Keyrings changes
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAl7WfNsACgkQ+7dXa6fL C2t5ag//Qn+FR6IGeGOig9mDE5IVqY/CUB15xjYYO28aV5bjOBFmwhFVKjbJfzX5 jOO11pGMbVkkNavsEXxw4DA5LXXpFG7frub9DysO5xDU8dTvHB2Cov1jQOFP76Hf Gx91Xq0W8FE51genxy7Wp1BFxU/OPX3K1+LoE7ocDKTq5ctdZhZP8Fgr6Ip+1Tdi ECbRGpWP54V6+KO8RfayiEF4E7Hry+NT/5ogSbAMTHLnZyMpqjCPGxhEa11vfr/v ZVQ0Esp7rBJdLw6gYWf6TDYuwARiKo2LDQFQnGyvf0QUZSfDtoTdQihszHmalcBE Uh+6B+BlKQX8VPqsgw8yEgXqFzf8sw5WpwfeQFkS3Pn8J90R9S3q//4kNfNOgeZV ydqWG1VCORwm+X/8rAy8l0lXlA/JR++B7T7kvdM6Yslt5SB/4KQigS7n2tlp6+Ms 9SwUf2GnGBJWS4kFCgEkSP6QAP9wimGkqZx+rwYytqnjCc/X18FUrRge99o2MHcs kHGHvok4dy/BPHap4GAoFZbfvg7LuU2SwRfNdMRB87sUi7dqqYvUiy0OGLmDuK3X 7lvuJpmEjKkHFSUXRlV9yvvZdciJ/k+VoKOZf/oEQE4t2m0rsCQcCOlljwpLKaED m1dQzEq1OkgA2goCnHehR+Fkq61JWkUGrM+jbPmu8Chg9psuqIs= =RnLl -----END PGP SIGNATURE----- Merge tag 'keys-next-20200602' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull keyring updates from David Howells: - Fix a documentation warning. - Replace a zero-length array with a flexible one - Make the big_key key type use ChaCha20Poly1305 and use the crypto algorithm directly rather than going through the crypto layer. - Implement the update op for the big_key type. * tag 'keys-next-20200602' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: keys: Implement update for the big_key type security/keys: rewrite big_key crypto to use library interface KEYS: Replace zero-length array with flexible-array Documentation: security: core.rst: add missing argument
This commit is contained in:
commit
a484a497c9
@ -920,10 +920,14 @@ The keyctl syscall functions are:
|
||||
|
||||
long keyctl(KEYCTL_PKEY_QUERY,
|
||||
key_serial_t key_id, unsigned long reserved,
|
||||
const char *params,
|
||||
struct keyctl_pkey_query *info);
|
||||
|
||||
Get information about an asymmetric key. The information is returned in
|
||||
the keyctl_pkey_query struct::
|
||||
Get information about an asymmetric key. Specific algorithms and
|
||||
encodings may be queried by using the ``params`` argument. This is a
|
||||
string containing a space- or tab-separated string of key-value pairs.
|
||||
Currently supported keys include ``enc`` and ``hash``. The information
|
||||
is returned in the keyctl_pkey_query struct::
|
||||
|
||||
__u32 supported_ops;
|
||||
__u32 key_size;
|
||||
|
@ -18,5 +18,6 @@ extern void big_key_revoke(struct key *key);
|
||||
extern void big_key_destroy(struct key *key);
|
||||
extern void big_key_describe(const struct key *big_key, struct seq_file *m);
|
||||
extern long big_key_read(const struct key *key, char *buffer, size_t buflen);
|
||||
extern int big_key_update(struct key *key, struct key_preparsed_payload *prep);
|
||||
|
||||
#endif /* _KEYS_BIG_KEY_TYPE_H */
|
||||
|
@ -27,7 +27,7 @@
|
||||
struct user_key_payload {
|
||||
struct rcu_head rcu; /* RCU destructor */
|
||||
unsigned short datalen; /* length of this data */
|
||||
char data[0] __aligned(__alignof__(u64)); /* actual data */
|
||||
char data[] __aligned(__alignof__(u64)); /* actual data */
|
||||
};
|
||||
|
||||
extern struct key_type key_type_user;
|
||||
|
@ -60,9 +60,7 @@ config BIG_KEYS
|
||||
bool "Large payload keys"
|
||||
depends on KEYS
|
||||
depends on TMPFS
|
||||
select CRYPTO
|
||||
select CRYPTO_AES
|
||||
select CRYPTO_GCM
|
||||
depends on CRYPTO_LIB_CHACHA20POLY1305 = y
|
||||
help
|
||||
This option provides support for holding large keys within the kernel
|
||||
(for example Kerberos ticket caches). The data may be stored out to
|
||||
|
@ -1,7 +1,7 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
/* Large capacity key type
|
||||
*
|
||||
* Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
||||
* Copyright (C) 2017-2020 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
||||
* Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
|
||||
* Written by David Howells (dhowells@redhat.com)
|
||||
*/
|
||||
@ -12,20 +12,10 @@
|
||||
#include <linux/file.h>
|
||||
#include <linux/shmem_fs.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/random.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <keys/user-type.h>
|
||||
#include <keys/big_key-type.h>
|
||||
#include <crypto/aead.h>
|
||||
#include <crypto/gcm.h>
|
||||
|
||||
struct big_key_buf {
|
||||
unsigned int nr_pages;
|
||||
void *virt;
|
||||
struct scatterlist *sg;
|
||||
struct page *pages[];
|
||||
};
|
||||
#include <crypto/chacha20poly1305.h>
|
||||
|
||||
/*
|
||||
* Layout of key payload words.
|
||||
@ -37,14 +27,6 @@ enum {
|
||||
big_key_len,
|
||||
};
|
||||
|
||||
/*
|
||||
* Crypto operation with big_key data
|
||||
*/
|
||||
enum big_key_op {
|
||||
BIG_KEY_ENC,
|
||||
BIG_KEY_DEC,
|
||||
};
|
||||
|
||||
/*
|
||||
* If the data is under this limit, there's no point creating a shm file to
|
||||
* hold it as the permanently resident metadata for the shmem fs will be at
|
||||
@ -52,16 +34,6 @@ enum big_key_op {
|
||||
*/
|
||||
#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
|
||||
|
||||
/*
|
||||
* Key size for big_key data encryption
|
||||
*/
|
||||
#define ENC_KEY_SIZE 32
|
||||
|
||||
/*
|
||||
* Authentication tag length
|
||||
*/
|
||||
#define ENC_AUTHTAG_SIZE 16
|
||||
|
||||
/*
|
||||
* big_key defined keys take an arbitrary string as the description and an
|
||||
* arbitrary blob of data as the payload
|
||||
@ -75,136 +47,20 @@ struct key_type key_type_big_key = {
|
||||
.destroy = big_key_destroy,
|
||||
.describe = big_key_describe,
|
||||
.read = big_key_read,
|
||||
/* no ->update(); don't add it without changing big_key_crypt() nonce */
|
||||
.update = big_key_update,
|
||||
};
|
||||
|
||||
/*
|
||||
* Crypto names for big_key data authenticated encryption
|
||||
*/
|
||||
static const char big_key_alg_name[] = "gcm(aes)";
|
||||
#define BIG_KEY_IV_SIZE GCM_AES_IV_SIZE
|
||||
|
||||
/*
|
||||
* Crypto algorithms for big_key data authenticated encryption
|
||||
*/
|
||||
static struct crypto_aead *big_key_aead;
|
||||
|
||||
/*
|
||||
* Since changing the key affects the entire object, we need a mutex.
|
||||
*/
|
||||
static DEFINE_MUTEX(big_key_aead_lock);
|
||||
|
||||
/*
|
||||
* Encrypt/decrypt big_key data
|
||||
*/
|
||||
static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
|
||||
{
|
||||
int ret;
|
||||
struct aead_request *aead_req;
|
||||
/* We always use a zero nonce. The reason we can get away with this is
|
||||
* because we're using a different randomly generated key for every
|
||||
* different encryption. Notably, too, key_type_big_key doesn't define
|
||||
* an .update function, so there's no chance we'll wind up reusing the
|
||||
* key to encrypt updated data. Simply put: one key, one encryption.
|
||||
*/
|
||||
u8 zero_nonce[BIG_KEY_IV_SIZE];
|
||||
|
||||
aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
|
||||
if (!aead_req)
|
||||
return -ENOMEM;
|
||||
|
||||
memset(zero_nonce, 0, sizeof(zero_nonce));
|
||||
aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
|
||||
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
|
||||
aead_request_set_ad(aead_req, 0);
|
||||
|
||||
mutex_lock(&big_key_aead_lock);
|
||||
if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
|
||||
ret = -EAGAIN;
|
||||
goto error;
|
||||
}
|
||||
if (op == BIG_KEY_ENC)
|
||||
ret = crypto_aead_encrypt(aead_req);
|
||||
else
|
||||
ret = crypto_aead_decrypt(aead_req);
|
||||
error:
|
||||
mutex_unlock(&big_key_aead_lock);
|
||||
aead_request_free(aead_req);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free up the buffer.
|
||||
*/
|
||||
static void big_key_free_buffer(struct big_key_buf *buf)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
if (buf->virt) {
|
||||
memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
|
||||
vunmap(buf->virt);
|
||||
}
|
||||
|
||||
for (i = 0; i < buf->nr_pages; i++)
|
||||
if (buf->pages[i])
|
||||
__free_page(buf->pages[i]);
|
||||
|
||||
kfree(buf);
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a buffer consisting of a set of pages with a virtual mapping
|
||||
* applied over them.
|
||||
*/
|
||||
static void *big_key_alloc_buffer(size_t len)
|
||||
{
|
||||
struct big_key_buf *buf;
|
||||
unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
||||
unsigned int i, l;
|
||||
|
||||
buf = kzalloc(sizeof(struct big_key_buf) +
|
||||
sizeof(struct page) * npg +
|
||||
sizeof(struct scatterlist) * npg,
|
||||
GFP_KERNEL);
|
||||
if (!buf)
|
||||
return NULL;
|
||||
|
||||
buf->nr_pages = npg;
|
||||
buf->sg = (void *)(buf->pages + npg);
|
||||
sg_init_table(buf->sg, npg);
|
||||
|
||||
for (i = 0; i < buf->nr_pages; i++) {
|
||||
buf->pages[i] = alloc_page(GFP_KERNEL);
|
||||
if (!buf->pages[i])
|
||||
goto nomem;
|
||||
|
||||
l = min_t(size_t, len, PAGE_SIZE);
|
||||
sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
|
||||
len -= l;
|
||||
}
|
||||
|
||||
buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
|
||||
if (!buf->virt)
|
||||
goto nomem;
|
||||
|
||||
return buf;
|
||||
|
||||
nomem:
|
||||
big_key_free_buffer(buf);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Preparse a big key
|
||||
*/
|
||||
int big_key_preparse(struct key_preparsed_payload *prep)
|
||||
{
|
||||
struct big_key_buf *buf;
|
||||
struct path *path = (struct path *)&prep->payload.data[big_key_path];
|
||||
struct file *file;
|
||||
u8 *enckey;
|
||||
u8 *buf, *enckey;
|
||||
ssize_t written;
|
||||
size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
|
||||
size_t datalen = prep->datalen;
|
||||
size_t enclen = datalen + CHACHA20POLY1305_AUTHTAG_SIZE;
|
||||
int ret;
|
||||
|
||||
if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
|
||||
@ -220,28 +76,28 @@ int big_key_preparse(struct key_preparsed_payload *prep)
|
||||
* to be swapped out if needed.
|
||||
*
|
||||
* File content is stored encrypted with randomly generated key.
|
||||
* Since the key is random for each file, we can set the nonce
|
||||
* to zero, provided we never define a ->update() call.
|
||||
*/
|
||||
loff_t pos = 0;
|
||||
|
||||
buf = big_key_alloc_buffer(enclen);
|
||||
buf = kvmalloc(enclen, GFP_KERNEL);
|
||||
if (!buf)
|
||||
return -ENOMEM;
|
||||
memcpy(buf->virt, prep->data, datalen);
|
||||
|
||||
/* generate random key */
|
||||
enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
|
||||
enckey = kmalloc(CHACHA20POLY1305_KEY_SIZE, GFP_KERNEL);
|
||||
if (!enckey) {
|
||||
ret = -ENOMEM;
|
||||
goto error;
|
||||
}
|
||||
ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
|
||||
ret = get_random_bytes_wait(enckey, CHACHA20POLY1305_KEY_SIZE);
|
||||
if (unlikely(ret))
|
||||
goto err_enckey;
|
||||
|
||||
/* encrypt aligned data */
|
||||
ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
|
||||
if (ret)
|
||||
goto err_enckey;
|
||||
/* encrypt data */
|
||||
chacha20poly1305_encrypt(buf, prep->data, datalen, NULL, 0,
|
||||
0, enckey);
|
||||
|
||||
/* save aligned data to file */
|
||||
file = shmem_kernel_file_setup("", enclen, 0);
|
||||
@ -250,11 +106,11 @@ int big_key_preparse(struct key_preparsed_payload *prep)
|
||||
goto err_enckey;
|
||||
}
|
||||
|
||||
written = kernel_write(file, buf->virt, enclen, &pos);
|
||||
written = kernel_write(file, buf, enclen, &pos);
|
||||
if (written != enclen) {
|
||||
ret = written;
|
||||
if (written >= 0)
|
||||
ret = -ENOMEM;
|
||||
ret = -EIO;
|
||||
goto err_fput;
|
||||
}
|
||||
|
||||
@ -265,7 +121,8 @@ int big_key_preparse(struct key_preparsed_payload *prep)
|
||||
*path = file->f_path;
|
||||
path_get(path);
|
||||
fput(file);
|
||||
big_key_free_buffer(buf);
|
||||
memzero_explicit(buf, enclen);
|
||||
kvfree(buf);
|
||||
} else {
|
||||
/* Just store the data in a buffer */
|
||||
void *data = kmalloc(datalen, GFP_KERNEL);
|
||||
@ -283,7 +140,8 @@ err_fput:
|
||||
err_enckey:
|
||||
kzfree(enckey);
|
||||
error:
|
||||
big_key_free_buffer(buf);
|
||||
memzero_explicit(buf, enclen);
|
||||
kvfree(buf);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -333,6 +191,23 @@ void big_key_destroy(struct key *key)
|
||||
key->payload.data[big_key_data] = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update a big key
|
||||
*/
|
||||
int big_key_update(struct key *key, struct key_preparsed_payload *prep)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = key_payload_reserve(key, prep->datalen);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
if (key_is_positive(key))
|
||||
big_key_destroy(key);
|
||||
|
||||
return generic_key_instantiate(key, prep);
|
||||
}
|
||||
|
||||
/*
|
||||
* describe the big_key key
|
||||
*/
|
||||
@ -361,14 +236,13 @@ long big_key_read(const struct key *key, char *buffer, size_t buflen)
|
||||
return datalen;
|
||||
|
||||
if (datalen > BIG_KEY_FILE_THRESHOLD) {
|
||||
struct big_key_buf *buf;
|
||||
struct path *path = (struct path *)&key->payload.data[big_key_path];
|
||||
struct file *file;
|
||||
u8 *enckey = (u8 *)key->payload.data[big_key_data];
|
||||
size_t enclen = datalen + ENC_AUTHTAG_SIZE;
|
||||
u8 *buf, *enckey = (u8 *)key->payload.data[big_key_data];
|
||||
size_t enclen = datalen + CHACHA20POLY1305_AUTHTAG_SIZE;
|
||||
loff_t pos = 0;
|
||||
|
||||
buf = big_key_alloc_buffer(enclen);
|
||||
buf = kvmalloc(enclen, GFP_KERNEL);
|
||||
if (!buf)
|
||||
return -ENOMEM;
|
||||
|
||||
@ -379,25 +253,28 @@ long big_key_read(const struct key *key, char *buffer, size_t buflen)
|
||||
}
|
||||
|
||||
/* read file to kernel and decrypt */
|
||||
ret = kernel_read(file, buf->virt, enclen, &pos);
|
||||
if (ret >= 0 && ret != enclen) {
|
||||
ret = -EIO;
|
||||
ret = kernel_read(file, buf, enclen, &pos);
|
||||
if (ret != enclen) {
|
||||
if (ret >= 0)
|
||||
ret = -EIO;
|
||||
goto err_fput;
|
||||
}
|
||||
|
||||
ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
|
||||
if (ret)
|
||||
ret = chacha20poly1305_decrypt(buf, buf, enclen, NULL, 0, 0,
|
||||
enckey) ? 0 : -EBADMSG;
|
||||
if (unlikely(ret))
|
||||
goto err_fput;
|
||||
|
||||
ret = datalen;
|
||||
|
||||
/* copy out decrypted data */
|
||||
memcpy(buffer, buf->virt, datalen);
|
||||
memcpy(buffer, buf, datalen);
|
||||
|
||||
err_fput:
|
||||
fput(file);
|
||||
error:
|
||||
big_key_free_buffer(buf);
|
||||
memzero_explicit(buf, enclen);
|
||||
kvfree(buf);
|
||||
} else {
|
||||
ret = datalen;
|
||||
memcpy(buffer, key->payload.data[big_key_data], datalen);
|
||||
@ -411,39 +288,7 @@ error:
|
||||
*/
|
||||
static int __init big_key_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* init block cipher */
|
||||
big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
|
||||
if (IS_ERR(big_key_aead)) {
|
||||
ret = PTR_ERR(big_key_aead);
|
||||
pr_err("Can't alloc crypto: %d\n", ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) {
|
||||
WARN(1, "big key algorithm changed?");
|
||||
ret = -EINVAL;
|
||||
goto free_aead;
|
||||
}
|
||||
|
||||
ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
|
||||
if (ret < 0) {
|
||||
pr_err("Can't set crypto auth tag len: %d\n", ret);
|
||||
goto free_aead;
|
||||
}
|
||||
|
||||
ret = register_key_type(&key_type_big_key);
|
||||
if (ret < 0) {
|
||||
pr_err("Can't register type: %d\n", ret);
|
||||
goto free_aead;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
free_aead:
|
||||
crypto_free_aead(big_key_aead);
|
||||
return ret;
|
||||
return register_key_type(&key_type_big_key);
|
||||
}
|
||||
|
||||
late_initcall(big_key_init);
|
||||
|
Loading…
Reference in New Issue
Block a user