We walk over the whole P2M tree and construct a simplified view of
which PFN regions belong to what level and what type they are.
Only enabled if CONFIG_XEN_DEBUG_FS is set.
[v2: UNKN->UNKNOWN, use uninitialized_var]
[v3: Rebased on top of mmu->p2m code split]
[v4: Fixed the else if]
Reviewed-by: Ian Campbell <Ian.Campbell@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
We walk the E820 region and start at 0 (for PV guests we start
at ISA_END_ADDRESS) and skip any E820 RAM regions. For all other
regions and as well the gaps we set them to be identity mappings.
The reasons we do not want to set the identity mapping from 0->
ISA_END_ADDRESS when running as PV is b/c that the kernel would
try to read DMI information and fail (no permissions to read that).
There is a lot of gnarly code to deal with that weird region so
we won't try to do a cleanup in this patch.
This code ends up calling 'set_phys_to_identity' with the start
and end PFN of the the E820 that are non-RAM or have gaps.
On 99% of machines that means one big region right underneath the
4GB mark. Usually starts at 0xc0000 (or 0x80000) and goes to
0x100000.
[v2: Fix for E820 crossing 1MB region and clamp the start]
[v3: Squshed in code that does this over ranges]
[v4: Moved the comment to the correct spot]
[v5: Use the "raw" E820 from the hypervisor]
[v6: Added Review-by tag]
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The initial bootup code uses set_phys_to_machine quite a lot, and after
bootup it would be used by the balloon driver. The balloon driver does have
mutex lock so this should not be necessary - but just in case, add
a WARN_ON if we do hit this scenario. If we do fail this, it is OK
to continue as there is a backup mechanism (VM_IO) that can bypass
the P2M and still set the _PAGE_IOMAP flags.
[v2: Change from WARN to BUG_ON]
[v3: Rebased on top of xen->p2m code split]
[v4: Change from BUG_ON to WARN]
Reviewed-by: Ian Campbell <Ian.Campbell@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
If we find that the PFN is within the P2M as an identity
PFN make sure to tack on the _PAGE_IOMAP flag.
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Our P2M tree structure is a three-level. On the leaf nodes
we set the Machine Frame Number (MFN) of the PFN. What this means
is that when one does: pfn_to_mfn(pfn), which is used when creating
PTE entries, you get the real MFN of the hardware. When Xen sets
up a guest it initially populates a array which has descending
(or ascending) MFN values, as so:
idx: 0, 1, 2
[0x290F, 0x290E, 0x290D, ..]
so pfn_to_mfn(2)==0x290D. If you start, restart many guests that list
starts looking quite random.
We graft this structure on our P2M tree structure and stick in
those MFN in the leafs. But for all other leaf entries, or for the top
root, or middle one, for which there is a void entry, we assume it is
"missing". So
pfn_to_mfn(0xc0000)=INVALID_P2M_ENTRY.
We add the possibility of setting 1-1 mappings on certain regions, so
that:
pfn_to_mfn(0xc0000)=0xc0000
The benefit of this is, that we can assume for non-RAM regions (think
PCI BARs, or ACPI spaces), we can create mappings easily b/c we
get the PFN value to match the MFN.
For this to work efficiently we introduce one new page p2m_identity and
allocate (via reserved_brk) any other pages we need to cover the sides
(1GB or 4MB boundary violations). All entries in p2m_identity are set to
INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs,
no other fancy value).
On lookup we spot that the entry points to p2m_identity and return the identity
value instead of dereferencing and returning INVALID_P2M_ENTRY. If the entry
points to an allocated page, we just proceed as before and return the PFN.
If the PFN has IDENTITY_FRAME_BIT set we unmask that in appropriate functions
(pfn_to_mfn).
The reason for having the IDENTITY_FRAME_BIT instead of just returning the
PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a
non-identity pfn. To protect ourselves against we elect to set (and get) the
IDENTITY_FRAME_BIT on all identity mapped PFNs.
This simplistic diagram is used to explain the more subtle piece of code.
There is also a digram of the P2M at the end that can help.
Imagine your E820 looking as so:
1GB 2GB
/-------------------+---------\/----\ /----------\ /---+-----\
| System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM |
\-------------------+---------/\----/ \----------/ \---+-----/
^- 1029MB ^- 2001MB
[1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 2048MB = 524288 (0x80000)]
And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB
is actually not present (would have to kick the balloon driver to put it in).
When we are told to set the PFNs for identity mapping (see patch: "xen/setup:
Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start
of the PFN and the end PFN (263424 and 512256 respectively). The first step is
to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page
covers 512^2 of page estate (1GB) and in case the start or end PFN is not
aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn to
end pfn. We reserve_brk top leaf pages if they are missing (means they point
to p2m_mid_missing).
With the E820 example above, 263424 is not 1GB aligned so we allocate a
reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000.
Each entry in the allocate page is "missing" (points to p2m_missing).
Next stage is to determine if we need to do a more granular boundary check
on the 4MB (or 2MB depending on architecture) off the start and end pfn's.
We check if the start pfn and end pfn violate that boundary check, and if
so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer
granularity of setting which PFNs are missing and which ones are identity.
In our example 263424 and 512256 both fail the check so we reserve_brk two
pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" values)
and assign them to p2m[1][2] and p2m[1][488] respectively.
At this point we would at minimum reserve_brk one page, but could be up to
three. Each call to set_phys_range_identity has at maximum a three page
cost. If we were to query the P2M at this stage, all those entries from
start PFN through end PFN (so 1029MB -> 2001MB) would return INVALID_P2M_ENTRY
("missing").
The next step is to walk from the start pfn to the end pfn setting
the IDENTITY_FRAME_BIT on each PFN. This is done in 'set_phys_range_identity'.
If we find that the middle leaf is pointing to p2m_missing we can swap it over
to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this point we
do not need to worry about boundary aligment (so no need to reserve_brk a middle
page, figure out which PFNs are "missing" and which ones are identity), as that
has been done earlier. If we find that the middle leaf is not occupied by
p2m_identity or p2m_missing, we dereference that page (which covers
512 PFNs) and set the appropriate PFN with IDENTITY_FRAME_BIT. In our example
263424 and 512256 end up there, and we set from p2m[1][2][256->511] and
p2m[1][488][0->256] with IDENTITY_FRAME_BIT set.
All other regions that are void (or not filled) either point to p2m_missing
(considered missing) or have the default value of INVALID_P2M_ENTRY (also
considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511]
contain the INVALID_P2M_ENTRY value and are considered "missing."
This is what the p2m ends up looking (for the E820 above) with this
fabulous drawing:
p2m /--------------\
/-----\ | &mfn_list[0],| /-----------------\
| 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. |
|-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] |
| 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] |
|-----| \ | [p2m_identity]+\\ | .... |
| 2 |--\ \-------------------->| ... | \\ \----------------/
|-----| \ \---------------/ \\
| 3 |\ \ \\ p2m_identity
|-----| \ \-------------------->/---------------\ /-----------------\
| .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... |
\-----/ / | [p2m_identity]+-->| ..., ~0 |
/ /---------------\ | .... | \-----------------/
/ | IDENTITY[@0] | /-+-[x], ~0, ~0.. |
/ | IDENTITY[@256]|<----/ \---------------/
/ | ~0, ~0, .... |
| \---------------/
|
p2m_missing p2m_missing
/------------------\ /------------\
| [p2m_mid_missing]+---->| ~0, ~0, ~0 |
| [p2m_mid_missing]+---->| ..., ~0 |
\------------------/ \------------/
where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT)
Reviewed-by: Ian Campbell <ian.campbell@citrix.com>
[v5: Changed code to use ranges, added ASCII art]
[v6: Rebased on top of xen->p2m code split]
[v4: Squished patches in just this one]
[v7: Added RESERVE_BRK for potentially allocated pages]
[v8: Fixed alignment problem]
[v9: Changed 1<<3X to 1<<BITS_PER_LONG-X]
[v10: Copied git commit description in the p2m code + Add Review tag]
[v11: Title had '2-1' - should be '1-1' mapping]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
atomic_read() needs to ensure that it emits a load (which it can do by using
ACCESS_ONCE()).
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: David Howells <dhowells@redhat.com>
The invalidate-only versions of flush_icache_*range() are trying sending the
SMP_ICACHE_INV_FLUSH_RANGE IPI command in SMP kernels when they should be
sending SMP_ICACHE_INV_RANGE as the former does not exist.
Signed-off-by: David Howells <dhowells@redhat.com>
Using __get_user_check(x, ptr++, size) leads to double increment of pointer.
This macro uses the macro get_user directly, which itself is used in this way
(get_user(x, ptr++)) in some functions of the kernel. The patch fixes the
error.
Reported-by: Tkhai Kirill <tkhai@yandex.ru>
Signed-off-by: David Howells <dhowells@redhat.com>
Setting the pci ops on subsys initcall unconditionally will break
multi platform kernels on anything except ce4100.
Use x86_init.pci.init ops to call this only on real ce4100 platforms.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: sodaville@linutronix.de
LKML-Reference: <20110314093340.GA21026@www.tglx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The exportfs encode handle function should return the minimum required
handle size. This helps user to find out the handle size by passing 0
handle size in the first step and then redoing to the call again with
the returned handle size value.
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New helpers: user_statfs() and fd_statfs(), taking userland pathname and
descriptor resp. and filling struct kstatfs. Syscalls of statfs family
(native, compat and foreign - osf and hpux on alpha and parisc resp.)
switched to those. Removes some boilerplate code, simplifies cleanup
on errors...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
new function: file_open_root(dentry, mnt, name, flags) opens the file
vfs_path_lookup would arrive to.
Note that name can be empty; in that case the usual requirement that
dentry should be a directory is lifted.
open-coded equivalents switched to it, may_open() got down exactly
one caller and became static.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New lookup flag: LOOKUP_ROOT. nd->root is set (and held) by caller,
path_init() starts walking from that place and all pathname resolution
machinery never drops nd->root if that flag is set. That turns
vfs_path_lookup() into a special case of do_path_lookup() *and*
gets us down to 3 callers of link_path_walk(), making it finally
feasible to rip the handling of trailing symlink out of link_path_walk().
That will not only simply the living hell out of it, but make life
much simpler for unionfs merge. Trailing symlink handling will
become iterative, which is a good thing for stack footprint in
a lot of situations as well.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
That thing has devolved into rats nest of gotos; sane use of unlikely()
gets rid of that horror and gives much more readable structure:
* make a fast attempt to find a dentry; false negatives are OK.
In RCU mode if everything went fine, we are done, otherwise just drop
out of RCU. If we'd done (RCU) ->d_revalidate() and it had not refused
outright (i.e. didn't give us -ECHILD), remember its result.
* now we are not in RCU mode and hopefully have a dentry. If we
do not, lock parent, do full d_lookup() and if that has not found anything,
allocate and call ->lookup(). If we'd done that ->lookup(), remember that
dentry is good and we don't need to revalidate it.
* now we have a dentry. If it has ->d_revalidate() and we can't
skip it, call it.
* hopefully dentry is good; if not, either fail (in case of error)
or try to invalidate it. If d_invalidate() has succeeded, drop it and
retry everything as if original attempt had not found a dentry.
* now we can finish it up - deal with mountpoint crossing and
automount.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There used to be time when ->d_revalidate() couldn't return an error.
So intents code had lookup_instantiate_filp() stash ERR_PTR(error)
in nd->intent.open.filp and had it checked after lookup_hash(), to
catch the otherwise silent failures. That had been introduced by
commit 4af4c52f34. These days
->d_revalidate() can and does propagate errors back to callers
explicitly, so this check isn't needed anymore.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We have a bunch of diverging codepaths in do_last(); some of
them converge, but the case of having to create a new file
duplicates large part of common tail of the rest and exits
separately. Massage them so that they could be merged.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Lift it to lookup_one_len() and link_path_walk() resp. into the
same place where we calculated default hash function of the same
name.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of path_lookupat() doing trailing symlink resolution,
use the same scheme as on the O_CREAT side. Walk with
LOOKUP_PARENT, then (in do_last()) look the final component
up, then either open it or return error or, if it's a symlink,
give the symlink back to path_openat() to be resolved there.
The really messy complication here is RCU. We don't want to drop
out of RCU mode before the final lookup, since we don't want to
bounce parent directory ->d_count without a good reason.
Result is _not_ pretty; later in the series we'll clean it up.
For now we are roughly back where we'd been before the revert
done by Nick's series - top-level logics of path_openat() is
cleaned up, do_last() does actual opening, symlink resolution is
done uniformly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Don't stash the struct file * used as starting point of walk in nameidata;
pass file ** to path_init() instead.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New helper: terminate_walk(). An error has happened during pathname
resolution and we either drop nd->path or terminate RCU, depending
the mode we had been in. After that, nd is essentially empty.
Switch link_path_walk() to using that for cleanup.
Now the top-level logics in link_path_walk() is back to sanity. RCU
dependencies are in the lower-level functions.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now we have do_follow_link() guaranteed to leave without dangling RCU
and the next step will get LOOKUP_RCU logics completely out of
link_path_walk().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
new helper: path_openat(). Does what do_filp_open() does, except
that it tries only the walk mode (RCU/normal/force revalidation)
it had been told to.
Both create and non-create branches are using path_lookupat() now.
Fixed the double audit_inode() in non-create branch.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
take calculation of open_flags by open(2) arguments into new helper
in fs/open.c, move filp_open() over there, have it and do_sys_open()
use that helper, switch exec.c callers of do_filp_open() to explicit
(and constant) struct open_flags.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
No point messing with passing shitloads of "operation mode" arguments
to do_open() one by one, especially since they are not going to change
during do_filp_open(). Collect them into a struct, fill it and pass
to do_last() by reference.
Make sure that lookup intent flags are correctly set and removed - we
want them for do_last(), but they make no sense for __do_follow_link().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
instead of ad-hackery around need_reval_dot(), do the following:
set a flag (LOOKUP_JUMPED) in the beginning of path, on absolute
symlink traversal, on ".." and on procfs-style symlinks. Clear on
normal components, leave unchanged on ".". Non-nested callers of
link_path_walk() call handle_reval_path(), which checks that flag
is set and that fs does want the final revalidate thing, then does
->d_revalidate(). In link_path_walk() all the return_reval stuff
is gone.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Actual dependency on whether we want RCU or not is in 3 small areas
(as it ought to be) and everything around those is the same in both
versions. Since each function has only one caller and those callers
are on two sides of if (flags & LOOKUP_RCU), it's easier and cleaner
to merge them and pull the checks inside.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New helper: path_lookupat(). Basically, what do_path_lookup() boils to
modulo -ECHILD/-ESTALE handler. path_walk* family is gone; vfs_path_lookup()
is using link_path_walk() directly, do_path_lookup() and do_filp_open()
are using path_lookupat().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all remaining callers pass LOOKUP_PARENT to it, so
flags argument can die; renamed to kern_path_parent()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
hpwdt_init_nmi_decoding() is called in hpwdt_init_one error handling,
thus remove the __devexit annotation of hpwdt_exit_nmi_decoding().
This patch fixes below warning:
WARNING: drivers/watchdog/hpwdt.o(.devinit.text+0x36f): Section mismatch in reference from the function hpwdt_init_one() to the function .devexit.text:hpwdt_exit_nmi_decoding()
The function __devinit hpwdt_init_one() references
a function __devexit hpwdt_exit_nmi_decoding().
This is often seen when error handling in the init function
uses functionality in the exit path.
The fix is often to remove the __devexit annotation of
hpwdt_exit_nmi_decoding() so it may be used outside an exit section.
Signed-off-by: Axel Lin <axel.lin@gmail.com>
Acked-by: Thomas Mingarelli <Thomas.Mingarelli@hp.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
"==" has higher precedence than "&". Since
if (sch311x_sio_inb(sio_config_port, 0x30) & (0x01 == 0)) is always
false the message is never printed.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
cppcheck-1.47 reports:
[drivers/watchdog/cpwd.c:650]: (error) Buffer access out-of-bounds: p.devs
The source code is
for (i = 0; i < 4; i++) {
misc_deregister(&p->devs[i].misc);
where devs is defined as WD_NUMDEVS big and WD_NUMDEVS is equal to 3.
So the 4 should be a 3 or WD_NUMDEVS.
Reported-By: David Binderman
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
So we used to use lpfn directly to restrict VRAM when we couldn't
access the unmappable area, however this was removed in
93225b0d7b as it also restricted
the gtt placements. However it was only later noticed that this
broke on some hw.
This removes the active_vram_size, and just explicitly sets it
when it changes, TTM/drm_mm will always use the real_vram_size,
and the active vram size will change the TTM size used for lpfn
setting.
We should re-work the fpfn/lpfn to per-placement at some point
I suspect, but that is too late for this kernel.
Hopefully this addresses:
https://bugs.freedesktop.org/show_bug.cgi?id=35254
v2: fix reported useful VRAM size to userspace to be correct.
Signed-off-by: Dave Airlie <airlied@redhat.com>
Fix for a dumb preadv()/pwritev() compat bug - unlike the native
variants, the compat_... ones forget to check FMODE_P{READ,WRITE}, so
e.g. on pipe the native preadv() will fail with -ESPIPE and compat one
will act as readv() and succeed.
Not critical, but it's a clear bug with trivial fix, so IMO it's OK for
-final.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>