diff --git a/Documentation/thermal/power_allocator.txt b/Documentation/thermal/power_allocator.txt new file mode 100644 index 000000000000..c3797b529991 --- /dev/null +++ b/Documentation/thermal/power_allocator.txt @@ -0,0 +1,247 @@ +Power allocator governor tunables +================================= + +Trip points +----------- + +The governor requires the following two passive trip points: + +1. "switch on" trip point: temperature above which the governor + control loop starts operating. This is the first passive trip + point of the thermal zone. + +2. "desired temperature" trip point: it should be higher than the + "switch on" trip point. This the target temperature the governor + is controlling for. This is the last passive trip point of the + thermal zone. + +PID Controller +-------------- + +The power allocator governor implements a +Proportional-Integral-Derivative controller (PID controller) with +temperature as the control input and power as the controlled output: + + P_max = k_p * e + k_i * err_integral + k_d * diff_err + sustainable_power + +where + e = desired_temperature - current_temperature + err_integral is the sum of previous errors + diff_err = e - previous_error + +It is similar to the one depicted below: + + k_d + | +current_temp | + | v + | +----------+ +---+ + | +----->| diff_err |-->| X |------+ + | | +----------+ +---+ | + | | | tdp actor + | | k_i | | get_requested_power() + | | | | | | | + | | | | | | | ... + v | v v v v v + +---+ | +-------+ +---+ +---+ +---+ +----------+ + | S |-------+----->| sum e |----->| X |--->| S |-->| S |-->|power | + +---+ | +-------+ +---+ +---+ +---+ |allocation| + ^ | ^ +----------+ + | | | | | + | | +---+ | | | + | +------->| X |-------------------+ v v + | +---+ granted performance +desired_temperature ^ + | + | + k_po/k_pu + +Sustainable power +----------------- + +An estimate of the sustainable dissipatable power (in mW) should be +provided while registering the thermal zone. This estimates the +sustained power that can be dissipated at the desired control +temperature. This is the maximum sustained power for allocation at +the desired maximum temperature. The actual sustained power can vary +for a number of reasons. The closed loop controller will take care of +variations such as environmental conditions, and some factors related +to the speed-grade of the silicon. `sustainable_power` is therefore +simply an estimate, and may be tuned to affect the aggressiveness of +the thermal ramp. For reference, the sustainable power of a 4" phone +is typically 2000mW, while on a 10" tablet is around 4500mW (may vary +depending on screen size). + +If you are using device tree, do add it as a property of the +thermal-zone. For example: + + thermal-zones { + soc_thermal { + polling-delay = <1000>; + polling-delay-passive = <100>; + sustainable-power = <2500>; + ... + +Instead, if the thermal zone is registered from the platform code, pass a +`thermal_zone_params` that has a `sustainable_power`. If no +`thermal_zone_params` were being passed, then something like below +will suffice: + + static const struct thermal_zone_params tz_params = { + .sustainable_power = 3500, + }; + +and then pass `tz_params` as the 5th parameter to +`thermal_zone_device_register()` + +k_po and k_pu +------------- + +The implementation of the PID controller in the power allocator +thermal governor allows the configuration of two proportional term +constants: `k_po` and `k_pu`. `k_po` is the proportional term +constant during temperature overshoot periods (current temperature is +above "desired temperature" trip point). Conversely, `k_pu` is the +proportional term constant during temperature undershoot periods +(current temperature below "desired temperature" trip point). + +These controls are intended as the primary mechanism for configuring +the permitted thermal "ramp" of the system. For instance, a lower +`k_pu` value will provide a slower ramp, at the cost of capping +available capacity at a low temperature. On the other hand, a high +value of `k_pu` will result in the governor granting very high power +whilst temperature is low, and may lead to temperature overshooting. + +The default value for `k_pu` is: + + 2 * sustainable_power / (desired_temperature - switch_on_temp) + +This means that at `switch_on_temp` the output of the controller's +proportional term will be 2 * `sustainable_power`. The default value +for `k_po` is: + + sustainable_power / (desired_temperature - switch_on_temp) + +Focusing on the proportional and feed forward values of the PID +controller equation we have: + + P_max = k_p * e + sustainable_power + +The proportional term is proportional to the difference between the +desired temperature and the current one. When the current temperature +is the desired one, then the proportional component is zero and +`P_max` = `sustainable_power`. That is, the system should operate in +thermal equilibrium under constant load. `sustainable_power` is only +an estimate, which is the reason for closed-loop control such as this. + +Expanding `k_pu` we get: + P_max = 2 * sustainable_power * (T_set - T) / (T_set - T_on) + + sustainable_power + +where + T_set is the desired temperature + T is the current temperature + T_on is the switch on temperature + +When the current temperature is the switch_on temperature, the above +formula becomes: + + P_max = 2 * sustainable_power * (T_set - T_on) / (T_set - T_on) + + sustainable_power = 2 * sustainable_power + sustainable_power = + 3 * sustainable_power + +Therefore, the proportional term alone linearly decreases power from +3 * `sustainable_power` to `sustainable_power` as the temperature +rises from the switch on temperature to the desired temperature. + +k_i and integral_cutoff +----------------------- + +`k_i` configures the PID loop's integral term constant. This term +allows the PID controller to compensate for long term drift and for +the quantized nature of the output control: cooling devices can't set +the exact power that the governor requests. When the temperature +error is below `integral_cutoff`, errors are accumulated in the +integral term. This term is then multiplied by `k_i` and the result +added to the output of the controller. Typically `k_i` is set low (1 +or 2) and `integral_cutoff` is 0. + +k_d +--- + +`k_d` configures the PID loop's derivative term constant. It's +recommended to leave it as the default: 0. + +Cooling device power API +======================== + +Cooling devices controlled by this governor must supply the additional +"power" API in their `cooling_device_ops`. It consists on three ops: + +1. int get_requested_power(struct thermal_cooling_device *cdev, + struct thermal_zone_device *tz, u32 *power); +@cdev: The `struct thermal_cooling_device` pointer +@tz: thermal zone in which we are currently operating +@power: pointer in which to store the calculated power + +`get_requested_power()` calculates the power requested by the device +in milliwatts and stores it in @power . It should return 0 on +success, -E* on failure. This is currently used by the power +allocator governor to calculate how much power to give to each cooling +device. + +2. int state2power(struct thermal_cooling_device *cdev, struct + thermal_zone_device *tz, unsigned long state, u32 *power); +@cdev: The `struct thermal_cooling_device` pointer +@tz: thermal zone in which we are currently operating +@state: A cooling device state +@power: pointer in which to store the equivalent power + +Convert cooling device state @state into power consumption in +milliwatts and store it in @power. It should return 0 on success, -E* +on failure. This is currently used by thermal core to calculate the +maximum power that an actor can consume. + +3. int power2state(struct thermal_cooling_device *cdev, u32 power, + unsigned long *state); +@cdev: The `struct thermal_cooling_device` pointer +@power: power in milliwatts +@state: pointer in which to store the resulting state + +Calculate a cooling device state that would make the device consume at +most @power mW and store it in @state. It should return 0 on success, +-E* on failure. This is currently used by the thermal core to convert +a given power set by the power allocator governor to a state that the +cooling device can set. It is a function because this conversion may +depend on external factors that may change so this function should the +best conversion given "current circumstances". + +Cooling device weights +---------------------- + +Weights are a mechanism to bias the allocation among cooling +devices. They express the relative power efficiency of different +cooling devices. Higher weight can be used to express higher power +efficiency. Weighting is relative such that if each cooling device +has a weight of one they are considered equal. This is particularly +useful in heterogeneous systems where two cooling devices may perform +the same kind of compute, but with different efficiency. For example, +a system with two different types of processors. + +If the thermal zone is registered using +`thermal_zone_device_register()` (i.e., platform code), then weights +are passed as part of the thermal zone's `thermal_bind_parameters`. +If the platform is registered using device tree, then they are passed +as the `contribution` property of each map in the `cooling-maps` node. + +Limitations of the power allocator governor +=========================================== + +The power allocator governor's PID controller works best if there is a +periodic tick. If you have a driver that calls +`thermal_zone_device_update()` (or anything that ends up calling the +governor's `throttle()` function) repetitively, the governor response +won't be very good. Note that this is not particular to this +governor, step-wise will also misbehave if you call its throttle() +faster than the normal thermal framework tick (due to interrupts for +example) as it will overreact. diff --git a/drivers/thermal/Kconfig b/drivers/thermal/Kconfig index 30aee81e9f5b..a1b43eab0a70 100644 --- a/drivers/thermal/Kconfig +++ b/drivers/thermal/Kconfig @@ -71,6 +71,14 @@ config THERMAL_DEFAULT_GOV_USER_SPACE Select this if you want to let the user space manage the platform thermals. +config THERMAL_DEFAULT_GOV_POWER_ALLOCATOR + bool "power_allocator" + select THERMAL_GOV_POWER_ALLOCATOR + help + Select this if you want to control temperature based on + system and device power allocation. This governor can only + operate on cooling devices that implement the power API. + endchoice config THERMAL_GOV_FAIR_SHARE @@ -99,6 +107,13 @@ config THERMAL_GOV_USER_SPACE help Enable this to let the user space manage the platform thermals. +config THERMAL_GOV_POWER_ALLOCATOR + bool "Power allocator thermal governor" + select THERMAL_POWER_ACTOR + help + Enable this to manage platform thermals by dynamically + allocating and limiting power to devices. + config CPU_THERMAL bool "generic cpu cooling support" depends on CPU_FREQ diff --git a/drivers/thermal/Makefile b/drivers/thermal/Makefile index 1fe86652cfb6..b1783cf37ed2 100644 --- a/drivers/thermal/Makefile +++ b/drivers/thermal/Makefile @@ -14,6 +14,7 @@ thermal_sys-$(CONFIG_THERMAL_GOV_FAIR_SHARE) += fair_share.o thermal_sys-$(CONFIG_THERMAL_GOV_BANG_BANG) += gov_bang_bang.o thermal_sys-$(CONFIG_THERMAL_GOV_STEP_WISE) += step_wise.o thermal_sys-$(CONFIG_THERMAL_GOV_USER_SPACE) += user_space.o +thermal_sys-$(CONFIG_THERMAL_GOV_POWER_ALLOCATOR) += power_allocator.o # cpufreq cooling thermal_sys-$(CONFIG_CPU_THERMAL) += cpu_cooling.o diff --git a/drivers/thermal/power_allocator.c b/drivers/thermal/power_allocator.c new file mode 100644 index 000000000000..67982d79b76c --- /dev/null +++ b/drivers/thermal/power_allocator.c @@ -0,0 +1,520 @@ +/* + * A power allocator to manage temperature + * + * Copyright (C) 2014 ARM Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed "as is" WITHOUT ANY WARRANTY of any + * kind, whether express or implied; without even the implied warranty + * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#define pr_fmt(fmt) "Power allocator: " fmt + +#include +#include +#include + +#include "thermal_core.h" + +#define FRAC_BITS 10 +#define int_to_frac(x) ((x) << FRAC_BITS) +#define frac_to_int(x) ((x) >> FRAC_BITS) + +/** + * mul_frac() - multiply two fixed-point numbers + * @x: first multiplicand + * @y: second multiplicand + * + * Return: the result of multiplying two fixed-point numbers. The + * result is also a fixed-point number. + */ +static inline s64 mul_frac(s64 x, s64 y) +{ + return (x * y) >> FRAC_BITS; +} + +/** + * div_frac() - divide two fixed-point numbers + * @x: the dividend + * @y: the divisor + * + * Return: the result of dividing two fixed-point numbers. The + * result is also a fixed-point number. + */ +static inline s64 div_frac(s64 x, s64 y) +{ + return div_s64(x << FRAC_BITS, y); +} + +/** + * struct power_allocator_params - parameters for the power allocator governor + * @err_integral: accumulated error in the PID controller. + * @prev_err: error in the previous iteration of the PID controller. + * Used to calculate the derivative term. + * @trip_switch_on: first passive trip point of the thermal zone. The + * governor switches on when this trip point is crossed. + * @trip_max_desired_temperature: last passive trip point of the thermal + * zone. The temperature we are + * controlling for. + */ +struct power_allocator_params { + s64 err_integral; + s32 prev_err; + int trip_switch_on; + int trip_max_desired_temperature; +}; + +/** + * pid_controller() - PID controller + * @tz: thermal zone we are operating in + * @current_temp: the current temperature in millicelsius + * @control_temp: the target temperature in millicelsius + * @max_allocatable_power: maximum allocatable power for this thermal zone + * + * This PID controller increases the available power budget so that the + * temperature of the thermal zone gets as close as possible to + * @control_temp and limits the power if it exceeds it. k_po is the + * proportional term when we are overshooting, k_pu is the + * proportional term when we are undershooting. integral_cutoff is a + * threshold below which we stop accumulating the error. The + * accumulated error is only valid if the requested power will make + * the system warmer. If the system is mostly idle, there's no point + * in accumulating positive error. + * + * Return: The power budget for the next period. + */ +static u32 pid_controller(struct thermal_zone_device *tz, + unsigned long current_temp, + unsigned long control_temp, + u32 max_allocatable_power) +{ + s64 p, i, d, power_range; + s32 err, max_power_frac; + struct power_allocator_params *params = tz->governor_data; + + max_power_frac = int_to_frac(max_allocatable_power); + + err = ((s32)control_temp - (s32)current_temp); + err = int_to_frac(err); + + /* Calculate the proportional term */ + p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); + + /* + * Calculate the integral term + * + * if the error is less than cut off allow integration (but + * the integral is limited to max power) + */ + i = mul_frac(tz->tzp->k_i, params->err_integral); + + if (err < int_to_frac(tz->tzp->integral_cutoff)) { + s64 i_next = i + mul_frac(tz->tzp->k_i, err); + + if (abs64(i_next) < max_power_frac) { + i = i_next; + params->err_integral += err; + } + } + + /* + * Calculate the derivative term + * + * We do err - prev_err, so with a positive k_d, a decreasing + * error (i.e. driving closer to the line) results in less + * power being applied, slowing down the controller) + */ + d = mul_frac(tz->tzp->k_d, err - params->prev_err); + d = div_frac(d, tz->passive_delay); + params->prev_err = err; + + power_range = p + i + d; + + /* feed-forward the known sustainable dissipatable power */ + power_range = tz->tzp->sustainable_power + frac_to_int(power_range); + + return clamp(power_range, (s64)0, (s64)max_allocatable_power); +} + +/** + * divvy_up_power() - divvy the allocated power between the actors + * @req_power: each actor's requested power + * @max_power: each actor's maximum available power + * @num_actors: size of the @req_power, @max_power and @granted_power's array + * @total_req_power: sum of @req_power + * @power_range: total allocated power + * @granted_power: output array: each actor's granted power + * @extra_actor_power: an appropriately sized array to be used in the + * function as temporary storage of the extra power given + * to the actors + * + * This function divides the total allocated power (@power_range) + * fairly between the actors. It first tries to give each actor a + * share of the @power_range according to how much power it requested + * compared to the rest of the actors. For example, if only one actor + * requests power, then it receives all the @power_range. If + * three actors each requests 1mW, each receives a third of the + * @power_range. + * + * If any actor received more than their maximum power, then that + * surplus is re-divvied among the actors based on how far they are + * from their respective maximums. + * + * Granted power for each actor is written to @granted_power, which + * should've been allocated by the calling function. + */ +static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, + u32 total_req_power, u32 power_range, + u32 *granted_power, u32 *extra_actor_power) +{ + u32 extra_power, capped_extra_power; + int i; + + /* + * Prevent division by 0 if none of the actors request power. + */ + if (!total_req_power) + total_req_power = 1; + + capped_extra_power = 0; + extra_power = 0; + for (i = 0; i < num_actors; i++) { + u64 req_range = req_power[i] * power_range; + + granted_power[i] = div_u64(req_range, total_req_power); + + if (granted_power[i] > max_power[i]) { + extra_power += granted_power[i] - max_power[i]; + granted_power[i] = max_power[i]; + } + + extra_actor_power[i] = max_power[i] - granted_power[i]; + capped_extra_power += extra_actor_power[i]; + } + + if (!extra_power) + return; + + /* + * Re-divvy the reclaimed extra among actors based on + * how far they are from the max + */ + extra_power = min(extra_power, capped_extra_power); + if (capped_extra_power > 0) + for (i = 0; i < num_actors; i++) + granted_power[i] += (extra_actor_power[i] * + extra_power) / capped_extra_power; +} + +static int allocate_power(struct thermal_zone_device *tz, + unsigned long current_temp, + unsigned long control_temp) +{ + struct thermal_instance *instance; + struct power_allocator_params *params = tz->governor_data; + u32 *req_power, *max_power, *granted_power, *extra_actor_power; + u32 total_req_power, max_allocatable_power; + u32 power_range; + int i, num_actors, total_weight, ret = 0; + int trip_max_desired_temperature = params->trip_max_desired_temperature; + + mutex_lock(&tz->lock); + + num_actors = 0; + total_weight = 0; + list_for_each_entry(instance, &tz->thermal_instances, tz_node) { + if ((instance->trip == trip_max_desired_temperature) && + cdev_is_power_actor(instance->cdev)) { + num_actors++; + total_weight += instance->weight; + } + } + + /* + * We need to allocate three arrays of the same size: + * req_power, max_power and granted_power. They are going to + * be needed until this function returns. Allocate them all + * in one go to simplify the allocation and deallocation + * logic. + */ + BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); + BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); + BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); + req_power = devm_kcalloc(&tz->device, num_actors * 4, + sizeof(*req_power), GFP_KERNEL); + if (!req_power) { + ret = -ENOMEM; + goto unlock; + } + + max_power = &req_power[num_actors]; + granted_power = &req_power[2 * num_actors]; + extra_actor_power = &req_power[3 * num_actors]; + + i = 0; + total_req_power = 0; + max_allocatable_power = 0; + + list_for_each_entry(instance, &tz->thermal_instances, tz_node) { + int weight; + struct thermal_cooling_device *cdev = instance->cdev; + + if (instance->trip != trip_max_desired_temperature) + continue; + + if (!cdev_is_power_actor(cdev)) + continue; + + if (cdev->ops->get_requested_power(cdev, tz, &req_power[i])) + continue; + + if (!total_weight) + weight = 1 << FRAC_BITS; + else + weight = instance->weight; + + req_power[i] = frac_to_int(weight * req_power[i]); + + if (power_actor_get_max_power(cdev, tz, &max_power[i])) + continue; + + total_req_power += req_power[i]; + max_allocatable_power += max_power[i]; + + i++; + } + + power_range = pid_controller(tz, current_temp, control_temp, + max_allocatable_power); + + divvy_up_power(req_power, max_power, num_actors, total_req_power, + power_range, granted_power, extra_actor_power); + + i = 0; + list_for_each_entry(instance, &tz->thermal_instances, tz_node) { + if (instance->trip != trip_max_desired_temperature) + continue; + + if (!cdev_is_power_actor(instance->cdev)) + continue; + + power_actor_set_power(instance->cdev, instance, + granted_power[i]); + + i++; + } + + devm_kfree(&tz->device, req_power); +unlock: + mutex_unlock(&tz->lock); + + return ret; +} + +static int get_governor_trips(struct thermal_zone_device *tz, + struct power_allocator_params *params) +{ + int i, ret, last_passive; + bool found_first_passive; + + found_first_passive = false; + last_passive = -1; + ret = -EINVAL; + + for (i = 0; i < tz->trips; i++) { + enum thermal_trip_type type; + + ret = tz->ops->get_trip_type(tz, i, &type); + if (ret) + return ret; + + if (!found_first_passive) { + if (type == THERMAL_TRIP_PASSIVE) { + params->trip_switch_on = i; + found_first_passive = true; + } + } else if (type == THERMAL_TRIP_PASSIVE) { + last_passive = i; + } else { + break; + } + } + + if (last_passive != -1) { + params->trip_max_desired_temperature = last_passive; + ret = 0; + } else { + ret = -EINVAL; + } + + return ret; +} + +static void reset_pid_controller(struct power_allocator_params *params) +{ + params->err_integral = 0; + params->prev_err = 0; +} + +static void allow_maximum_power(struct thermal_zone_device *tz) +{ + struct thermal_instance *instance; + struct power_allocator_params *params = tz->governor_data; + + list_for_each_entry(instance, &tz->thermal_instances, tz_node) { + if ((instance->trip != params->trip_max_desired_temperature) || + (!cdev_is_power_actor(instance->cdev))) + continue; + + instance->target = 0; + instance->cdev->updated = false; + thermal_cdev_update(instance->cdev); + } +} + +/** + * power_allocator_bind() - bind the power_allocator governor to a thermal zone + * @tz: thermal zone to bind it to + * + * Check that the thermal zone is valid for this governor, that is, it + * has two thermal trips. If so, initialize the PID controller + * parameters and bind it to the thermal zone. + * + * Return: 0 on success, -EINVAL if the trips were invalid or -ENOMEM + * if we ran out of memory. + */ +static int power_allocator_bind(struct thermal_zone_device *tz) +{ + int ret; + struct power_allocator_params *params; + unsigned long switch_on_temp, control_temp; + u32 temperature_threshold; + + if (!tz->tzp || !tz->tzp->sustainable_power) { + dev_err(&tz->device, + "power_allocator: missing sustainable_power\n"); + return -EINVAL; + } + + params = devm_kzalloc(&tz->device, sizeof(*params), GFP_KERNEL); + if (!params) + return -ENOMEM; + + ret = get_governor_trips(tz, params); + if (ret) { + dev_err(&tz->device, + "thermal zone %s has wrong trip setup for power allocator\n", + tz->type); + goto free; + } + + ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, + &switch_on_temp); + if (ret) + goto free; + + ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, + &control_temp); + if (ret) + goto free; + + temperature_threshold = control_temp - switch_on_temp; + + tz->tzp->k_po = tz->tzp->k_po ?: + int_to_frac(tz->tzp->sustainable_power) / temperature_threshold; + tz->tzp->k_pu = tz->tzp->k_pu ?: + int_to_frac(2 * tz->tzp->sustainable_power) / + temperature_threshold; + tz->tzp->k_i = tz->tzp->k_i ?: int_to_frac(10) / 1000; + /* + * The default for k_d and integral_cutoff is 0, so we can + * leave them as they are. + */ + + reset_pid_controller(params); + + tz->governor_data = params; + + return 0; + +free: + devm_kfree(&tz->device, params); + return ret; +} + +static void power_allocator_unbind(struct thermal_zone_device *tz) +{ + dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); + devm_kfree(&tz->device, tz->governor_data); + tz->governor_data = NULL; +} + +static int power_allocator_throttle(struct thermal_zone_device *tz, int trip) +{ + int ret; + unsigned long switch_on_temp, control_temp, current_temp; + struct power_allocator_params *params = tz->governor_data; + + /* + * We get called for every trip point but we only need to do + * our calculations once + */ + if (trip != params->trip_max_desired_temperature) + return 0; + + ret = thermal_zone_get_temp(tz, ¤t_temp); + if (ret) { + dev_warn(&tz->device, "Failed to get temperature: %d\n", ret); + return ret; + } + + ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, + &switch_on_temp); + if (ret) { + dev_warn(&tz->device, + "Failed to get switch on temperature: %d\n", ret); + return ret; + } + + if (current_temp < switch_on_temp) { + tz->passive = 0; + reset_pid_controller(params); + allow_maximum_power(tz); + return 0; + } + + tz->passive = 1; + + ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, + &control_temp); + if (ret) { + dev_warn(&tz->device, + "Failed to get the maximum desired temperature: %d\n", + ret); + return ret; + } + + return allocate_power(tz, current_temp, control_temp); +} + +static struct thermal_governor thermal_gov_power_allocator = { + .name = "power_allocator", + .bind_to_tz = power_allocator_bind, + .unbind_from_tz = power_allocator_unbind, + .throttle = power_allocator_throttle, +}; + +int thermal_gov_power_allocator_register(void) +{ + return thermal_register_governor(&thermal_gov_power_allocator); +} + +void thermal_gov_power_allocator_unregister(void) +{ + thermal_unregister_governor(&thermal_gov_power_allocator); +} diff --git a/drivers/thermal/thermal_core.c b/drivers/thermal/thermal_core.c index 263628b0e862..b389bc2ec0fa 100644 --- a/drivers/thermal/thermal_core.c +++ b/drivers/thermal/thermal_core.c @@ -1616,7 +1616,7 @@ static void remove_trip_attrs(struct thermal_zone_device *tz) struct thermal_zone_device *thermal_zone_device_register(const char *type, int trips, int mask, void *devdata, struct thermal_zone_device_ops *ops, - const struct thermal_zone_params *tzp, + struct thermal_zone_params *tzp, int passive_delay, int polling_delay) { struct thermal_zone_device *tz; @@ -1968,7 +1968,11 @@ static int __init thermal_register_governors(void) if (result) return result; - return thermal_gov_user_space_register(); + result = thermal_gov_user_space_register(); + if (result) + return result; + + return thermal_gov_power_allocator_register(); } static void thermal_unregister_governors(void) @@ -1977,6 +1981,7 @@ static void thermal_unregister_governors(void) thermal_gov_fair_share_unregister(); thermal_gov_bang_bang_unregister(); thermal_gov_user_space_unregister(); + thermal_gov_power_allocator_unregister(); } static int __init thermal_init(void) diff --git a/drivers/thermal/thermal_core.h b/drivers/thermal/thermal_core.h index faebe881f062..8a6624488cc5 100644 --- a/drivers/thermal/thermal_core.h +++ b/drivers/thermal/thermal_core.h @@ -88,6 +88,14 @@ static inline int thermal_gov_user_space_register(void) { return 0; } static inline void thermal_gov_user_space_unregister(void) {} #endif /* CONFIG_THERMAL_GOV_USER_SPACE */ +#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR +int thermal_gov_power_allocator_register(void); +void thermal_gov_power_allocator_unregister(void); +#else +static inline int thermal_gov_power_allocator_register(void) { return 0; } +static inline void thermal_gov_power_allocator_unregister(void) {} +#endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */ + /* device tree support */ #ifdef CONFIG_THERMAL_OF int of_parse_thermal_zones(void); diff --git a/include/linux/thermal.h b/include/linux/thermal.h index bf3c55f405c2..6bbe11c97cea 100644 --- a/include/linux/thermal.h +++ b/include/linux/thermal.h @@ -59,6 +59,8 @@ #define DEFAULT_THERMAL_GOVERNOR "fair_share" #elif defined(CONFIG_THERMAL_DEFAULT_GOV_USER_SPACE) #define DEFAULT_THERMAL_GOVERNOR "user_space" +#elif defined(CONFIG_THERMAL_DEFAULT_GOV_POWER_ALLOCATOR) +#define DEFAULT_THERMAL_GOVERNOR "power_allocator" #endif struct thermal_zone_device; @@ -154,8 +156,7 @@ struct thermal_attr { * @devdata: private pointer for device private data * @trips: number of trip points the thermal zone supports * @passive_delay: number of milliseconds to wait between polls when - * performing passive cooling. Currenty only used by the - * step-wise governor + * performing passive cooling. * @polling_delay: number of milliseconds to wait between polls when * checking whether trip points have been crossed (0 for * interrupt driven systems) @@ -165,7 +166,6 @@ struct thermal_attr { * @last_temperature: previous temperature read * @emul_temperature: emulated temperature when using CONFIG_THERMAL_EMULATION * @passive: 1 if you've crossed a passive trip point, 0 otherwise. - * Currenty only used by the step-wise governor. * @forced_passive: If > 0, temperature at which to switch on all ACPI * processor cooling devices. Currently only used by the * step-wise governor. @@ -197,7 +197,7 @@ struct thermal_zone_device { int passive; unsigned int forced_passive; struct thermal_zone_device_ops *ops; - const struct thermal_zone_params *tzp; + struct thermal_zone_params *tzp; struct thermal_governor *governor; void *governor_data; struct list_head thermal_instances; @@ -275,6 +275,33 @@ struct thermal_zone_params { int num_tbps; /* Number of tbp entries */ struct thermal_bind_params *tbp; + + /* + * Sustainable power (heat) that this thermal zone can dissipate in + * mW + */ + u32 sustainable_power; + + /* + * Proportional parameter of the PID controller when + * overshooting (i.e., when temperature is below the target) + */ + s32 k_po; + + /* + * Proportional parameter of the PID controller when + * undershooting + */ + s32 k_pu; + + /* Integral parameter of the PID controller */ + s32 k_i; + + /* Derivative parameter of the PID controller */ + s32 k_d; + + /* threshold below which the error is no longer accumulated */ + s32 integral_cutoff; }; struct thermal_genl_event { @@ -350,7 +377,7 @@ int power_actor_set_power(struct thermal_cooling_device *, struct thermal_instance *, u32); struct thermal_zone_device *thermal_zone_device_register(const char *, int, int, void *, struct thermal_zone_device_ops *, - const struct thermal_zone_params *, int, int); + struct thermal_zone_params *, int, int); void thermal_zone_device_unregister(struct thermal_zone_device *); int thermal_zone_bind_cooling_device(struct thermal_zone_device *, int,