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Anders Larsen <al@alarsen.net> Cc: Phillip Lougher <phillip@squashfs.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: xfs@oss.sgi.com Cc: linux-btrfs@vger.kernel.org Cc: linux-cifs@vger.kernel.org Cc: samba-technical@lists.samba.org Cc: codalist@coda.cs.cmu.edu Cc: linux-ext4@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: fuse-devel@lists.sourceforge.net Cc: cluster-devel@redhat.com Cc: linux-mtd@lists.infradead.org Cc: jfs-discussion@lists.sourceforge.net Cc: linux-nfs@vger.kernel.org Cc: linux-nilfs@vger.kernel.org Cc: linux-ntfs-dev@lists.sourceforge.net Cc: ocfs2-devel@oss.oracle.com Cc: reiserfs-devel@vger.kernel.org
2014-03-13 15:14:33 +01:00
sync_filesystem(sb);
old_sb_flags = sb->s_flags;
old_mount_opt = nilfs->ns_mount_opt;
if (!parse_options(data, sb, 1)) {
err = -EINVAL;
goto restore_opts;
}
sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
err = -EINVAL;
if (!nilfs_valid_fs(nilfs)) {
printk(KERN_WARNING "NILFS (device %s): couldn't "
"remount because the filesystem is in an "
"incomplete recovery state.\n", sb->s_id);
goto restore_opts;
}
if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
goto out;
if (*flags & MS_RDONLY) {
/* Shutting down log writer */
nilfs_detach_log_writer(sb);
sb->s_flags |= MS_RDONLY;
/*
* Remounting a valid RW partition RDONLY, so set
* the RDONLY flag and then mark the partition as valid again.
*/
down_write(&nilfs->ns_sem);
nilfs_cleanup_super(sb);
up_write(&nilfs->ns_sem);
} else {
__u64 features;
struct nilfs_root *root;
/*
* Mounting a RDONLY partition read-write, so reread and
* store the current valid flag. (It may have been changed
* by fsck since we originally mounted the partition.)
*/
down_read(&nilfs->ns_sem);
features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
~NILFS_FEATURE_COMPAT_RO_SUPP;
up_read(&nilfs->ns_sem);
if (features) {
printk(KERN_WARNING "NILFS (device %s): couldn't "
"remount RDWR because of unsupported optional "
"features (%llx)\n",
sb->s_id, (unsigned long long)features);
err = -EROFS;
goto restore_opts;
}
sb->s_flags &= ~MS_RDONLY;
root = NILFS_I(sb->s_root->d_inode)->i_root;
err = nilfs_attach_log_writer(sb, root);
if (err)
goto restore_opts;
down_write(&nilfs->ns_sem);
nilfs_setup_super(sb, true);
up_write(&nilfs->ns_sem);
}
out:
return 0;
restore_opts:
sb->s_flags = old_sb_flags;
nilfs->ns_mount_opt = old_mount_opt;
return err;
}
struct nilfs_super_data {
struct block_device *bdev;
__u64 cno;
int flags;
};
/**
* nilfs_identify - pre-read mount options needed to identify mount instance
* @data: mount options
* @sd: nilfs_super_data
*/
static int nilfs_identify(char *data, struct nilfs_super_data *sd)
{
char *p, *options = data;
substring_t args[MAX_OPT_ARGS];
int token;
int ret = 0;
do {
p = strsep(&options, ",");
if (p != NULL && *p) {
token = match_token(p, tokens, args);
if (token == Opt_snapshot) {
if (!(sd->flags & MS_RDONLY)) {
ret++;
} else {
sd->cno = simple_strtoull(args[0].from,
NULL, 0);
/*
* No need to see the end pointer;
* match_token() has done syntax
* checking.
*/
if (sd->cno == 0)
ret++;
}
}
if (ret)
printk(KERN_ERR
"NILFS: invalid mount option: %s\n", p);
}
if (!options)
break;
BUG_ON(options == data);
*(options - 1) = ',';
} while (!ret);
return ret;
}
static int nilfs_set_bdev_super(struct super_block *s, void *data)
{
s->s_bdev = data;
s->s_dev = s->s_bdev->bd_dev;
return 0;
}
static int nilfs_test_bdev_super(struct super_block *s, void *data)
{
return (void *)s->s_bdev == data;
}
static struct dentry *
nilfs_mount(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data)
{
struct nilfs_super_data sd;
struct super_block *s;
fmode_t mode = FMODE_READ | FMODE_EXCL;
struct dentry *root_dentry;
int err, s_new = false;
if (!(flags & MS_RDONLY))
mode |= FMODE_WRITE;
sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
if (IS_ERR(sd.bdev))
return ERR_CAST(sd.bdev);
sd.cno = 0;
sd.flags = flags;
if (nilfs_identify((char *)data, &sd)) {
err = -EINVAL;
goto failed;
}
/*
* once the super is inserted into the list by sget, s_umount
* will protect the lockfs code from trying to start a snapshot
* while we are mounting
*/
mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
if (sd.bdev->bd_fsfreeze_count > 0) {
mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
err = -EBUSY;
goto failed;
}
s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
sd.bdev);
mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
if (IS_ERR(s)) {
err = PTR_ERR(s);
goto failed;
}
if (!s->s_root) {
char b[BDEVNAME_SIZE];
s_new = true;
/* New superblock instance created */
s->s_mode = mode;
strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
sb_set_blocksize(s, block_size(sd.bdev));
err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (err)
goto failed_super;
s->s_flags |= MS_ACTIVE;
} else if (!sd.cno) {
if (nilfs_tree_is_busy(s->s_root)) {
if ((flags ^ s->s_flags) & MS_RDONLY) {
printk(KERN_ERR "NILFS: the device already "
"has a %s mount.\n",
(s->s_flags & MS_RDONLY) ?
"read-only" : "read/write");
err = -EBUSY;
goto failed_super;
}
} else {
/*
* Try remount to setup mount states if the current
* tree is not mounted and only snapshots use this sb.
*/
err = nilfs_remount(s, &flags, data);
if (err)
goto failed_super;
}
}
if (sd.cno) {
err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
if (err)
goto failed_super;
} else {
root_dentry = dget(s->s_root);
}
if (!s_new)
blkdev_put(sd.bdev, mode);
return root_dentry;
failed_super:
deactivate_locked_super(s);
failed:
if (!s_new)
blkdev_put(sd.bdev, mode);
return ERR_PTR(err);
}
struct file_system_type nilfs_fs_type = {
.owner = THIS_MODULE,
.name = "nilfs2",
.mount = nilfs_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 04:39:14 +01:00
MODULE_ALIAS_FS("nilfs2");
static void nilfs_inode_init_once(void *obj)
{
struct nilfs_inode_info *ii = obj;
INIT_LIST_HEAD(&ii->i_dirty);
#ifdef CONFIG_NILFS_XATTR
init_rwsem(&ii->xattr_sem);
#endif
mm: prevent concurrent unmap_mapping_range() on the same inode Michael Leun reported that running parallel opens on a fuse filesystem can trigger a "kernel BUG at mm/truncate.c:475" Gurudas Pai reported the same bug on NFS. The reason is, unmap_mapping_range() is not prepared for more than one concurrent invocation per inode. For example: thread1: going through a big range, stops in the middle of a vma and stores the restart address in vm_truncate_count. thread2: comes in with a small (e.g. single page) unmap request on the same vma, somewhere before restart_address, finds that the vma was already unmapped up to the restart address and happily returns without doing anything. Another scenario would be two big unmap requests, both having to restart the unmapping and each one setting vm_truncate_count to its own value. This could go on forever without any of them being able to finish. Truncate and hole punching already serialize with i_mutex. Other callers of unmap_mapping_range() do not, and it's difficult to get i_mutex protection for all callers. In particular ->d_revalidate(), which calls invalidate_inode_pages2_range() in fuse, may be called with or without i_mutex. This patch adds a new mutex to 'struct address_space' to prevent running multiple concurrent unmap_mapping_range() on the same mapping. [ We'll hopefully get rid of all this with the upcoming mm preemptibility series by Peter Zijlstra, the "mm: Remove i_mmap_mutex lockbreak" patch in particular. But that is for 2.6.39 ] Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Reported-by: Michael Leun <lkml20101129@newton.leun.net> Reported-by: Gurudas Pai <gurudas.pai@oracle.com> Tested-by: Gurudas Pai <gurudas.pai@oracle.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-02-23 13:49:47 +01:00
address_space_init_once(&ii->i_btnode_cache);
ii->i_bmap = &ii->i_bmap_data;
inode_init_once(&ii->vfs_inode);
}
static void nilfs_segbuf_init_once(void *obj)
{
memset(obj, 0, sizeof(struct nilfs_segment_buffer));
}
static void nilfs_destroy_cachep(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
if (nilfs_inode_cachep)
kmem_cache_destroy(nilfs_inode_cachep);
if (nilfs_transaction_cachep)
kmem_cache_destroy(nilfs_transaction_cachep);
if (nilfs_segbuf_cachep)
kmem_cache_destroy(nilfs_segbuf_cachep);
if (nilfs_btree_path_cache)
kmem_cache_destroy(nilfs_btree_path_cache);
}
static int __init nilfs_init_cachep(void)
{
nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
sizeof(struct nilfs_inode_info), 0,
SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
if (!nilfs_inode_cachep)
goto fail;
nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
sizeof(struct nilfs_transaction_info), 0,
SLAB_RECLAIM_ACCOUNT, NULL);
if (!nilfs_transaction_cachep)
goto fail;
nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
sizeof(struct nilfs_segment_buffer), 0,
SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
if (!nilfs_segbuf_cachep)
goto fail;
nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
0, 0, NULL);
if (!nilfs_btree_path_cache)
goto fail;
return 0;
fail:
nilfs_destroy_cachep();
return -ENOMEM;
}
static int __init init_nilfs_fs(void)
{
int err;
err = nilfs_init_cachep();
if (err)
goto fail;
nilfs2: integrate sysfs support into driver This patch integrates creation of sysfs groups and attributes into NILFS file system driver. It was found the issue with nilfs_sysfs_{create/delete}_snapshot_group functions by Michael L Semon <mlsemon35@gmail.com> in the first version of the patch: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:579 in_atomic(): 1, irqs_disabled(): 0, pid: 32676, name: umount.nilfs2 2 locks held by umount.nilfs2/32676: #0: (&type->s_umount_key#21){++++..}, at: [<790c18e2>] deactivate_super+0x37/0x58 #1: (&(&nilfs->ns_cptree_lock)->rlock){+.+...}, at: [<791bf659>] nilfs_put_root+0x23/0x5a Preemption disabled at:[<791bf659>] nilfs_put_root+0x23/0x5a CPU: 0 PID: 32676 Comm: umount.nilfs2 Not tainted 3.14.0+ #2 Hardware name: Dell Computer Corporation Dimension 2350/07W080, BIOS A01 12/17/2002 Call Trace: dump_stack+0x4b/0x75 __might_sleep+0x111/0x16f mutex_lock_nested+0x1e/0x3ad kernfs_remove+0x12/0x26 sysfs_remove_dir+0x3d/0x62 kobject_del+0x13/0x38 nilfs_sysfs_delete_snapshot_group+0xb/0xd nilfs_put_root+0x2a/0x5a nilfs_detach_log_writer+0x1ab/0x2c1 nilfs_put_super+0x13/0x68 generic_shutdown_super+0x60/0xd1 kill_block_super+0x1d/0x60 deactivate_locked_super+0x22/0x3f deactivate_super+0x3e/0x58 mntput_no_expire+0xe2/0x141 SyS_oldumount+0x70/0xa5 syscall_call+0x7/0xb The reason of the issue was placement of nilfs_sysfs_{create/delete}_snapshot_group() call under nilfs->ns_cptree_lock protection. But this protection is unnecessary and wrong solution. The second version of the patch fixes this issue. [fengguang.wu@intel.com: nilfs_sysfs_create_mounted_snapshots_group can be static] Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 23:20:55 +02:00
err = nilfs_sysfs_init();
if (err)
goto free_cachep;
nilfs2: integrate sysfs support into driver This patch integrates creation of sysfs groups and attributes into NILFS file system driver. It was found the issue with nilfs_sysfs_{create/delete}_snapshot_group functions by Michael L Semon <mlsemon35@gmail.com> in the first version of the patch: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:579 in_atomic(): 1, irqs_disabled(): 0, pid: 32676, name: umount.nilfs2 2 locks held by umount.nilfs2/32676: #0: (&type->s_umount_key#21){++++..}, at: [<790c18e2>] deactivate_super+0x37/0x58 #1: (&(&nilfs->ns_cptree_lock)->rlock){+.+...}, at: [<791bf659>] nilfs_put_root+0x23/0x5a Preemption disabled at:[<791bf659>] nilfs_put_root+0x23/0x5a CPU: 0 PID: 32676 Comm: umount.nilfs2 Not tainted 3.14.0+ #2 Hardware name: Dell Computer Corporation Dimension 2350/07W080, BIOS A01 12/17/2002 Call Trace: dump_stack+0x4b/0x75 __might_sleep+0x111/0x16f mutex_lock_nested+0x1e/0x3ad kernfs_remove+0x12/0x26 sysfs_remove_dir+0x3d/0x62 kobject_del+0x13/0x38 nilfs_sysfs_delete_snapshot_group+0xb/0xd nilfs_put_root+0x2a/0x5a nilfs_detach_log_writer+0x1ab/0x2c1 nilfs_put_super+0x13/0x68 generic_shutdown_super+0x60/0xd1 kill_block_super+0x1d/0x60 deactivate_locked_super+0x22/0x3f deactivate_super+0x3e/0x58 mntput_no_expire+0xe2/0x141 SyS_oldumount+0x70/0xa5 syscall_call+0x7/0xb The reason of the issue was placement of nilfs_sysfs_{create/delete}_snapshot_group() call under nilfs->ns_cptree_lock protection. But this protection is unnecessary and wrong solution. The second version of the patch fixes this issue. [fengguang.wu@intel.com: nilfs_sysfs_create_mounted_snapshots_group can be static] Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 23:20:55 +02:00
err = register_filesystem(&nilfs_fs_type);
if (err)
goto deinit_sysfs_entry;
printk(KERN_INFO "NILFS version 2 loaded\n");
return 0;
nilfs2: integrate sysfs support into driver This patch integrates creation of sysfs groups and attributes into NILFS file system driver. It was found the issue with nilfs_sysfs_{create/delete}_snapshot_group functions by Michael L Semon <mlsemon35@gmail.com> in the first version of the patch: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:579 in_atomic(): 1, irqs_disabled(): 0, pid: 32676, name: umount.nilfs2 2 locks held by umount.nilfs2/32676: #0: (&type->s_umount_key#21){++++..}, at: [<790c18e2>] deactivate_super+0x37/0x58 #1: (&(&nilfs->ns_cptree_lock)->rlock){+.+...}, at: [<791bf659>] nilfs_put_root+0x23/0x5a Preemption disabled at:[<791bf659>] nilfs_put_root+0x23/0x5a CPU: 0 PID: 32676 Comm: umount.nilfs2 Not tainted 3.14.0+ #2 Hardware name: Dell Computer Corporation Dimension 2350/07W080, BIOS A01 12/17/2002 Call Trace: dump_stack+0x4b/0x75 __might_sleep+0x111/0x16f mutex_lock_nested+0x1e/0x3ad kernfs_remove+0x12/0x26 sysfs_remove_dir+0x3d/0x62 kobject_del+0x13/0x38 nilfs_sysfs_delete_snapshot_group+0xb/0xd nilfs_put_root+0x2a/0x5a nilfs_detach_log_writer+0x1ab/0x2c1 nilfs_put_super+0x13/0x68 generic_shutdown_super+0x60/0xd1 kill_block_super+0x1d/0x60 deactivate_locked_super+0x22/0x3f deactivate_super+0x3e/0x58 mntput_no_expire+0xe2/0x141 SyS_oldumount+0x70/0xa5 syscall_call+0x7/0xb The reason of the issue was placement of nilfs_sysfs_{create/delete}_snapshot_group() call under nilfs->ns_cptree_lock protection. But this protection is unnecessary and wrong solution. The second version of the patch fixes this issue. [fengguang.wu@intel.com: nilfs_sysfs_create_mounted_snapshots_group can be static] Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 23:20:55 +02:00
deinit_sysfs_entry:
nilfs_sysfs_exit();
free_cachep:
nilfs_destroy_cachep();
fail:
return err;
}
static void __exit exit_nilfs_fs(void)
{
nilfs_destroy_cachep();
nilfs2: integrate sysfs support into driver This patch integrates creation of sysfs groups and attributes into NILFS file system driver. It was found the issue with nilfs_sysfs_{create/delete}_snapshot_group functions by Michael L Semon <mlsemon35@gmail.com> in the first version of the patch: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:579 in_atomic(): 1, irqs_disabled(): 0, pid: 32676, name: umount.nilfs2 2 locks held by umount.nilfs2/32676: #0: (&type->s_umount_key#21){++++..}, at: [<790c18e2>] deactivate_super+0x37/0x58 #1: (&(&nilfs->ns_cptree_lock)->rlock){+.+...}, at: [<791bf659>] nilfs_put_root+0x23/0x5a Preemption disabled at:[<791bf659>] nilfs_put_root+0x23/0x5a CPU: 0 PID: 32676 Comm: umount.nilfs2 Not tainted 3.14.0+ #2 Hardware name: Dell Computer Corporation Dimension 2350/07W080, BIOS A01 12/17/2002 Call Trace: dump_stack+0x4b/0x75 __might_sleep+0x111/0x16f mutex_lock_nested+0x1e/0x3ad kernfs_remove+0x12/0x26 sysfs_remove_dir+0x3d/0x62 kobject_del+0x13/0x38 nilfs_sysfs_delete_snapshot_group+0xb/0xd nilfs_put_root+0x2a/0x5a nilfs_detach_log_writer+0x1ab/0x2c1 nilfs_put_super+0x13/0x68 generic_shutdown_super+0x60/0xd1 kill_block_super+0x1d/0x60 deactivate_locked_super+0x22/0x3f deactivate_super+0x3e/0x58 mntput_no_expire+0xe2/0x141 SyS_oldumount+0x70/0xa5 syscall_call+0x7/0xb The reason of the issue was placement of nilfs_sysfs_{create/delete}_snapshot_group() call under nilfs->ns_cptree_lock protection. But this protection is unnecessary and wrong solution. The second version of the patch fixes this issue. [fengguang.wu@intel.com: nilfs_sysfs_create_mounted_snapshots_group can be static] Reported-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com> Cc: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Tested-by: Michael L. Semon <mlsemon35@gmail.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 23:20:55 +02:00
nilfs_sysfs_exit();
unregister_filesystem(&nilfs_fs_type);
}
module_init(init_nilfs_fs)
module_exit(exit_nilfs_fs)