[PATCH] kdump: Documentation for Kdump
This patch contains the documentation for the kexec based crash dump tool. Quick kdump-howto ================================================================ 1) Download and build kexec-tools. 2) Download and build the latest kexec/kdump (-mm) kernel patchset. Two kernels need to be built in order to get this feature working. A) First kernel: a) Enable "kexec system call" feature: CONFIG_KEXEC=y b) Physical load address (use default): CONFIG_PHYSICAL_START=0x100000 c) Enable "sysfs file system support": CONFIG_SYSFS=y d) Boot into first kernel with the command line parameter "crashkernel=Y@X": For example: "crashkernel=64M@16M". B) Second kernel: a) Enable "kernel crash dumps" feature: CONFIG_CRASH_DUMP=y b) Physical load addreess, use same load address as X in "crashkernel" kernel parameter in d) above, e.g., 16 MB or 0x1000000. CONFIG_PHYSICAL_START=0x1000000 c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems). CONFIG_PROC_VMCORE=y 3) Boot into the first kernel. 4) Load the second kernel to be booted using: kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev> maxcpus=1 init 1" 5) System reboots into the second kernel when a panic occurs. A module can be written to force the panic, for testing purposes. 6) See Documentation/kdump.txt for how to read the first kernel's memory image and how to analyze it. Signed-off-by: Hariprasad Nellitheertha <hari@in.ibm.com> Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: randy_dunlap <rdunlap@xenotime.net> Signed-off-by: Maneesh Soni <maneesh@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
a3ea8ac846
commit
b089f4a68e
@ -138,6 +138,8 @@ java.txt
|
||||
- info on the in-kernel binary support for Java(tm).
|
||||
kbuild/
|
||||
- directory with info about the kernel build process.
|
||||
kdumpt.txt
|
||||
- mini HowTo on getting the crash dump code to work.
|
||||
kernel-doc-nano-HOWTO.txt
|
||||
- mini HowTo on generation and location of kernel documentation files.
|
||||
kernel-docs.txt
|
||||
|
179
Documentation/kdump/gdbmacros.txt
Normal file
179
Documentation/kdump/gdbmacros.txt
Normal file
@ -0,0 +1,179 @@
|
||||
#
|
||||
# This file contains a few gdb macros (user defined commands) to extract
|
||||
# useful information from kernel crashdump (kdump) like stack traces of
|
||||
# all the processes or a particular process and trapinfo.
|
||||
#
|
||||
# These macros can be used by copying this file in .gdbinit (put in home
|
||||
# directory or current directory) or by invoking gdb command with
|
||||
# --command=<command-file-name> option
|
||||
#
|
||||
# Credits:
|
||||
# Alexander Nyberg <alexn@telia.com>
|
||||
# V Srivatsa <vatsa@in.ibm.com>
|
||||
# Maneesh Soni <maneesh@in.ibm.com>
|
||||
#
|
||||
|
||||
define bttnobp
|
||||
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
|
||||
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
|
||||
set $init_t=&init_task
|
||||
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
|
||||
while ($next_t != $init_t)
|
||||
set $next_t=(struct task_struct *)$next_t
|
||||
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
|
||||
printf "===================\n"
|
||||
set var $stackp = $next_t.thread.esp
|
||||
set var $stack_top = ($stackp & ~4095) + 4096
|
||||
|
||||
while ($stackp < $stack_top)
|
||||
if (*($stackp) > _stext && *($stackp) < _sinittext)
|
||||
info symbol *($stackp)
|
||||
end
|
||||
set $stackp += 4
|
||||
end
|
||||
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
|
||||
while ($next_th != $next_t)
|
||||
set $next_th=(struct task_struct *)$next_th
|
||||
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
|
||||
printf "===================\n"
|
||||
set var $stackp = $next_t.thread.esp
|
||||
set var $stack_top = ($stackp & ~4095) + 4096
|
||||
|
||||
while ($stackp < $stack_top)
|
||||
if (*($stackp) > _stext && *($stackp) < _sinittext)
|
||||
info symbol *($stackp)
|
||||
end
|
||||
set $stackp += 4
|
||||
end
|
||||
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
|
||||
end
|
||||
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
|
||||
end
|
||||
end
|
||||
document bttnobp
|
||||
dump all thread stack traces on a kernel compiled with !CONFIG_FRAME_POINTER
|
||||
end
|
||||
|
||||
define btt
|
||||
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
|
||||
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
|
||||
set $init_t=&init_task
|
||||
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
|
||||
while ($next_t != $init_t)
|
||||
set $next_t=(struct task_struct *)$next_t
|
||||
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
|
||||
printf "===================\n"
|
||||
set var $stackp = $next_t.thread.esp
|
||||
set var $stack_top = ($stackp & ~4095) + 4096
|
||||
set var $stack_bot = ($stackp & ~4095)
|
||||
|
||||
set $stackp = *($stackp)
|
||||
while (($stackp < $stack_top) && ($stackp > $stack_bot))
|
||||
set var $addr = *($stackp + 4)
|
||||
info symbol $addr
|
||||
set $stackp = *($stackp)
|
||||
end
|
||||
|
||||
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
|
||||
while ($next_th != $next_t)
|
||||
set $next_th=(struct task_struct *)$next_th
|
||||
printf "\npid %d; comm %s:\n", $next_t.pid, $next_t.comm
|
||||
printf "===================\n"
|
||||
set var $stackp = $next_t.thread.esp
|
||||
set var $stack_top = ($stackp & ~4095) + 4096
|
||||
set var $stack_bot = ($stackp & ~4095)
|
||||
|
||||
set $stackp = *($stackp)
|
||||
while (($stackp < $stack_top) && ($stackp > $stack_bot))
|
||||
set var $addr = *($stackp + 4)
|
||||
info symbol $addr
|
||||
set $stackp = *($stackp)
|
||||
end
|
||||
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
|
||||
end
|
||||
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
|
||||
end
|
||||
end
|
||||
document btt
|
||||
dump all thread stack traces on a kernel compiled with CONFIG_FRAME_POINTER
|
||||
end
|
||||
|
||||
define btpid
|
||||
set var $pid = $arg0
|
||||
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
|
||||
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
|
||||
set $init_t=&init_task
|
||||
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
|
||||
set var $pid_task = 0
|
||||
|
||||
while ($next_t != $init_t)
|
||||
set $next_t=(struct task_struct *)$next_t
|
||||
|
||||
if ($next_t.pid == $pid)
|
||||
set $pid_task = $next_t
|
||||
end
|
||||
|
||||
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
|
||||
while ($next_th != $next_t)
|
||||
set $next_th=(struct task_struct *)$next_th
|
||||
if ($next_th.pid == $pid)
|
||||
set $pid_task = $next_th
|
||||
end
|
||||
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
|
||||
end
|
||||
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
|
||||
end
|
||||
|
||||
printf "\npid %d; comm %s:\n", $pid_task.pid, $pid_task.comm
|
||||
printf "===================\n"
|
||||
set var $stackp = $pid_task.thread.esp
|
||||
set var $stack_top = ($stackp & ~4095) + 4096
|
||||
set var $stack_bot = ($stackp & ~4095)
|
||||
|
||||
set $stackp = *($stackp)
|
||||
while (($stackp < $stack_top) && ($stackp > $stack_bot))
|
||||
set var $addr = *($stackp + 4)
|
||||
info symbol $addr
|
||||
set $stackp = *($stackp)
|
||||
end
|
||||
end
|
||||
document btpid
|
||||
backtrace of pid
|
||||
end
|
||||
|
||||
|
||||
define trapinfo
|
||||
set var $pid = $arg0
|
||||
set $tasks_off=((size_t)&((struct task_struct *)0)->tasks)
|
||||
set $pid_off=((size_t)&((struct task_struct *)0)->pids[1].pid_list.next)
|
||||
set $init_t=&init_task
|
||||
set $next_t=(((char *)($init_t->tasks).next) - $tasks_off)
|
||||
set var $pid_task = 0
|
||||
|
||||
while ($next_t != $init_t)
|
||||
set $next_t=(struct task_struct *)$next_t
|
||||
|
||||
if ($next_t.pid == $pid)
|
||||
set $pid_task = $next_t
|
||||
end
|
||||
|
||||
set $next_th=(((char *)$next_t->pids[1].pid_list.next) - $pid_off)
|
||||
while ($next_th != $next_t)
|
||||
set $next_th=(struct task_struct *)$next_th
|
||||
if ($next_th.pid == $pid)
|
||||
set $pid_task = $next_th
|
||||
end
|
||||
set $next_th=(((char *)$next_th->pids[1].pid_list.next) - $pid_off)
|
||||
end
|
||||
set $next_t=(char *)($next_t->tasks.next) - $tasks_off
|
||||
end
|
||||
|
||||
printf "Trapno %ld, cr2 0x%lx, error_code %ld\n", $pid_task.thread.trap_no, \
|
||||
$pid_task.thread.cr2, $pid_task.thread.error_code
|
||||
|
||||
end
|
||||
document trapinfo
|
||||
Run info threads and lookup pid of thread #1
|
||||
'trapinfo <pid>' will tell you by which trap & possibly
|
||||
addresthe kernel paniced.
|
||||
end
|
135
Documentation/kdump/kdump.txt
Normal file
135
Documentation/kdump/kdump.txt
Normal file
@ -0,0 +1,135 @@
|
||||
Documentation for kdump - the kexec-based crash dumping solution
|
||||
================================================================
|
||||
|
||||
DESIGN
|
||||
======
|
||||
|
||||
Kdump uses kexec to reboot to a second kernel whenever a dump needs to be taken.
|
||||
This second kernel is booted with very little memory. The first kernel reserves
|
||||
the section of memory that the second kernel uses. This ensures that on-going
|
||||
DMA from the first kernel does not corrupt the second kernel.
|
||||
|
||||
All the necessary information about Core image is encoded in ELF format and
|
||||
stored in reserved area of memory before crash. Physical address of start of
|
||||
ELF header is passed to new kernel through command line parameter elfcorehdr=.
|
||||
|
||||
On i386, the first 640 KB of physical memory is needed to boot, irrespective
|
||||
of where the kernel loads. Hence, this region is backed up by kexec just before
|
||||
rebooting into the new kernel.
|
||||
|
||||
In the second kernel, "old memory" can be accessed in two ways.
|
||||
|
||||
- The first one is through a /dev/oldmem device interface. A capture utility
|
||||
can read the device file and write out the memory in raw format. This is raw
|
||||
dump of memory and analysis/capture tool should be intelligent enough to
|
||||
determine where to look for the right information. ELF headers (elfcorehdr=)
|
||||
can become handy here.
|
||||
|
||||
- The second interface is through /proc/vmcore. This exports the dump as an ELF
|
||||
format file which can be written out using any file copy command
|
||||
(cp, scp, etc). Further, gdb can be used to perform limited debugging on
|
||||
the dump file. This method ensures methods ensure that there is correct
|
||||
ordering of the dump pages (corresponding to the first 640 KB that has been
|
||||
relocated).
|
||||
|
||||
SETUP
|
||||
=====
|
||||
|
||||
1) Download http://www.xmission.com/~ebiederm/files/kexec/kexec-tools-1.101.tar.gz
|
||||
and apply http://lse.sourceforge.net/kdump/patches/kexec-tools-1.101-kdump.patch
|
||||
and after that build the source.
|
||||
|
||||
2) Download and build the appropriate (latest) kexec/kdump (-mm) kernel
|
||||
patchset and apply it to the vanilla kernel tree.
|
||||
|
||||
Two kernels need to be built in order to get this feature working.
|
||||
|
||||
A) First kernel:
|
||||
a) Enable "kexec system call" feature (in Processor type and features).
|
||||
CONFIG_KEXEC=y
|
||||
b) This kernel's physical load address should be the default value of
|
||||
0x100000 (0x100000, 1 MB) (in Processor type and features).
|
||||
CONFIG_PHYSICAL_START=0x100000
|
||||
c) Enable "sysfs file system support" (in Pseudo filesystems).
|
||||
CONFIG_SYSFS=y
|
||||
d) Boot into first kernel with the command line parameter "crashkernel=Y@X".
|
||||
Use appropriate values for X and Y. Y denotes how much memory to reserve
|
||||
for the second kernel, and X denotes at what physical address the reserved
|
||||
memory section starts. For example: "crashkernel=64M@16M".
|
||||
|
||||
B) Second kernel:
|
||||
a) Enable "kernel crash dumps" feature (in Processor type and features).
|
||||
CONFIG_CRASH_DUMP=y
|
||||
b) Specify a suitable value for "Physical address where the kernel is
|
||||
loaded" (in Processor type and features). Typically this value
|
||||
should be same as X (See option d) above, e.g., 16 MB or 0x1000000.
|
||||
CONFIG_PHYSICAL_START=0x1000000
|
||||
c) Enable "/proc/vmcore support" (Optional, in Pseudo filesystems).
|
||||
CONFIG_PROC_VMCORE=y
|
||||
|
||||
Note: Options a) and b) depend upon "Configure standard kernel features
|
||||
(for small systems)" (under General setup).
|
||||
Option a) also depends on CONFIG_HIGHMEM (under Processor
|
||||
type and features).
|
||||
Both option a) and b) are under "Processor type and features".
|
||||
|
||||
3) Boot into the first kernel. You are now ready to try out kexec-based crash
|
||||
dumps.
|
||||
|
||||
4) Load the second kernel to be booted using:
|
||||
|
||||
kexec -p <second-kernel> --crash-dump --args-linux --append="root=<root-dev>
|
||||
maxcpus=1 init 1"
|
||||
|
||||
Note: i) <second-kernel> has to be a vmlinux image. bzImage will not work,
|
||||
as of now.
|
||||
ii) By default ELF headers are stored in ELF32 format (for i386). This
|
||||
is sufficient to represent the physical memory up to 4GB. To store
|
||||
headers in ELF64 format, specifiy "--elf64-core-headers" on the
|
||||
kexec command line additionally.
|
||||
iii) For now (or until it is fixed), it's best to build the
|
||||
second-kernel without multi-processor support, i.e., make it
|
||||
a uniprocessor kernel.
|
||||
|
||||
5) System reboots into the second kernel when a panic occurs. A module can be
|
||||
written to force the panic, for testing purposes.
|
||||
|
||||
6) Write out the dump file using
|
||||
|
||||
cp /proc/vmcore <dump-file>
|
||||
|
||||
Dump memory can also be accessed as a /dev/oldmem device for a linear/raw
|
||||
view. To create the device, type:
|
||||
|
||||
mknod /dev/oldmem c 1 12
|
||||
|
||||
Use "dd" with suitable options for count, bs and skip to access specific
|
||||
portions of the dump.
|
||||
|
||||
Entire memory: dd if=/dev/oldmem of=oldmem.001
|
||||
|
||||
ANALYSIS
|
||||
========
|
||||
|
||||
Limited analysis can be done using gdb on the dump file copied out of
|
||||
/proc/vmcore. Use vmlinux built with -g and run
|
||||
|
||||
gdb vmlinux <dump-file>
|
||||
|
||||
Stack trace for the task on processor 0, register display, memory display
|
||||
work fine.
|
||||
|
||||
Note: gdb cannot analyse core files generated in ELF64 format for i386.
|
||||
|
||||
TODO
|
||||
====
|
||||
|
||||
1) Provide a kernel pages filtering mechanism so that core file size is not
|
||||
insane on systems having huge memory banks.
|
||||
2) Modify "crash" tool to make it recognize this dump.
|
||||
|
||||
CONTACT
|
||||
=======
|
||||
|
||||
Hariprasad Nellitheertha - hari at in dot ibm dot com
|
||||
Vivek Goyal (vgoyal@in.ibm.com)
|
Loading…
x
Reference in New Issue
Block a user