powerpc: Handle opposite-endian processes in emulation code

This adds code to the load and store emulation code to byte-swap
the data appropriately when the process being emulated is set to
the opposite endianness to that of the kernel.

This also enables the emulation for the multiple-register loads
and stores (lmw, stmw, lswi, stswi, lswx, stswx) to work for
little-endian.  In little-endian mode, the partial word at the
end of a transfer for lsw*/stsw* (when the byte count is not a
multiple of 4) is loaded/stored at the least-significant end of
the register.  Additionally, this fixes a bug in the previous
code in that it could call read_mem/write_mem with a byte count
that was not 1, 2, 4 or 8.

Note that this only works correctly on processors with "true"
little-endian mode, such as IBM POWER processors from POWER6 on, not
the so-called "PowerPC" little-endian mode that uses address swizzling
as implemented on the old 32-bit 603, 604, 740/750, 74xx CPUs.

Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This commit is contained in:
Paul Mackerras 2017-08-30 14:12:38 +10:00 committed by Michael Ellerman
parent b9da9c8a48
commit d955189ae4
2 changed files with 131 additions and 60 deletions

View File

@ -153,7 +153,8 @@ void emulate_update_regs(struct pt_regs *reg, struct instruction_op *op);
extern int emulate_step(struct pt_regs *regs, unsigned int instr);
extern void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
const void *mem);
extern void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
void *mem);
const void *mem, bool cross_endian);
extern void emulate_vsx_store(struct instruction_op *op,
const union vsx_reg *reg, void *mem,
bool cross_endian);
extern int emulate_dcbz(unsigned long ea, struct pt_regs *regs);

View File

@ -217,6 +217,33 @@ static nokprobe_inline unsigned long byterev_8(unsigned long x)
}
#endif
static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
{
switch (nb) {
case 2:
*(u16 *)ptr = byterev_2(*(u16 *)ptr);
break;
case 4:
*(u32 *)ptr = byterev_4(*(u32 *)ptr);
break;
#ifdef __powerpc64__
case 8:
*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
break;
case 16: {
unsigned long *up = (unsigned long *)ptr;
unsigned long tmp;
tmp = byterev_8(up[0]);
up[0] = byterev_8(up[1]);
up[1] = tmp;
break;
}
#endif
default:
WARN_ON_ONCE(1);
}
}
static nokprobe_inline int read_mem_aligned(unsigned long *dest,
unsigned long ea, int nb,
struct pt_regs *regs)
@ -430,7 +457,8 @@ NOKPROBE_SYMBOL(write_mem);
* These access either the real FP register or the image in the
* thread_struct, depending on regs->msr & MSR_FP.
*/
static int do_fp_load(int rn, unsigned long ea, int nb, struct pt_regs *regs)
static int do_fp_load(int rn, unsigned long ea, int nb, struct pt_regs *regs,
bool cross_endian)
{
int err;
union {
@ -445,6 +473,11 @@ static int do_fp_load(int rn, unsigned long ea, int nb, struct pt_regs *regs)
err = copy_mem_in(u.b, ea, nb, regs);
if (err)
return err;
if (unlikely(cross_endian)) {
do_byte_reverse(u.b, min(nb, 8));
if (nb == 16)
do_byte_reverse(&u.b[8], 8);
}
preempt_disable();
if (nb == 4)
conv_sp_to_dp(&u.f, &u.d[0]);
@ -465,7 +498,8 @@ static int do_fp_load(int rn, unsigned long ea, int nb, struct pt_regs *regs)
}
NOKPROBE_SYMBOL(do_fp_load);
static int do_fp_store(int rn, unsigned long ea, int nb, struct pt_regs *regs)
static int do_fp_store(int rn, unsigned long ea, int nb, struct pt_regs *regs,
bool cross_endian)
{
union {
float f;
@ -491,6 +525,11 @@ static int do_fp_store(int rn, unsigned long ea, int nb, struct pt_regs *regs)
u.l[1] = current->thread.TS_FPR(rn);
}
preempt_enable();
if (unlikely(cross_endian)) {
do_byte_reverse(u.b, min(nb, 8));
if (nb == 16)
do_byte_reverse(&u.b[8], 8);
}
return copy_mem_out(u.b, ea, nb, regs);
}
NOKPROBE_SYMBOL(do_fp_store);
@ -499,7 +538,8 @@ NOKPROBE_SYMBOL(do_fp_store);
#ifdef CONFIG_ALTIVEC
/* For Altivec/VMX, no need to worry about alignment */
static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
int size, struct pt_regs *regs)
int size, struct pt_regs *regs,
bool cross_endian)
{
int err;
union {
@ -514,7 +554,8 @@ static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
if (err)
return err;
if (unlikely(cross_endian))
do_byte_reverse(&u.b[ea & 0xf], size);
preempt_disable();
if (regs->msr & MSR_VEC)
put_vr(rn, &u.v);
@ -525,7 +566,8 @@ static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
}
static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
int size, struct pt_regs *regs)
int size, struct pt_regs *regs,
bool cross_endian)
{
union {
__vector128 v;
@ -543,49 +585,60 @@ static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
else
u.v = current->thread.vr_state.vr[rn];
preempt_enable();
if (unlikely(cross_endian))
do_byte_reverse(&u.b[ea & 0xf], size);
return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
}
#endif /* CONFIG_ALTIVEC */
#ifdef __powerpc64__
static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
int reg)
int reg, bool cross_endian)
{
int err;
if (!address_ok(regs, ea, 16))
return -EFAULT;
/* if aligned, should be atomic */
if ((ea & 0xf) == 0)
return do_lq(ea, &regs->gpr[reg]);
err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
if (!err)
err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
if ((ea & 0xf) == 0) {
err = do_lq(ea, &regs->gpr[reg]);
} else {
err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
if (!err)
err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
}
if (!err && unlikely(cross_endian))
do_byte_reverse(&regs->gpr[reg], 16);
return err;
}
static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
int reg)
int reg, bool cross_endian)
{
int err;
unsigned long vals[2];
if (!address_ok(regs, ea, 16))
return -EFAULT;
vals[0] = regs->gpr[reg];
vals[1] = regs->gpr[reg + 1];
if (unlikely(cross_endian))
do_byte_reverse(vals, 16);
/* if aligned, should be atomic */
if ((ea & 0xf) == 0)
return do_stq(ea, regs->gpr[reg], regs->gpr[reg + 1]);
return do_stq(ea, vals[0], vals[1]);
err = write_mem(regs->gpr[reg + IS_LE], ea, 8, regs);
err = write_mem(vals[IS_LE], ea, 8, regs);
if (!err)
err = write_mem(regs->gpr[reg + IS_BE], ea + 8, 8, regs);
err = write_mem(vals[IS_BE], ea + 8, 8, regs);
return err;
}
#endif /* __powerpc64 */
#ifdef CONFIG_VSX
void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
const void *mem)
const void *mem, bool rev)
{
int size, read_size;
int i, j;
@ -602,19 +655,18 @@ void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
if (size == 0)
break;
memcpy(reg, mem, size);
if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) {
/* reverse 16 bytes */
unsigned long tmp;
tmp = byterev_8(reg->d[0]);
reg->d[0] = byterev_8(reg->d[1]);
reg->d[1] = tmp;
}
if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
rev = !rev;
if (rev)
do_byte_reverse(reg, 16);
break;
case 8:
/* scalar loads, lxvd2x, lxvdsx */
read_size = (size >= 8) ? 8 : size;
i = IS_LE ? 8 : 8 - read_size;
memcpy(&reg->b[i], mem, read_size);
if (rev)
do_byte_reverse(&reg->b[i], 8);
if (size < 8) {
if (op->type & SIGNEXT) {
/* size == 4 is the only case here */
@ -626,9 +678,10 @@ void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
preempt_enable();
}
} else {
if (size == 16)
reg->d[IS_BE] = *(unsigned long *)(mem + 8);
else if (op->vsx_flags & VSX_SPLAT)
if (size == 16) {
unsigned long v = *(unsigned long *)(mem + 8);
reg->d[IS_BE] = !rev ? v : byterev_8(v);
} else if (op->vsx_flags & VSX_SPLAT)
reg->d[IS_BE] = reg->d[IS_LE];
}
break;
@ -637,7 +690,7 @@ void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
wp = mem;
for (j = 0; j < size / 4; ++j) {
i = IS_LE ? 3 - j : j;
reg->w[i] = *wp++;
reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
}
if (op->vsx_flags & VSX_SPLAT) {
u32 val = reg->w[IS_LE ? 3 : 0];
@ -652,7 +705,7 @@ void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
hp = mem;
for (j = 0; j < size / 2; ++j) {
i = IS_LE ? 7 - j : j;
reg->h[i] = *hp++;
reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
}
break;
case 1:
@ -669,7 +722,7 @@ EXPORT_SYMBOL_GPL(emulate_vsx_load);
NOKPROBE_SYMBOL(emulate_vsx_load);
void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
void *mem)
void *mem, bool rev)
{
int size, write_size;
int i, j;
@ -685,7 +738,9 @@ void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
/* stxv, stxvx, stxvl, stxvll */
if (size == 0)
break;
if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) {
if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
rev = !rev;
if (rev) {
/* reverse 16 bytes */
buf.d[0] = byterev_8(reg->d[1]);
buf.d[1] = byterev_8(reg->d[0]);
@ -707,13 +762,18 @@ void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
memcpy(mem, &reg->b[i], write_size);
if (size == 16)
memcpy(mem + 8, &reg->d[IS_BE], 8);
if (unlikely(rev)) {
do_byte_reverse(mem, write_size);
if (size == 16)
do_byte_reverse(mem + 8, 8);
}
break;
case 4:
/* stxvw4x */
wp = mem;
for (j = 0; j < size / 4; ++j) {
i = IS_LE ? 3 - j : j;
*wp++ = reg->w[i];
*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
}
break;
case 2:
@ -721,7 +781,7 @@ void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
hp = mem;
for (j = 0; j < size / 2; ++j) {
i = IS_LE ? 7 - j : j;
*hp++ = reg->h[i];
*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
}
break;
case 1:
@ -738,7 +798,8 @@ EXPORT_SYMBOL_GPL(emulate_vsx_store);
NOKPROBE_SYMBOL(emulate_vsx_store);
static nokprobe_inline int do_vsx_load(struct instruction_op *op,
unsigned long ea, struct pt_regs *regs)
unsigned long ea, struct pt_regs *regs,
bool cross_endian)
{
int reg = op->reg;
u8 mem[16];
@ -748,7 +809,7 @@ static nokprobe_inline int do_vsx_load(struct instruction_op *op,
if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
return -EFAULT;
emulate_vsx_load(op, &buf, mem);
emulate_vsx_load(op, &buf, mem, cross_endian);
preempt_disable();
if (reg < 32) {
/* FP regs + extensions */
@ -769,7 +830,8 @@ static nokprobe_inline int do_vsx_load(struct instruction_op *op,
}
static nokprobe_inline int do_vsx_store(struct instruction_op *op,
unsigned long ea, struct pt_regs *regs)
unsigned long ea, struct pt_regs *regs,
bool cross_endian)
{
int reg = op->reg;
u8 mem[16];
@ -795,7 +857,7 @@ static nokprobe_inline int do_vsx_store(struct instruction_op *op,
buf.v = current->thread.vr_state.vr[reg - 32];
}
preempt_enable();
emulate_vsx_store(op, &buf, mem);
emulate_vsx_store(op, &buf, mem, cross_endian);
return copy_mem_out(mem, ea, size, regs);
}
#endif /* CONFIG_VSX */
@ -2619,6 +2681,7 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
unsigned int cr;
int i, rd, nb;
unsigned long ea;
bool cross_endian;
r = analyse_instr(&op, regs, instr);
if (r < 0)
@ -2631,6 +2694,7 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
err = 0;
size = GETSIZE(op.type);
type = op.type & INSTR_TYPE_MASK;
cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
ea = op.ea;
if (OP_IS_LOAD_STORE(type) || type == CACHEOP)
@ -2746,7 +2810,7 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
case LOAD:
#ifdef __powerpc64__
if (size == 16) {
err = emulate_lq(regs, ea, op.reg);
err = emulate_lq(regs, ea, op.reg, cross_endian);
goto ldst_done;
}
#endif
@ -2754,7 +2818,7 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
if (!err) {
if (op.type & SIGNEXT)
do_signext(&regs->gpr[op.reg], size);
if (op.type & BYTEREV)
if ((op.type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
do_byterev(&regs->gpr[op.reg], size);
}
goto ldst_done;
@ -2769,14 +2833,14 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
*/
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
return 0;
err = do_fp_load(op.reg, ea, size, regs);
err = do_fp_load(op.reg, ea, size, regs, cross_endian);
goto ldst_done;
#endif
#ifdef CONFIG_ALTIVEC
case LOAD_VMX:
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
return 0;
err = do_vec_load(op.reg, ea, size, regs);
err = do_vec_load(op.reg, ea, size, regs, cross_endian);
goto ldst_done;
#endif
#ifdef CONFIG_VSX
@ -2791,23 +2855,26 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
msrbit = MSR_VEC;
if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
return 0;
err = do_vsx_load(&op, ea, regs);
err = do_vsx_load(&op, ea, regs, cross_endian);
goto ldst_done;
}
#endif
case LOAD_MULTI:
if (regs->msr & MSR_LE)
return 0;
if (!address_ok(regs, ea, size))
return -EFAULT;
rd = op.reg;
for (i = 0; i < size; i += 4) {
unsigned int v32 = 0;
nb = size - i;
if (nb > 4)
nb = 4;
err = read_mem(&regs->gpr[rd], ea, nb, regs);
err = copy_mem_in((u8 *) &v32, ea, nb, regs);
if (err)
return 0;
if (nb < 4) /* left-justify last bytes */
regs->gpr[rd] <<= 32 - 8 * nb;
if (unlikely(cross_endian))
v32 = byterev_4(v32);
regs->gpr[rd] = v32;
ea += 4;
++rd;
}
@ -2816,7 +2883,7 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
case STORE:
#ifdef __powerpc64__
if (size == 16) {
err = emulate_stq(regs, ea, op.reg);
err = emulate_stq(regs, ea, op.reg, cross_endian);
goto ldst_done;
}
#endif
@ -2827,6 +2894,8 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
err = handle_stack_update(ea, regs);
goto ldst_done;
}
if (unlikely(cross_endian))
do_byterev(&op.val, size);
err = write_mem(op.val, ea, size, regs);
goto ldst_done;
@ -2834,14 +2903,14 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
case STORE_FP:
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
return 0;
err = do_fp_store(op.reg, ea, size, regs);
err = do_fp_store(op.reg, ea, size, regs, cross_endian);
goto ldst_done;
#endif
#ifdef CONFIG_ALTIVEC
case STORE_VMX:
if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
return 0;
err = do_vec_store(op.reg, ea, size, regs);
err = do_vec_store(op.reg, ea, size, regs, cross_endian);
goto ldst_done;
#endif
#ifdef CONFIG_VSX
@ -2856,22 +2925,23 @@ int emulate_step(struct pt_regs *regs, unsigned int instr)
msrbit = MSR_VEC;
if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
return 0;
err = do_vsx_store(&op, ea, regs);
err = do_vsx_store(&op, ea, regs, cross_endian);
goto ldst_done;
}
#endif
case STORE_MULTI:
if (regs->msr & MSR_LE)
return 0;
if (!address_ok(regs, ea, size))
return -EFAULT;
rd = op.reg;
for (i = 0; i < size; i += 4) {
val = regs->gpr[rd];
unsigned int v32 = regs->gpr[rd];
nb = size - i;
if (nb > 4)
nb = 4;
else
val >>= 32 - 8 * nb;
err = write_mem(val, ea, nb, regs);
if (unlikely(cross_endian))
v32 = byterev_4(v32);
err = copy_mem_out((u8 *) &v32, ea, nb, regs);
if (err)
return 0;
ea += 4;