crypto: sha256 - Fix some coding style issues

For some reason after the first 15 steps the last statement of each
step ends with "t1+t2", missing spaces around the "+". This commit
fixes this. This was done with a 's/= t1+t2/= t1 + t2/' to make sure
no functional changes are introduced.

Note the main goal of this is to make lib/sha256.c's sha256_transform
and its helpers identical in formatting too the duplcate implementation
in crypto/sha256_generic.c so that "diff -u" can be used to compare them
to prove that no functional changes are made when further patches in
this series consolidate the 2 implementations into 1.

Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Hans de Goede 2019-08-17 16:24:29 +02:00 committed by Herbert Xu
parent 2396684193
commit aca1111965

View File

@ -92,109 +92,109 @@ static void sha256_transform(u32 *state, const u8 *input)
t1 = b + e1(g) + Ch(g, h, a) + 0x9bdc06a7 + W[14];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + 0xc19bf174 + W[15];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
t1 = h + e1(e) + Ch(e, f, g) + 0xe49b69c1 + W[16];
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
t1 = g + e1(d) + Ch(d, e, f) + 0xefbe4786 + W[17];
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
t1 = f + e1(c) + Ch(c, d, e) + 0x0fc19dc6 + W[18];
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
t1 = e + e1(b) + Ch(b, c, d) + 0x240ca1cc + W[19];
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
t1 = d + e1(a) + Ch(a, b, c) + 0x2de92c6f + W[20];
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
t1 = c + e1(h) + Ch(h, a, b) + 0x4a7484aa + W[21];
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
t1 = b + e1(g) + Ch(g, h, a) + 0x5cb0a9dc + W[22];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + 0x76f988da + W[23];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
t1 = h + e1(e) + Ch(e, f, g) + 0x983e5152 + W[24];
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
t1 = g + e1(d) + Ch(d, e, f) + 0xa831c66d + W[25];
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
t1 = f + e1(c) + Ch(c, d, e) + 0xb00327c8 + W[26];
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
t1 = e + e1(b) + Ch(b, c, d) + 0xbf597fc7 + W[27];
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
t1 = d + e1(a) + Ch(a, b, c) + 0xc6e00bf3 + W[28];
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
t1 = c + e1(h) + Ch(h, a, b) + 0xd5a79147 + W[29];
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
t1 = b + e1(g) + Ch(g, h, a) + 0x06ca6351 + W[30];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + 0x14292967 + W[31];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
t1 = h + e1(e) + Ch(e, f, g) + 0x27b70a85 + W[32];
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
t1 = g + e1(d) + Ch(d, e, f) + 0x2e1b2138 + W[33];
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
t1 = f + e1(c) + Ch(c, d, e) + 0x4d2c6dfc + W[34];
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
t1 = e + e1(b) + Ch(b, c, d) + 0x53380d13 + W[35];
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
t1 = d + e1(a) + Ch(a, b, c) + 0x650a7354 + W[36];
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
t1 = c + e1(h) + Ch(h, a, b) + 0x766a0abb + W[37];
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
t1 = b + e1(g) + Ch(g, h, a) + 0x81c2c92e + W[38];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + 0x92722c85 + W[39];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
t1 = h + e1(e) + Ch(e, f, g) + 0xa2bfe8a1 + W[40];
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
t1 = g + e1(d) + Ch(d, e, f) + 0xa81a664b + W[41];
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
t1 = f + e1(c) + Ch(c, d, e) + 0xc24b8b70 + W[42];
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
t1 = e + e1(b) + Ch(b, c, d) + 0xc76c51a3 + W[43];
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
t1 = d + e1(a) + Ch(a, b, c) + 0xd192e819 + W[44];
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
t1 = c + e1(h) + Ch(h, a, b) + 0xd6990624 + W[45];
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
t1 = b + e1(g) + Ch(g, h, a) + 0xf40e3585 + W[46];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + 0x106aa070 + W[47];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
t1 = h + e1(e) + Ch(e, f, g) + 0x19a4c116 + W[48];
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
t1 = g + e1(d) + Ch(d, e, f) + 0x1e376c08 + W[49];
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
t1 = f + e1(c) + Ch(c, d, e) + 0x2748774c + W[50];
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
t1 = e + e1(b) + Ch(b, c, d) + 0x34b0bcb5 + W[51];
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
t1 = d + e1(a) + Ch(a, b, c) + 0x391c0cb3 + W[52];
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
t1 = c + e1(h) + Ch(h, a, b) + 0x4ed8aa4a + W[53];
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
t1 = b + e1(g) + Ch(g, h, a) + 0x5b9cca4f + W[54];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + 0x682e6ff3 + W[55];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
t1 = h + e1(e) + Ch(e, f, g) + 0x748f82ee + W[56];
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1+t2;
t2 = e0(a) + Maj(a, b, c); d += t1; h = t1 + t2;
t1 = g + e1(d) + Ch(d, e, f) + 0x78a5636f + W[57];
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1+t2;
t2 = e0(h) + Maj(h, a, b); c += t1; g = t1 + t2;
t1 = f + e1(c) + Ch(c, d, e) + 0x84c87814 + W[58];
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1+t2;
t2 = e0(g) + Maj(g, h, a); b += t1; f = t1 + t2;
t1 = e + e1(b) + Ch(b, c, d) + 0x8cc70208 + W[59];
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1+t2;
t2 = e0(f) + Maj(f, g, h); a += t1; e = t1 + t2;
t1 = d + e1(a) + Ch(a, b, c) + 0x90befffa + W[60];
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1+t2;
t2 = e0(e) + Maj(e, f, g); h += t1; d = t1 + t2;
t1 = c + e1(h) + Ch(h, a, b) + 0xa4506ceb + W[61];
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1+t2;
t2 = e0(d) + Maj(d, e, f); g += t1; c = t1 + t2;
t1 = b + e1(g) + Ch(g, h, a) + 0xbef9a3f7 + W[62];
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1+t2;
t2 = e0(c) + Maj(c, d, e); f += t1; b = t1 + t2;
t1 = a + e1(f) + Ch(f, g, h) + 0xc67178f2 + W[63];
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1+t2;
t2 = e0(b) + Maj(b, c, d); e += t1; a = t1 + t2;
state[0] += a; state[1] += b; state[2] += c; state[3] += d;
state[4] += e; state[5] += f; state[6] += g; state[7] += h;