diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 10f84c3c6769..471193bdd4b7 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -4781,6 +4781,33 @@ next: done: return target; } +/* + * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS + * tasks. The unit of the return value must be the one of capacity so we can + * compare the usage with the capacity of the CPU that is available for CFS + * task (ie cpu_capacity). + * cfs.utilization_load_avg is the sum of running time of runnable tasks on a + * CPU. It represents the amount of utilization of a CPU in the range + * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full + * capacity of the CPU because it's about the running time on this CPU. + * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE + * because of unfortunate rounding in avg_period and running_load_avg or just + * after migrating tasks until the average stabilizes with the new running + * time. So we need to check that the usage stays into the range + * [0..cpu_capacity_orig] and cap if necessary. + * Without capping the usage, a group could be seen as overloaded (CPU0 usage + * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity + */ +static int get_cpu_usage(int cpu) +{ + unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg; + unsigned long capacity = capacity_orig_of(cpu); + + if (usage >= SCHED_LOAD_SCALE) + return capacity; + + return (usage * capacity) >> SCHED_LOAD_SHIFT; +} /* * select_task_rq_fair: Select target runqueue for the waking task in domains @@ -5907,6 +5934,7 @@ struct sg_lb_stats { unsigned long sum_weighted_load; /* Weighted load of group's tasks */ unsigned long load_per_task; unsigned long group_capacity; + unsigned long group_usage; /* Total usage of the group */ unsigned int sum_nr_running; /* Nr tasks running in the group */ unsigned int group_capacity_factor; unsigned int idle_cpus; @@ -6255,6 +6283,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, load = source_load(i, load_idx); sgs->group_load += load; + sgs->group_usage += get_cpu_usage(i); sgs->sum_nr_running += rq->cfs.h_nr_running; if (rq->nr_running > 1)