SGISEEQ: use cached memory access to make driver work on IP28

SGI IP28 machines would need special treatment (enable adding addtional
wait states) when accessing memory uncached. To avoid this pain I changed
the driver to use only cached access to memory.

Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
This commit is contained in:
Thomas Bogendoerfer 2007-11-24 13:29:19 +01:00 committed by David S. Miller
parent b0cd2f9016
commit 43831b1581
1 changed files with 166 additions and 73 deletions

View File

@ -12,7 +12,6 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/string.h> #include <linux/string.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/netdevice.h> #include <linux/netdevice.h>
@ -53,14 +52,35 @@ static char *sgiseeqstr = "SGI Seeq8003";
sp->tx_old + (SEEQ_TX_BUFFERS - 1) - sp->tx_new : \ sp->tx_old + (SEEQ_TX_BUFFERS - 1) - sp->tx_new : \
sp->tx_old - sp->tx_new - 1) sp->tx_old - sp->tx_new - 1)
#define VIRT_TO_DMA(sp, v) ((sp)->srings_dma + \
(dma_addr_t)((unsigned long)(v) - \
(unsigned long)((sp)->rx_desc)))
#define DMA_SYNC_DESC_CPU(dev, addr) \
do { dma_cache_sync((dev)->dev.parent, (void *)addr, \
sizeof(struct sgiseeq_rx_desc), DMA_FROM_DEVICE); } while (0)
#define DMA_SYNC_DESC_DEV(dev, addr) \
do { dma_cache_sync((dev)->dev.parent, (void *)addr, \
sizeof(struct sgiseeq_rx_desc), DMA_TO_DEVICE); } while (0)
/* Copy frames shorter than rx_copybreak, otherwise pass on up in
* a full sized sk_buff. Value of 100 stolen from tulip.c (!alpha).
*/
static int rx_copybreak = 100;
#define PAD_SIZE (128 - sizeof(struct hpc_dma_desc) - sizeof(void *))
struct sgiseeq_rx_desc { struct sgiseeq_rx_desc {
volatile struct hpc_dma_desc rdma; volatile struct hpc_dma_desc rdma;
volatile signed int buf_vaddr; u8 padding[PAD_SIZE];
struct sk_buff *skb;
}; };
struct sgiseeq_tx_desc { struct sgiseeq_tx_desc {
volatile struct hpc_dma_desc tdma; volatile struct hpc_dma_desc tdma;
volatile signed int buf_vaddr; u8 padding[PAD_SIZE];
struct sk_buff *skb;
}; };
/* /*
@ -163,35 +183,55 @@ static int seeq_init_ring(struct net_device *dev)
/* Setup tx ring. */ /* Setup tx ring. */
for(i = 0; i < SEEQ_TX_BUFFERS; i++) { for(i = 0; i < SEEQ_TX_BUFFERS; i++) {
if (!sp->tx_desc[i].tdma.pbuf) {
unsigned long buffer;
buffer = (unsigned long) kmalloc(PKT_BUF_SZ, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
sp->tx_desc[i].buf_vaddr = CKSEG1ADDR(buffer);
sp->tx_desc[i].tdma.pbuf = CPHYSADDR(buffer);
}
sp->tx_desc[i].tdma.cntinfo = TCNTINFO_INIT; sp->tx_desc[i].tdma.cntinfo = TCNTINFO_INIT;
DMA_SYNC_DESC_DEV(dev, &sp->tx_desc[i]);
} }
/* And now the rx ring. */ /* And now the rx ring. */
for (i = 0; i < SEEQ_RX_BUFFERS; i++) { for (i = 0; i < SEEQ_RX_BUFFERS; i++) {
if (!sp->rx_desc[i].rdma.pbuf) { if (!sp->rx_desc[i].rdma.pbuf) {
unsigned long buffer; dma_addr_t dma_addr;
struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
buffer = (unsigned long) kmalloc(PKT_BUF_SZ, GFP_KERNEL); if (skb == NULL)
if (!buffer)
return -ENOMEM; return -ENOMEM;
sp->rx_desc[i].buf_vaddr = CKSEG1ADDR(buffer); skb_reserve(skb, 2);
sp->rx_desc[i].rdma.pbuf = CPHYSADDR(buffer); dma_addr = dma_map_single(dev->dev.parent,
skb->data - 2,
PKT_BUF_SZ, DMA_FROM_DEVICE);
sp->rx_desc[i].skb = skb;
sp->rx_desc[i].rdma.pbuf = dma_addr;
} }
sp->rx_desc[i].rdma.cntinfo = RCNTINFO_INIT; sp->rx_desc[i].rdma.cntinfo = RCNTINFO_INIT;
DMA_SYNC_DESC_DEV(dev, &sp->rx_desc[i]);
} }
sp->rx_desc[i - 1].rdma.cntinfo |= HPCDMA_EOR; sp->rx_desc[i - 1].rdma.cntinfo |= HPCDMA_EOR;
DMA_SYNC_DESC_DEV(dev, &sp->rx_desc[i - 1]);
return 0; return 0;
} }
static void seeq_purge_ring(struct net_device *dev)
{
struct sgiseeq_private *sp = netdev_priv(dev);
int i;
/* clear tx ring. */
for (i = 0; i < SEEQ_TX_BUFFERS; i++) {
if (sp->tx_desc[i].skb) {
dev_kfree_skb(sp->tx_desc[i].skb);
sp->tx_desc[i].skb = NULL;
}
}
/* And now the rx ring. */
for (i = 0; i < SEEQ_RX_BUFFERS; i++) {
if (sp->rx_desc[i].skb) {
dev_kfree_skb(sp->rx_desc[i].skb);
sp->rx_desc[i].skb = NULL;
}
}
}
#ifdef DEBUG #ifdef DEBUG
static struct sgiseeq_private *gpriv; static struct sgiseeq_private *gpriv;
static struct net_device *gdev; static struct net_device *gdev;
@ -258,8 +298,8 @@ static int init_seeq(struct net_device *dev, struct sgiseeq_private *sp,
sregs->tstat = TSTAT_INIT_SEEQ; sregs->tstat = TSTAT_INIT_SEEQ;
} }
hregs->rx_ndptr = CPHYSADDR(sp->rx_desc); hregs->rx_ndptr = VIRT_TO_DMA(sp, sp->rx_desc);
hregs->tx_ndptr = CPHYSADDR(sp->tx_desc); hregs->tx_ndptr = VIRT_TO_DMA(sp, sp->tx_desc);
seeq_go(sp, hregs, sregs); seeq_go(sp, hregs, sregs);
return 0; return 0;
@ -283,69 +323,90 @@ static inline void rx_maybe_restart(struct sgiseeq_private *sp,
struct sgiseeq_regs *sregs) struct sgiseeq_regs *sregs)
{ {
if (!(hregs->rx_ctrl & HPC3_ERXCTRL_ACTIVE)) { if (!(hregs->rx_ctrl & HPC3_ERXCTRL_ACTIVE)) {
hregs->rx_ndptr = CPHYSADDR(sp->rx_desc + sp->rx_new); hregs->rx_ndptr = VIRT_TO_DMA(sp, sp->rx_desc + sp->rx_new);
seeq_go(sp, hregs, sregs); seeq_go(sp, hregs, sregs);
} }
} }
#define for_each_rx(rd, sp) for((rd) = &(sp)->rx_desc[(sp)->rx_new]; \
!((rd)->rdma.cntinfo & HPCDMA_OWN); \
(rd) = &(sp)->rx_desc[(sp)->rx_new])
static inline void sgiseeq_rx(struct net_device *dev, struct sgiseeq_private *sp, static inline void sgiseeq_rx(struct net_device *dev, struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs, struct hpc3_ethregs *hregs,
struct sgiseeq_regs *sregs) struct sgiseeq_regs *sregs)
{ {
struct sgiseeq_rx_desc *rd; struct sgiseeq_rx_desc *rd;
struct sk_buff *skb = NULL; struct sk_buff *skb = NULL;
struct sk_buff *newskb;
unsigned char pkt_status; unsigned char pkt_status;
unsigned char *pkt_pointer = NULL;
int len = 0; int len = 0;
unsigned int orig_end = PREV_RX(sp->rx_new); unsigned int orig_end = PREV_RX(sp->rx_new);
/* Service every received packet. */ /* Service every received packet. */
for_each_rx(rd, sp) { rd = &sp->rx_desc[sp->rx_new];
DMA_SYNC_DESC_CPU(dev, rd);
while (!(rd->rdma.cntinfo & HPCDMA_OWN)) {
len = PKT_BUF_SZ - (rd->rdma.cntinfo & HPCDMA_BCNT) - 3; len = PKT_BUF_SZ - (rd->rdma.cntinfo & HPCDMA_BCNT) - 3;
pkt_pointer = (unsigned char *)(long)rd->buf_vaddr; dma_unmap_single(dev->dev.parent, rd->rdma.pbuf,
pkt_status = pkt_pointer[len + 2]; PKT_BUF_SZ, DMA_FROM_DEVICE);
pkt_status = rd->skb->data[len];
if (pkt_status & SEEQ_RSTAT_FIG) { if (pkt_status & SEEQ_RSTAT_FIG) {
/* Packet is OK. */ /* Packet is OK. */
skb = dev_alloc_skb(len + 2); /* We don't want to receive our own packets */
if (memcmp(rd->skb->data + 6, dev->dev_addr, ETH_ALEN)) {
if (skb) { if (len > rx_copybreak) {
skb_reserve(skb, 2); skb = rd->skb;
skb_put(skb, len); newskb = netdev_alloc_skb(dev, PKT_BUF_SZ);
if (!newskb) {
/* Copy out of kseg1 to avoid silly cache flush. */ newskb = skb;
skb_copy_to_linear_data(skb, pkt_pointer + 2, len); skb = NULL;
skb->protocol = eth_type_trans(skb, dev); goto memory_squeeze;
}
/* We don't want to receive our own packets */ skb_reserve(newskb, 2);
if (memcmp(eth_hdr(skb)->h_source, dev->dev_addr, ETH_ALEN)) { } else {
skb = netdev_alloc_skb(dev, len + 2);
if (skb) {
skb_reserve(skb, 2);
skb_copy_to_linear_data(skb, rd->skb->data, len);
}
newskb = rd->skb;
}
memory_squeeze:
if (skb) {
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); netif_rx(skb);
dev->last_rx = jiffies; dev->last_rx = jiffies;
dev->stats.rx_packets++; dev->stats.rx_packets++;
dev->stats.rx_bytes += len; dev->stats.rx_bytes += len;
} else { } else {
/* Silently drop my own packets */ printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n",
dev_kfree_skb_irq(skb); dev->name);
dev->stats.rx_dropped++;
} }
} else { } else {
printk (KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", /* Silently drop my own packets */
dev->name); newskb = rd->skb;
dev->stats.rx_dropped++;
} }
} else { } else {
record_rx_errors(dev, pkt_status); record_rx_errors(dev, pkt_status);
newskb = rd->skb;
} }
rd->skb = newskb;
rd->rdma.pbuf = dma_map_single(dev->dev.parent,
newskb->data - 2,
PKT_BUF_SZ, DMA_FROM_DEVICE);
/* Return the entry to the ring pool. */ /* Return the entry to the ring pool. */
rd->rdma.cntinfo = RCNTINFO_INIT; rd->rdma.cntinfo = RCNTINFO_INIT;
sp->rx_new = NEXT_RX(sp->rx_new); sp->rx_new = NEXT_RX(sp->rx_new);
DMA_SYNC_DESC_DEV(dev, rd);
rd = &sp->rx_desc[sp->rx_new];
DMA_SYNC_DESC_CPU(dev, rd);
} }
DMA_SYNC_DESC_CPU(dev, &sp->rx_desc[orig_end]);
sp->rx_desc[orig_end].rdma.cntinfo &= ~(HPCDMA_EOR); sp->rx_desc[orig_end].rdma.cntinfo &= ~(HPCDMA_EOR);
DMA_SYNC_DESC_DEV(dev, &sp->rx_desc[orig_end]);
DMA_SYNC_DESC_CPU(dev, &sp->rx_desc[PREV_RX(sp->rx_new)]);
sp->rx_desc[PREV_RX(sp->rx_new)].rdma.cntinfo |= HPCDMA_EOR; sp->rx_desc[PREV_RX(sp->rx_new)].rdma.cntinfo |= HPCDMA_EOR;
DMA_SYNC_DESC_DEV(dev, &sp->rx_desc[PREV_RX(sp->rx_new)]);
rx_maybe_restart(sp, hregs, sregs); rx_maybe_restart(sp, hregs, sregs);
} }
@ -358,20 +419,29 @@ static inline void tx_maybe_reset_collisions(struct sgiseeq_private *sp,
} }
} }
static inline void kick_tx(struct sgiseeq_tx_desc *td, static inline void kick_tx(struct net_device *dev,
struct sgiseeq_private *sp,
struct hpc3_ethregs *hregs) struct hpc3_ethregs *hregs)
{ {
struct sgiseeq_tx_desc *td;
int i = sp->tx_old;
/* If the HPC aint doin nothin, and there are more packets /* If the HPC aint doin nothin, and there are more packets
* with ETXD cleared and XIU set we must make very certain * with ETXD cleared and XIU set we must make very certain
* that we restart the HPC else we risk locking up the * that we restart the HPC else we risk locking up the
* adapter. The following code is only safe iff the HPCDMA * adapter. The following code is only safe iff the HPCDMA
* is not active! * is not active!
*/ */
td = &sp->tx_desc[i];
DMA_SYNC_DESC_CPU(dev, td);
while ((td->tdma.cntinfo & (HPCDMA_XIU | HPCDMA_ETXD)) == while ((td->tdma.cntinfo & (HPCDMA_XIU | HPCDMA_ETXD)) ==
(HPCDMA_XIU | HPCDMA_ETXD)) (HPCDMA_XIU | HPCDMA_ETXD)) {
td = (struct sgiseeq_tx_desc *)(long) CKSEG1ADDR(td->tdma.pnext); i = NEXT_TX(i);
td = &sp->tx_desc[i];
DMA_SYNC_DESC_CPU(dev, td);
}
if (td->tdma.cntinfo & HPCDMA_XIU) { if (td->tdma.cntinfo & HPCDMA_XIU) {
hregs->tx_ndptr = CPHYSADDR(td); hregs->tx_ndptr = VIRT_TO_DMA(sp, td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE; hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
} }
} }
@ -400,11 +470,12 @@ static inline void sgiseeq_tx(struct net_device *dev, struct sgiseeq_private *sp
for (j = sp->tx_old; j != sp->tx_new; j = NEXT_TX(j)) { for (j = sp->tx_old; j != sp->tx_new; j = NEXT_TX(j)) {
td = &sp->tx_desc[j]; td = &sp->tx_desc[j];
DMA_SYNC_DESC_CPU(dev, td);
if (!(td->tdma.cntinfo & (HPCDMA_XIU))) if (!(td->tdma.cntinfo & (HPCDMA_XIU)))
break; break;
if (!(td->tdma.cntinfo & (HPCDMA_ETXD))) { if (!(td->tdma.cntinfo & (HPCDMA_ETXD))) {
if (!(status & HPC3_ETXCTRL_ACTIVE)) { if (!(status & HPC3_ETXCTRL_ACTIVE)) {
hregs->tx_ndptr = CPHYSADDR(td); hregs->tx_ndptr = VIRT_TO_DMA(sp, td);
hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE; hregs->tx_ctrl = HPC3_ETXCTRL_ACTIVE;
} }
break; break;
@ -413,6 +484,11 @@ static inline void sgiseeq_tx(struct net_device *dev, struct sgiseeq_private *sp
sp->tx_old = NEXT_TX(sp->tx_old); sp->tx_old = NEXT_TX(sp->tx_old);
td->tdma.cntinfo &= ~(HPCDMA_XIU | HPCDMA_XIE); td->tdma.cntinfo &= ~(HPCDMA_XIU | HPCDMA_XIE);
td->tdma.cntinfo |= HPCDMA_EOX; td->tdma.cntinfo |= HPCDMA_EOX;
if (td->skb) {
dev_kfree_skb_any(td->skb);
td->skb = NULL;
}
DMA_SYNC_DESC_DEV(dev, td);
} }
} }
@ -480,6 +556,7 @@ static int sgiseeq_close(struct net_device *dev)
/* Shutdown the Seeq. */ /* Shutdown the Seeq. */
reset_hpc3_and_seeq(sp->hregs, sregs); reset_hpc3_and_seeq(sp->hregs, sregs);
free_irq(irq, dev); free_irq(irq, dev);
seeq_purge_ring(dev);
return 0; return 0;
} }
@ -506,16 +583,22 @@ static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev)
struct hpc3_ethregs *hregs = sp->hregs; struct hpc3_ethregs *hregs = sp->hregs;
unsigned long flags; unsigned long flags;
struct sgiseeq_tx_desc *td; struct sgiseeq_tx_desc *td;
int skblen, len, entry; int len, entry;
spin_lock_irqsave(&sp->tx_lock, flags); spin_lock_irqsave(&sp->tx_lock, flags);
/* Setup... */ /* Setup... */
skblen = skb->len; len = skb->len;
len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen; if (len < ETH_ZLEN) {
if (skb_padto(skb, ETH_ZLEN))
return 0;
len = ETH_ZLEN;
}
dev->stats.tx_bytes += len; dev->stats.tx_bytes += len;
entry = sp->tx_new; entry = sp->tx_new;
td = &sp->tx_desc[entry]; td = &sp->tx_desc[entry];
DMA_SYNC_DESC_CPU(dev, td);
/* Create entry. There are so many races with adding a new /* Create entry. There are so many races with adding a new
* descriptor to the chain: * descriptor to the chain:
@ -530,25 +613,27 @@ static int sgiseeq_start_xmit(struct sk_buff *skb, struct net_device *dev)
* entry and the HPC got to the end of the chain before we * entry and the HPC got to the end of the chain before we
* added this new entry and restarted it. * added this new entry and restarted it.
*/ */
skb_copy_from_linear_data(skb, (char *)(long)td->buf_vaddr, skblen); td->skb = skb;
if (len != skblen) td->tdma.pbuf = dma_map_single(dev->dev.parent, skb->data,
memset((char *)(long)td->buf_vaddr + skb->len, 0, len-skblen); len, DMA_TO_DEVICE);
td->tdma.cntinfo = (len & HPCDMA_BCNT) | td->tdma.cntinfo = (len & HPCDMA_BCNT) |
HPCDMA_XIU | HPCDMA_EOXP | HPCDMA_XIE | HPCDMA_EOX; HPCDMA_XIU | HPCDMA_EOXP | HPCDMA_XIE | HPCDMA_EOX;
DMA_SYNC_DESC_DEV(dev, td);
if (sp->tx_old != sp->tx_new) { if (sp->tx_old != sp->tx_new) {
struct sgiseeq_tx_desc *backend; struct sgiseeq_tx_desc *backend;
backend = &sp->tx_desc[PREV_TX(sp->tx_new)]; backend = &sp->tx_desc[PREV_TX(sp->tx_new)];
DMA_SYNC_DESC_CPU(dev, backend);
backend->tdma.cntinfo &= ~HPCDMA_EOX; backend->tdma.cntinfo &= ~HPCDMA_EOX;
DMA_SYNC_DESC_DEV(dev, backend);
} }
sp->tx_new = NEXT_TX(sp->tx_new); /* Advance. */ sp->tx_new = NEXT_TX(sp->tx_new); /* Advance. */
/* Maybe kick the HPC back into motion. */ /* Maybe kick the HPC back into motion. */
if (!(hregs->tx_ctrl & HPC3_ETXCTRL_ACTIVE)) if (!(hregs->tx_ctrl & HPC3_ETXCTRL_ACTIVE))
kick_tx(&sp->tx_desc[sp->tx_old], hregs); kick_tx(dev, sp, hregs);
dev->trans_start = jiffies; dev->trans_start = jiffies;
dev_kfree_skb(skb);
if (!TX_BUFFS_AVAIL(sp)) if (!TX_BUFFS_AVAIL(sp))
netif_stop_queue(dev); netif_stop_queue(dev);
@ -586,33 +671,41 @@ static void sgiseeq_set_multicast(struct net_device *dev)
sgiseeq_reset(dev); sgiseeq_reset(dev);
} }
static inline void setup_tx_ring(struct sgiseeq_tx_desc *buf, int nbufs) static inline void setup_tx_ring(struct net_device *dev,
struct sgiseeq_tx_desc *buf,
int nbufs)
{ {
struct sgiseeq_private *sp = netdev_priv(dev);
int i = 0; int i = 0;
while (i < (nbufs - 1)) { while (i < (nbufs - 1)) {
buf[i].tdma.pnext = CPHYSADDR(buf + i + 1); buf[i].tdma.pnext = VIRT_TO_DMA(sp, buf + i + 1);
buf[i].tdma.pbuf = 0; buf[i].tdma.pbuf = 0;
DMA_SYNC_DESC_DEV(dev, &buf[i]);
i++; i++;
} }
buf[i].tdma.pnext = CPHYSADDR(buf); buf[i].tdma.pnext = VIRT_TO_DMA(sp, buf);
DMA_SYNC_DESC_DEV(dev, &buf[i]);
} }
static inline void setup_rx_ring(struct sgiseeq_rx_desc *buf, int nbufs) static inline void setup_rx_ring(struct net_device *dev,
struct sgiseeq_rx_desc *buf,
int nbufs)
{ {
struct sgiseeq_private *sp = netdev_priv(dev);
int i = 0; int i = 0;
while (i < (nbufs - 1)) { while (i < (nbufs - 1)) {
buf[i].rdma.pnext = CPHYSADDR(buf + i + 1); buf[i].rdma.pnext = VIRT_TO_DMA(sp, buf + i + 1);
buf[i].rdma.pbuf = 0; buf[i].rdma.pbuf = 0;
DMA_SYNC_DESC_DEV(dev, &buf[i]);
i++; i++;
} }
buf[i].rdma.pbuf = 0; buf[i].rdma.pbuf = 0;
buf[i].rdma.pnext = CPHYSADDR(buf); buf[i].rdma.pnext = VIRT_TO_DMA(sp, buf);
DMA_SYNC_DESC_DEV(dev, &buf[i]);
} }
#define ALIGNED(x) ((((unsigned long)(x)) + 0xf) & ~(0xf))
static int __init sgiseeq_probe(struct platform_device *pdev) static int __init sgiseeq_probe(struct platform_device *pdev)
{ {
struct sgiseeq_platform_data *pd = pdev->dev.platform_data; struct sgiseeq_platform_data *pd = pdev->dev.platform_data;
@ -621,7 +714,7 @@ static int __init sgiseeq_probe(struct platform_device *pdev)
unsigned int irq = pd->irq; unsigned int irq = pd->irq;
struct sgiseeq_private *sp; struct sgiseeq_private *sp;
struct net_device *dev; struct net_device *dev;
int err, i; int err;
DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac);
dev = alloc_etherdev(sizeof (struct sgiseeq_private)); dev = alloc_etherdev(sizeof (struct sgiseeq_private));
@ -635,7 +728,7 @@ static int __init sgiseeq_probe(struct platform_device *pdev)
sp = netdev_priv(dev); sp = netdev_priv(dev);
/* Make private data page aligned */ /* Make private data page aligned */
sr = dma_alloc_coherent(&pdev->dev, sizeof(*sp->srings), sr = dma_alloc_noncoherent(&pdev->dev, sizeof(*sp->srings),
&sp->srings_dma, GFP_KERNEL); &sp->srings_dma, GFP_KERNEL);
if (!sr) { if (!sr) {
printk(KERN_ERR "Sgiseeq: Page alloc failed, aborting.\n"); printk(KERN_ERR "Sgiseeq: Page alloc failed, aborting.\n");
@ -647,8 +740,8 @@ static int __init sgiseeq_probe(struct platform_device *pdev)
sp->tx_desc = sp->srings->txvector; sp->tx_desc = sp->srings->txvector;
/* A couple calculations now, saves many cycles later. */ /* A couple calculations now, saves many cycles later. */
setup_rx_ring(sp->rx_desc, SEEQ_RX_BUFFERS); setup_rx_ring(dev, sp->rx_desc, SEEQ_RX_BUFFERS);
setup_tx_ring(sp->tx_desc, SEEQ_TX_BUFFERS); setup_tx_ring(dev, sp->tx_desc, SEEQ_TX_BUFFERS);
memcpy(dev->dev_addr, pd->mac, ETH_ALEN); memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
@ -716,8 +809,8 @@ static int __exit sgiseeq_remove(struct platform_device *pdev)
struct sgiseeq_private *sp = netdev_priv(dev); struct sgiseeq_private *sp = netdev_priv(dev);
unregister_netdev(dev); unregister_netdev(dev);
dma_free_coherent(&pdev->dev, sizeof(*sp->srings), sp->srings, dma_free_noncoherent(&pdev->dev, sizeof(*sp->srings), sp->srings,
sp->srings_dma); sp->srings_dma);
free_netdev(dev); free_netdev(dev);
platform_set_drvdata(pdev, NULL); platform_set_drvdata(pdev, NULL);